JPS6363564B2 - - Google Patents

Info

Publication number
JPS6363564B2
JPS6363564B2 JP15206979A JP15206979A JPS6363564B2 JP S6363564 B2 JPS6363564 B2 JP S6363564B2 JP 15206979 A JP15206979 A JP 15206979A JP 15206979 A JP15206979 A JP 15206979A JP S6363564 B2 JPS6363564 B2 JP S6363564B2
Authority
JP
Japan
Prior art keywords
discharge
film
gas
substrate
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15206979A
Other languages
Japanese (ja)
Other versions
JPS5676414A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15206979A priority Critical patent/JPS5676414A/en
Publication of JPS5676414A publication Critical patent/JPS5676414A/en
Publication of JPS6363564B2 publication Critical patent/JPS6363564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放電重合膜及びその製造方法に関する
ものである。 近年、集積回路の製造において各種基板及び被
覆層のエツチング加工または不純物のドーピング
加工のために、部分的マスク材として有機高分子
重合体のレジスト組成物を用いて、微細パタンを
形成させる技術が進展してきた。 レジスト組成物を用いて微細パタンを形成させ
るためには可視光または紫外光を用いたフオトリ
ソグラフイによるのが通常であるが、近年は電子
線、X線など波長の極めて短いエネルギー線を用
いたマイクロリソグラフイによる加工精度の向上
がはかられつつある。 このためのレジスト組成物にはポリメタクリル
酸メチル(PMMA)、ポリフツ化アルキルメタク
リレート(例えばPFPM,PFBM)などの有機
高分子重合体が用いられてきた、(松山謙太朗
「電子線、X線レジスト材料」電子通信学会誌61
巻 8号 823頁 1978年)。このような有機高分
子重合体レジスト組成物はあらかじめ重合によつ
て高分子量化された物質を適当な溶媒に溶解し、
スピナー法あるいはデイツプ法によつて基板に塗
布し薄膜を形成させるものである。 このような重合体を溶液にして塗布する場合、
重合体よりはるかに大量の溶媒を必要とする上、
段差のついた基板においては段差部の均一塗布が
不可能になるなどの欠点があつた。さらに、エネ
ルギー線照射後の現像過程には、有機溶媒による
ウエツト現像が用いられてきたが、廃現像液の処
理法、水洗のための水の大量使用、現像処理によ
る基板汚染などのわずらわしい問題がある。 一方、パタン現像後の基板加工過程において
も、エツチング溶液を使用するウエツト・エツチ
ングでは上記に述べた廃液処理の問題およびサイ
ド・エツチング等による加工精度の問題があり、
微細パタン作製にはCCl4,Cf4などのガス・プラ
ズマによつて、エツチングを行なうドライ・エツ
チングが行なわれるようになりつつある。 以上述べたようなドライ処理によるパタン形成
用レジスト材料には、現像処理のガス・プラズマ
で選択的除去が容易に起こり、パタン形成が可能
であり、逆に基板エツチング過程ではガス・プラ
ズマに対して除去されにくく基板を十分に保護す
る特性が必要である。従来の有機高分子材料では
この特性の実現が不可能であつた。 本発明は上述の欠点のない新規な薄膜の製造方
法を提供せんとするものであり、詳しくは耐ドラ
イ・エツチング性に優れ、高感度で均一性の良好
なレジスト薄膜として使用可能な放電重合膜の製
造方法を提供せんとするものである。 本発明による放電重合膜の製造方法は、一般
式: (式中、Rはフツ化アルキル基を示す) で表わされる含フツ素化物を10〜10-3torrの圧力
下で、ガス放電することを特徴とするものであ
る。 本発明による放電重合膜によれば、電子線、X
線などのエネルギー線の照射によつてポジ型レジ
スト材料として利用できる。エネルギー線感度は
従来のメタクリル酸メチル(MMA)の放電重合
膜より数倍高くしかもドライ現像が可能であり、
ドライ・エツチングに対する耐性も従来のポリメ
タクリル酸メチル(PMMA)よりはるかに優れ
ている。このためにパタン作製のために現像から
基板加工までの全ドライ加工に対応できる特性を
持つている。 さらに本発明による製造方法では薄膜は気相か
ら基板上へ生成するために、基板上での薄膜の均
一性が、スピンコート法で塗布される従来のレジ
スト材料より優れているのみならず表面段差のあ
る基板でも欠陥のない被覆ができる利点を持つて
いる。 本発明を更に詳しく説明すると、本発明によつ
て製造される放電重合膜は、 一般式; で示されるモノマーをガス放電重合させたもので
ある。 Rはフツ化アルキル基であれば基本的にいかな
るものでもよい。しかしながら、好ましくは炭素
数1〜10の低級フツ化アルキルであることが望ま
しい。高級フツ化アルキル基であると膜形成が困
難となるからである。たとえば、CHF2CF2CH2
−,CHF2CF2CF2CH2−,
The present invention relates to a discharge polymerized membrane and a method for manufacturing the same. In recent years, advances have been made in technology for forming fine patterns using organic polymer resist compositions as partial mask materials for etching or impurity doping of various substrates and covering layers in the manufacture of integrated circuits. I've done it. To form fine patterns using resist compositions, photolithography using visible light or ultraviolet light is usually used, but in recent years, energy beams with extremely short wavelengths such as electron beams and X-rays have been used. Efforts are being made to improve processing accuracy using microlithography. Organic polymers such as polymethyl methacrylate (PMMA) and polyfluorinated alkyl methacrylate (e.g. PFPM, PFBM) have been used in resist compositions for this purpose. Materials” Journal of the Institute of Electronics and Communication Engineers 61
Vol. 8, p. 823, 1978). Such an organic polymer resist composition is prepared by dissolving a substance whose molecular weight has been made high through polymerization in an appropriate solvent, and
It is applied to a substrate by a spinner method or a dip method to form a thin film. When applying such polymers in solution,
In addition to requiring much larger amounts of solvent than polymers,
In substrates with steps, there are drawbacks such as the impossibility of uniform coating on the step portions. Furthermore, wet development using an organic solvent has been used for the development process after energy ray irradiation, but there are some troublesome problems such as how to dispose of waste developer, the use of large amounts of water for washing, and substrate contamination during the development process. be. On the other hand, even in the substrate processing process after pattern development, wet etching using an etching solution has the above-mentioned problem of waste liquid disposal and processing accuracy problems due to side etching, etc.
Dry etching, in which etching is performed using gas plasma such as CCl 4 or Cf 4 , is increasingly being used to produce fine patterns. Resist materials for pattern formation by dry processing as described above can be easily selectively removed by gas/plasma during development processing, making it possible to form patterns. It is necessary to have properties that are difficult to remove and sufficiently protect the substrate. It has been impossible to achieve this property with conventional organic polymer materials. The present invention aims to provide a novel thin film manufacturing method that does not have the above-mentioned drawbacks. Specifically, the present invention provides a discharge polymerized film that has excellent dry etching resistance, high sensitivity, and can be used as a resist thin film with good uniformity. The purpose of this invention is to provide a method for manufacturing. The method for producing a discharge polymerized film according to the present invention is carried out by the general formula: (In the formula, R represents a fluorinated alkyl group.) This method is characterized by subjecting the fluorinated compound represented by the following formula to gas discharge under a pressure of 10 to 10 -3 torr. According to the discharge polymerized film according to the present invention, electron beam,
It can be used as a positive resist material by irradiation with energy rays such as rays. The energy ray sensitivity is several times higher than the conventional discharge polymerized film of methyl methacrylate (MMA), and dry development is possible.
It is also far more resistant to dry etching than conventional polymethyl methacrylate (PMMA). For this reason, it has the characteristic of being able to handle all dry processing from development to substrate processing for pattern creation. Furthermore, in the manufacturing method according to the present invention, since the thin film is generated on the substrate from the gas phase, the uniformity of the thin film on the substrate is not only superior to that of conventional resist materials applied by spin coating, but also the surface level difference. It has the advantage of being able to provide a defect-free coating even on substrates that have some defects. To explain the present invention in more detail, the discharge polymerized film produced by the present invention has the general formula; This is a monomer shown by gas discharge polymerization. Basically, R may be any fluorinated alkyl group. However, it is preferably a lower fluorinated alkyl having 1 to 10 carbon atoms. This is because a higher fluorinated alkyl group makes it difficult to form a film. For example, CHF 2 CF 2 CH 2
−, CHF 2 CF 2 CF 2 CH 2 −,

【式】【formula】

〔実施例 1〕[Example 1]

上述のフツ化アルキルメタクリレートの放電重
合膜の製造方法に従つてシリコン基板上に第1表
の放電重合膜を得た。製造条件も第1表に同時に
示した。
The discharge polymerized films shown in Table 1 were obtained on silicon substrates according to the method for producing discharge polymerized films of alkyl fluoride methacrylate described above. The manufacturing conditions are also shown in Table 1.

〔実施例 2〕[Example 2]

第1表の(2)のモノマを6.0×10-2torr導入した反
応容器中で電極に13.56MHzの高周波電圧を印加
して、放電を行なつた。基板として表面にAl蒸
着したシリコン・ウエハを用い放電電力10W、ガ
ス流量50c.c./分で20分間放電し基板上に膜厚1.5μ
mの放電重合膜を得た。この膜上に印加電圧
20KV、電流量1×10-9Aの電子線でパタンを描
画した。これを円筒型ガス・プラズマ装置内でド
ライ現像を行なつた。ガスとしてCCl4を用い10
分の現像で電子線照射部が除去された薄膜のパタ
ンが作製できた。パタン作製に必要な電子線照射
量は1×10-5C/cm2であつた。これはモノマとし
てメタクリル酸メチル(MMA)を用いた放電重
合膜(1979年度応用物理学会予稿集29p−S−13
「PPMMA膜への電子線描画とプラズマエツチン
グ」五野順次、家田正之ら)を同一条件で作製し
電子線描画して現像した感度5×10-5C/cm2に比
べて5倍程度高感度である。 またガス・プラズマを用いない場合はイソプロ
ピルアルコール(IPA):メチルエチルケトン
(MEK)=90:10の現像液でも20秒間で現像が行
なえた。 〔実施例 3〕 実施例1と同様にして作製した放電重合膜に、
3μm厚のAuパタンマスクを密着させMoターゲツ
トの軟X線を照射した。これを実施例1と同様の
現像を行なうとX線照射部の除去された薄膜パタ
ンが作製できた。パタンを形成するのに必要なX
線の量は約200mJ/cm2であつた。これも実施例1
で示したMMA放電重合膜と感度比較を行なうと
約4倍高感度であつた。 〔実施例 4〕 実施例2および実施例3で作製した薄膜パタン
を用い、平行電極型プラズマ・エツチング装置に
よつてCCl4ガスを使つてドライ・エツチングを
行なつた。Alのエツチング速度が1500Å/分の
時、放電重合膜は600Å/分のエツチングを受け
た。市販PMMAレジスト膜は同様の条件で1200
Å/分エツチングを受けた。この放電重合膜の耐
ドライエツチング性は市販PMMAレジストより
約2倍優れている。
A high frequency voltage of 13.56 MHz was applied to the electrodes in a reaction vessel into which monomer (2) in Table 1 was introduced at 6.0×10 −2 torr to cause discharge. Using a silicon wafer with Al vapor deposited on its surface as a substrate, discharge was performed for 20 minutes at a discharge power of 10 W and a gas flow rate of 50 c.c./min, resulting in a film thickness of 1.5 μm on the substrate.
A discharge polymerized film of m was obtained. Applied voltage on this membrane
The pattern was drawn with an electron beam of 20KV and a current of 1×10 -9 A. This was subjected to dry development in a cylindrical gas plasma apparatus. 10 using CCl4 as gas
After a minute of development, a thin film pattern with the electron beam irradiated area removed was created. The amount of electron beam irradiation required for pattern production was 1×10 −5 C/cm 2 . This is a discharge polymerized film using methyl methacrylate (MMA) as a monomer (1979 Japan Society of Applied Physics Proceedings 29p-S-13).
"Electron beam drawing and plasma etching on PPMMA film" (Junji Gono, Masayuki Ieda et al.) was prepared under the same conditions, and the sensitivity was 5 x 10 -5 C/cm 2, which is about 5 times higher than that of electron beam drawing and development. It's sensitivity. Furthermore, when gas plasma was not used, development could be performed in 20 seconds using a developer solution containing isopropyl alcohol (IPA): methyl ethyl ketone (MEK) = 90:10. [Example 3] A discharge polymerized film prepared in the same manner as in Example 1 was coated with
A 3 μm thick Au pattern mask was placed in close contact with the Mo target and soft X-rays were irradiated. When this was developed in the same manner as in Example 1, a thin film pattern in which the X-ray irradiated area was removed was produced. X required to form a pattern
The amount of radiation was approximately 200 mJ/cm 2 . This is also Example 1
When comparing the sensitivity with the MMA discharge polymerized film shown in , it was about 4 times more sensitive. [Example 4] Using the thin film patterns prepared in Examples 2 and 3, dry etching was performed using CCl 4 gas in a parallel electrode type plasma etching apparatus. When the Al etching rate was 1500 Å/min, the discharge polymerized film was etched at 600 Å/min. Commercially available PMMA resist film is 1200 µm under similar conditions.
Etched in Å/min. The dry etching resistance of this discharge polymerized film is about twice as good as that of commercially available PMMA resist.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による放電重合膜の製造方法を実施
するための装置の概略図である。 1……反応容器、2……ガス導入口、3……ガ
ス排出口、4……基板、5……基板固定ホルダ、
6……高周波電極、7……高周波電源。
The figure is a schematic diagram of an apparatus for carrying out the method for producing a discharge polymerized film according to the present invention. 1... Reaction container, 2... Gas inlet, 3... Gas outlet, 4... Substrate, 5... Substrate fixing holder,
6...High frequency electrode, 7...High frequency power supply.

Claims (1)

【特許請求の範囲】 1 一般式; (式中、Rはフツ化アルキル基を示す) で表される含フツ素化物を10〜10-3torrの圧力下
でガス放電することを特徴とする放電重合膜の製
造方法。
[Claims] 1. General formula; (In the formula, R represents a fluorinated alkyl group) A method for producing a discharge polymerized membrane, which comprises subjecting a fluorinated compound represented by the following formula to gas discharge under a pressure of 10 to 10 -3 torr.
JP15206979A 1979-11-26 1979-11-26 Discharge-polymerized membrane and production thereof Granted JPS5676414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15206979A JPS5676414A (en) 1979-11-26 1979-11-26 Discharge-polymerized membrane and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15206979A JPS5676414A (en) 1979-11-26 1979-11-26 Discharge-polymerized membrane and production thereof

Publications (2)

Publication Number Publication Date
JPS5676414A JPS5676414A (en) 1981-06-24
JPS6363564B2 true JPS6363564B2 (en) 1988-12-07

Family

ID=15532367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15206979A Granted JPS5676414A (en) 1979-11-26 1979-11-26 Discharge-polymerized membrane and production thereof

Country Status (1)

Country Link
JP (1) JPS5676414A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119906A (en) * 1981-01-19 1982-07-26 Daikin Ind Ltd Formation of smooth film on substrate
JPS60188410A (en) * 1984-03-09 1985-09-25 Daikin Ind Ltd Coating material

Also Published As

Publication number Publication date
JPS5676414A (en) 1981-06-24

Similar Documents

Publication Publication Date Title
JPS64689B2 (en)
JPS6360891B2 (en)
JPS6341047B2 (en)
JPH035573B2 (en)
WO1985002030A1 (en) GRAFT POLYMERIZED SiO2 LITHOGRAPHIC MASKS
EP0393799B1 (en) Vapor deposited photoresists of anionically polymerizable monomers
JPS6363564B2 (en)
JPS5934296B2 (en) Electron beam resist and its usage
JPS6219051B2 (en)
JPS5961928A (en) Pattern formation
JP2675162B2 (en) Photosensitive resin composition and pattern forming method using the same
JP4768740B2 (en) Novel resist material and method for forming patterned resist layer on substrate
JPH0314172B2 (en)
JPS6376438A (en) Pattern formation
JP3563138B2 (en) Pattern forming method using photosensitive resin composition
Hori et al. H 2 plasma development of X-ray imaged patterns on plasma-polymerized resists
RU2029979C1 (en) Method of dry obtaining of positive image in photolithography
JPH04226462A (en) Resist material and resist pattern forming method using same
JPS63213343A (en) Formation of fine pattern
JPS62127737A (en) Developing solution
JPH0329802B2 (en)
DW et al. Improving the process capability of SU-8, part III
JPS59125729A (en) Dry-developable positive type resist composition
JPS59128B2 (en) Electron beam resist development method
JPS60114857A (en) Photosensitive composition for dry development