JPS636347B2 - - Google Patents

Info

Publication number
JPS636347B2
JPS636347B2 JP58200495A JP20049583A JPS636347B2 JP S636347 B2 JPS636347 B2 JP S636347B2 JP 58200495 A JP58200495 A JP 58200495A JP 20049583 A JP20049583 A JP 20049583A JP S636347 B2 JPS636347 B2 JP S636347B2
Authority
JP
Japan
Prior art keywords
resin
temperature
sheet
pressure
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58200495A
Other languages
Japanese (ja)
Other versions
JPS6092826A (en
Inventor
Ryosuke Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP20049583A priority Critical patent/JPS6092826A/en
Publication of JPS6092826A publication Critical patent/JPS6092826A/en
Publication of JPS636347B2 publication Critical patent/JPS636347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

従来、シート状熱可塑性樹脂より容器を製造す
る方法として真空成形法あるいは圧空成形法など
があつた。特に生産スピードを早くする場合は、
圧空成形法が好んで用いられる様である。本発明
は、圧空成形法の改良に関するものである。 圧空成形法には、樹脂の融点あるいは融点が明
確でないものにおいてはその軟化温度以上で加熱
して行う場合と樹脂の融点あるいは前記軟化温度
以下で行う場合があり、その樹脂の機械的特性、
例えば引張強度、衝撃強度、透明性を本来の樹脂
特性以上に上げようとする場合は後者の方法を用
いる。しかし、樹脂の融点または前記軟化温度以
下で成形しようとする場合は、一般的に成形時の
延伸歪が樹脂内部に残りやすく、所謂樹脂粘弾性
体の弾性要素が粘性要素によつて束縛され成形後
あるいは容器を加熱した場合などに内部歪が解放
され弾性回復する。従つて、所望の形状が得られ
なかつたり、ボイルレトルト等の加熱をした場合
に変形したりする不具合があり、また成形延伸時
に肉厚が薄くなるに従つて表面が冷却され所謂伸
びムラと称する成形品肉厚の厚薄が部分的に発生
しやすく、成形の歩留りを悪くしたりしていた。 これを解決するため、所謂温度調節を行つたプ
ラグ(Plug)を用いて熱可塑性樹脂軟化シート
を予め延伸しておく方法、特にプラグ形状を成形
品の形に応じたものにし、肉厚が薄くなると思わ
れる部分のみプラグが当る様にしシートに該プラ
グを押しつけた後圧力空気を用いて成形する成形
法(特公昭53−1790)があつた。しかし、この方
法は、プラグ温度調節が困難なことおよび多数個
取り成形の場合に金型設備費が高価であり、歩留
りも悪い等の不具合があつた。 したがつて、本発明は、これらプラグを用いる
ことなくしかも肉厚分布の良好なまた内部歪の少
ない耐熱性良好な成形品を得るべく圧空成形法に
ついて鋭意検討を行つた結果なされたものであ
る。 即ち、本発明は、熱可塑性樹脂シートをその融
点または軟化温度より低い温度に加熱しておき、
同様に圧力空気を、使用する樹脂の融点または軟
化点より低い温度に加熱しておき、該加熱空気を
用いて熱可塑性樹脂シートを成形するものであ
る。ここで、融点とは結晶性樹脂特有のものであ
りポリプロピレン、ポリエチレンなどには融点が
ある。一方、明確な融点をもたない非結晶性樹
脂、例えばアクリロニトリル−ブタジエン−スチ
レン共重合体、ポリ塩化ビニル、ポリスチレンな
どは軟化温度で表現される。軟化温度は、BS−
2782に定められるVicat軟化温度を意味する。 これら樹脂シートを用いて圧空成形する場合、
樹脂の前記融点以上または軟化温度以上で加熱成
形した場合には所望の機械的特性、透明性などの
向上が見られず、また加熱成形−冷却のサイクル
が長い等の欠点を有する。逆に、樹脂の融点また
は軟化温度より低い温度で加熱成形した場合に
は、所謂分子の二軸配向が強調され、引張強度、
衝撃強度、透明性などが良好になり、また成形サ
イクルを短かくできる。しかし、この場合樹脂の
残留歪が存在しやすく成形後の弾性回復または加
熱時の変形などの不具合が発生しやすい。したが
つて、本発明は従来用いられている低温空気のか
わりに樹脂の融点または軟化点より低い温度の加
熱空気を用いて成形することにより、内部歪に基
づくこれらの欠点を除去することができることを
発見してなされたものである。これにより、成形
延伸時、樹脂シートを冷却することなく延伸で
き、完成した成形品は内部歪の少ないものにする
ことができる。従来の低温空気を用いて成形する
場合は、通常2〜6Kg/cm2の圧力を、周辺をクラ
ンプ密閉したシートに直接吹込むため、完全に型
に密着するまでの成形途上で成形品表面はかなり
冷却されることおよび高速で延伸するため内部歪
が残りやすく、また成形品に部分的な厚薄が出や
すく肉厚分布も悪くなりやすい。 本発明で用いる加熱空気の温度は、用いる樹脂
の前述した融点より低い温度または軟化温度より
低い温度であるが、時にはこれを越えるものでも
良好に成形できる場合がある。これはシート自体
に残留する内部歪、熱履歴、結晶状態などによる
ものであると思われる。しかし、確実に目的を達
成するためには、用いる樹脂の融点または軟化温
度より低い温度であり、好ましくは可能な限りこ
れらの温度に近い方が良いが、所望する機械的物
性、透明性によつて加熱空気の温度を適宜選択し
て決定する。 これらの加熱空気を作る方法は、海綿状または
フイン状を賦与したヒータを通して行うことがで
きる。この方法で所望の温度に上昇しない場合
は、予めアキユムレータ中で所定量の空気を予備
加熱しておいても良い。 加熱により軟化した熱可塑性樹脂シートに加熱
空気を送入する場合、例えば第1段階では、加熱
空気の圧力をその時の樹脂温度における樹脂の降
伏応力以下にし、シートを予張する。これにより
加熱膨張したシートのシワを伸ばすことができ
る。第2段階では、その時の樹脂温度における降
伏応力以上で延伸するに必要な圧力を加える。こ
れにより内部歪を残さず延伸することができる。
そして最後に一気に型に密着するまで圧力を上昇
させる。この操作により成形品の肉厚分布を良好
にし、且つ成形内部歪を極力減らすことができ
る。この成形法で成形のみに要する時間の割合
は、第1段階で5%、第2段階で90%、第3段階
で5%程度である。とくに第2段階で成形品が型
に密着する直前までゆつくりと延伸することが大
事であり、場合によつては第3段階を省略するこ
ともできる。ゆつくり延伸することにより十分な
応力緩和が行なわれ内部歪を少なくできる。この
第2段階では延伸するにつれ成形品の抗張力が増
大するのでこれに応じて徐々に圧空圧力を上昇さ
せるのがよい。また、シートと型で密閉される空
間は、圧空圧力によつてシートが型に対して絞り
込まれる度合により、徐々に真空排気する。これ
らのタイミングおよび圧力制御は十分にコントロ
ールするこが重要である。 本発明で用いることのできる樹脂は、ポリプロ
ピレン、ポリエチレン等の結晶性樹脂およびアク
リロニトリル−ブタジエン−スチレン共重合体、
ポリ塩化ビニル、ポリスチレン等の非結晶性樹脂
など特に限定することなく用いることができる。 本発明をさらに明らかにするため実施例にて説
明する。 実施例 メルトインデツクス(MI)が5、融点(DSC
で測定した値)が165℃のホモポリプロピレン製
シート(0.8mm厚)を炉内温度250℃で加熱しシー
トの表面温度が160℃になるまで炉内に保持した。
このシートを成形ゾーンに導入し圧空ボツクスと
型でシートをクランプし、予め156℃に加熱した
圧力0.2Kg/cm2の圧力を加え予張した。次に加熱
圧空圧力を0.2Kg/cm2から徐々に上昇し最終圧力
6Kg/cm2になつた時点で成形を終了した。この間
型側より徐々に真空排気を行つた。これにより作
製した成形品の特性を第1表に示す。 比較例 実施例に用いたものと同一のシートを同様に表
面温度が160℃になるまで加熱し、該シートを成
形ゾーンに導入し圧空ボツクスと型でクランプし
6Kg/cm2の圧力の低温空気(18℃)を加え一方型
からは真空排気し成形を行つた。これにより作製
した成形品の特性を第1表に示す。
Conventionally, methods for manufacturing containers from sheet thermoplastic resins include vacuum forming methods and pressure forming methods. Especially when increasing production speed,
Pressure molding seems to be the preferred method. The present invention relates to improvements in air pressure forming methods. In the pressure forming method, if the melting point or melting point of the resin is not clear, there are cases where it is carried out by heating above its softening temperature, and cases where it is carried out below the melting point of the resin or the softening temperature, and the mechanical properties of the resin,
For example, when trying to increase the tensile strength, impact strength, and transparency beyond the original resin properties, the latter method is used. However, when molding is attempted below the melting point or softening temperature of the resin, the stretching strain during molding tends to remain inside the resin, and the elastic elements of the so-called viscoelastic resin are constrained by the viscous elements, resulting in molding. Afterwards or when the container is heated, the internal strain is released and elastic recovery occurs. Therefore, there are problems such as not being able to obtain the desired shape, or deformation when heated in a boil retort, etc., and as the wall thickness becomes thinner during molding and stretching, the surface cools, resulting in so-called uneven stretching. The thickness of the molded product tends to be thicker or thinner in some areas, resulting in poor molding yield. In order to solve this problem, we have developed a method in which a softened thermoplastic resin sheet is stretched in advance using a so-called temperature-controlled plug.In particular, the shape of the plug is adapted to the shape of the molded product, and the wall thickness is thin. There was a molding method (Japanese Patent Publication No. 53-1790) in which the plug was pressed against the sheet and then molded using pressurized air so that the plug was only in contact with the part where it was expected to be. However, this method has problems such as difficulty in controlling the plug temperature, expensive mold equipment costs in the case of multi-cavity molding, and poor yield. Therefore, the present invention was made as a result of intensive studies on air pressure forming methods in order to obtain molded products with good wall thickness distribution, low internal distortion, and good heat resistance without using these plugs. . That is, the present invention heats a thermoplastic resin sheet to a temperature lower than its melting point or softening temperature,
Similarly, pressurized air is heated to a temperature lower than the melting point or softening point of the resin used, and the heated air is used to mold a thermoplastic resin sheet. Here, the melting point is unique to crystalline resins, and polypropylene, polyethylene, etc. have melting points. On the other hand, amorphous resins that do not have a clear melting point, such as acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, and polystyrene, are expressed by their softening temperature. Softening temperature is BS−
2782. When performing pressure molding using these resin sheets,
When heat molding is carried out at a temperature higher than the above-mentioned melting point or softening temperature of the resin, desired improvements in mechanical properties, transparency, etc. cannot be observed, and there are disadvantages such as a long heat molding-cooling cycle. On the other hand, when thermoforming is performed at a temperature lower than the melting point or softening temperature of the resin, the so-called biaxial orientation of molecules is emphasized, and the tensile strength and
Impact strength and transparency are improved, and molding cycles can be shortened. However, in this case, residual strain of the resin tends to exist, and problems such as elastic recovery after molding or deformation during heating are likely to occur. Therefore, the present invention can eliminate these drawbacks due to internal distortion by molding using heated air at a temperature lower than the melting point or softening point of the resin instead of the conventionally used low-temperature air. This was done by discovering. Thereby, the resin sheet can be stretched without being cooled during molding and stretching, and the completed molded product can have less internal distortion. In conventional molding using low-temperature air, a pressure of 2 to 6 kg/cm 2 is normally blown directly into the sheet whose surroundings are sealed with clamps. Because it is cooled considerably and stretched at high speed, internal strains tend to remain, and the molded product tends to be partially thick and thin, resulting in poor wall thickness distribution. The temperature of the heated air used in the present invention is lower than the above-mentioned melting point or softening temperature of the resin used, but sometimes it is possible to mold well even if it exceeds this temperature. This is thought to be due to internal strain remaining in the sheet itself, thermal history, crystalline state, etc. However, in order to reliably achieve the objective, the temperature should be lower than the melting point or softening temperature of the resin used, preferably as close to these temperatures as possible, but depending on the desired mechanical properties and transparency. Then, the temperature of the heated air is appropriately selected and determined. These heated air can be produced through heaters provided with a spongy or fin shape. If this method does not raise the desired temperature, a predetermined amount of air may be preheated in the accumulator in advance. When heated air is introduced into a thermoplastic resin sheet that has been softened by heating, for example, in the first step, the pressure of the heated air is made equal to or lower than the yield stress of the resin at the resin temperature at that time, and the sheet is pre-stretched. This makes it possible to smooth out wrinkles in the heated and expanded sheet. In the second stage, the pressure necessary to stretch the resin above the yield stress at the resin temperature at that time is applied. This allows stretching without leaving any internal strain.
Finally, the pressure is increased all at once until it comes into close contact with the mold. This operation makes it possible to improve the wall thickness distribution of the molded product and to reduce molding internal distortion as much as possible. In this molding method, the time required only for molding is approximately 5% in the first stage, 90% in the second stage, and 5% in the third stage. In particular, it is important to slowly stretch the molded product in the second step until just before it comes into close contact with the mold, and in some cases, the third step can be omitted. By slowly stretching, sufficient stress relaxation is achieved and internal strain can be reduced. In this second stage, the tensile strength of the molded article increases as it is stretched, so it is preferable to gradually increase the pneumatic pressure accordingly. Further, the space sealed between the sheet and the mold is gradually evacuated depending on the degree to which the sheet is squeezed against the mold by compressed air pressure. It is important to adequately control these timing and pressure controls. Resins that can be used in the present invention include crystalline resins such as polypropylene and polyethylene, acrylonitrile-butadiene-styrene copolymers,
Non-crystalline resins such as polyvinyl chloride and polystyrene can be used without particular limitation. EXAMPLES In order to further clarify the present invention, Examples will be described. Example Melt index (MI) is 5, melting point (DSC
A homopolypropylene sheet (0.8 mm thick) with a value measured at 165°C was heated at a furnace temperature of 250°C and held in the furnace until the surface temperature of the sheet reached 160°C.
This sheet was introduced into a molding zone, clamped with a compressed air box and a mold, and pre-stretched by applying a pressure of 0.2 kg/cm 2 to a temperature of 156°C. Next, the heating and compressed air pressure was gradually increased from 0.2 Kg/cm 2 , and when the final pressure reached 6 Kg/cm 2 , the molding was completed. During this time, the mold side was gradually evacuated. Table 1 shows the properties of the molded product thus produced. Comparative Example The same sheet as used in the example was similarly heated until the surface temperature reached 160°C, and the sheet was introduced into a molding zone and clamped between a compressed air box and a mold, and cooled air at a pressure of 6 kg/cm 2 was applied. (18°C) and one mold was evacuated and molding was performed. Table 1 shows the properties of the molded product thus produced.

【表】【table】

【表】 第1表において、肉厚分布の測定箇所は、図面
において番号1〜5で示した位置である。また、
成形収縮は、金型寸法に対してどれだけ収縮した
かを測定した。 本発明による圧空成形法を用いることにより従
来の圧空成形と比較して次の利点がある。 (1) 成形品の肉厚分布のバラツキを小さくするこ
とができる。 (2) 成形収縮を小さくでき成形品形状の経時変化
が少ない。これにより、例えば、成形品を打抜
く場合、寸法安定性が良く容易に打抜きでき
る。 (3) 耐熱性を上げることができる。 (4) 肉厚分布が良好なため成形品の見掛けの剛性
が上昇しその分用いるシートの厚さを薄くでき
る。 (5) 成形後の弾性回復が小さく型に忠実な成形品
を得ることができる。
[Table] In Table 1, the measurement points for wall thickness distribution are the positions indicated by numbers 1 to 5 in the drawings. Also,
Mold shrinkage was measured by how much the product shrank relative to the mold dimensions. The use of the pressure forming method according to the present invention has the following advantages compared to conventional pressure forming. (1) Variations in wall thickness distribution of molded products can be reduced. (2) Minimizes molding shrinkage and reduces changes in molded product shape over time. Thereby, for example, when punching a molded product, it has good dimensional stability and can be punched easily. (3) Heat resistance can be improved. (4) Since the thickness distribution is good, the apparent rigidity of the molded product increases, and the thickness of the sheet used can be reduced accordingly. (5) The elastic recovery after molding is small and molded products that are faithful to the mold can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は成形品の肉厚測定箇所を示す断面説明図
である。
The drawing is an explanatory cross-sectional view showing the locations where the wall thickness of the molded product is measured.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性樹脂製シートの圧空成形において、
空気を予め熱可塑性樹脂の融点または軟化温度よ
り低い温度に加熱しておき、一方熱可塑性樹脂シ
ートを樹脂の融点または軟化温度より低い温度に
加熱した状態で前記加熱空気の圧力によつて延伸
し、前記延伸の工程として、加熱空気の圧力をそ
の時の樹脂温度における樹脂の降伏応力以下に
し、シートを予張する工程、次いで加熱空気の圧
力をその時の樹脂温度における降伏応力以上で
徐々に上げる工程を経、延伸したシートを金型面
に密着させることを特徴とする圧空成形法。
1 In pressure forming of thermoplastic resin sheets,
Air is heated in advance to a temperature lower than the melting point or softening temperature of the thermoplastic resin, and the thermoplastic resin sheet is heated to a temperature lower than the melting point or softening temperature of the resin and stretched by the pressure of the heated air. , as the stretching process, the pressure of the heated air is lowered to below the yield stress of the resin at the resin temperature at that time, and the sheet is pre-stretched, and then the pressure of the heated air is gradually increased to a level higher than the yield stress at the resin temperature at that time. A pressure forming method that is characterized by closely contacting the stretched sheet to the mold surface.
JP20049583A 1983-10-26 1983-10-26 Pressure air forming method Granted JPS6092826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20049583A JPS6092826A (en) 1983-10-26 1983-10-26 Pressure air forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20049583A JPS6092826A (en) 1983-10-26 1983-10-26 Pressure air forming method

Publications (2)

Publication Number Publication Date
JPS6092826A JPS6092826A (en) 1985-05-24
JPS636347B2 true JPS636347B2 (en) 1988-02-09

Family

ID=16425266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20049583A Granted JPS6092826A (en) 1983-10-26 1983-10-26 Pressure air forming method

Country Status (1)

Country Link
JP (1) JPS6092826A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280914A (en) * 1985-06-07 1986-12-11 Tsutsunaka Plast Kogyo Kk Thermoforming process of thermoplastic resin molding
ES2068876T3 (en) * 1988-12-01 1995-05-01 Bayer Ag PROCEDURE FOR THE OBTAINING OF MOLDED PIECES OF SYNTHETIC MATTER EMBEDDED AT DEPTH.
NL9101164A (en) * 1991-07-04 1993-02-01 Tw Packaging Twente B V METHOD AND APPARATUS FOR MANUFACTURING OBJECTS FROM A FOIL TRACK OF THERMOPLASTIC PLASTIC
JP3242281B2 (en) * 1995-03-13 2001-12-25 東京エレクトロン株式会社 Heat treatment equipment
JP3218164B2 (en) * 1995-05-31 2001-10-15 東京エレクトロン株式会社 Support boat for object to be processed, heat treatment apparatus and heat treatment method
JP4422839B2 (en) * 2000-01-13 2010-02-24 東レ・デュポン株式会社 Method for producing open-type polyimide molded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812362B1 (en) * 1968-08-01 1973-04-20
JPS55111222A (en) * 1979-02-22 1980-08-27 Mitsunori Koki Kk Molding of pocket at blister package
JPS564421A (en) * 1979-06-22 1981-01-17 Mitsubishi Heavy Ind Ltd Molding method of plastic packaging container
JPS5711022A (en) * 1980-06-25 1982-01-20 Kanae:Kk Method and apparatus for thermoplastic resin film molding
JPS5763214A (en) * 1980-10-03 1982-04-16 Pioneer Electronic Corp Molding of thermoplastic material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812362U (en) * 1971-06-25 1973-02-10

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812362B1 (en) * 1968-08-01 1973-04-20
JPS55111222A (en) * 1979-02-22 1980-08-27 Mitsunori Koki Kk Molding of pocket at blister package
JPS564421A (en) * 1979-06-22 1981-01-17 Mitsubishi Heavy Ind Ltd Molding method of plastic packaging container
JPS5711022A (en) * 1980-06-25 1982-01-20 Kanae:Kk Method and apparatus for thermoplastic resin film molding
JPS5763214A (en) * 1980-10-03 1982-04-16 Pioneer Electronic Corp Molding of thermoplastic material

Also Published As

Publication number Publication date
JPS6092826A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US4388356A (en) Heat setting a thermoformed PET article utilizing a male plug as a constraint
US4118454A (en) Method for producing transparent plastic molded articles
JPS6141290B2 (en)
US5571473A (en) Process for thermoforming thermoplastic resin sheet
JPS636347B2 (en)
JP5586527B2 (en) Manufacturing method of heat-resistant transparent container
JP2000504639A (en) Method and apparatus for producing open containers from foam sheets
AU629080B2 (en) Process for thermoforming thermoplastic resin sheet and apparatus therefor
JPH07102608B2 (en) Method for manufacturing polyester molded products
US5069855A (en) Process for preparing rolled heat-treated films or sheets
JP4019308B2 (en) Biaxial stretch blow molding method
JPS5923536B2 (en) Plastic container manufacturing method and manufacturing equipment
JPH05245920A (en) Method of hot-forming component by shaping laminated metal and plastic material sheet
JPS5953852B2 (en) Method for manufacturing transparent containers
JPH0156891B2 (en)
JPS59199207A (en) Thermoforming of synthetic resin sheet
JPH0127850B2 (en)
JPH06190912A (en) Forming method for foamed polyethylene terephthalate sheet
JP2000351153A (en) Method for molding biaxially drawn polyethylene terephthalate sheet
JPH0376626A (en) Thermoforming of polyester sheet
Harkin-Jones et al. Thermoforming of polypropylene
JPH0655623A (en) Heat-resistant polyester molded body
JPS5837886B2 (en) Manufacturing method for plastic thin-walled molded products
JPH04265729A (en) Thermoforming method of polycarbonate resin sheet
JP2850217B2 (en) Blow molding method using cold parison