JPS636331B2 - - Google Patents

Info

Publication number
JPS636331B2
JPS636331B2 JP57132963A JP13296382A JPS636331B2 JP S636331 B2 JPS636331 B2 JP S636331B2 JP 57132963 A JP57132963 A JP 57132963A JP 13296382 A JP13296382 A JP 13296382A JP S636331 B2 JPS636331 B2 JP S636331B2
Authority
JP
Japan
Prior art keywords
glass fiber
smc
panel
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57132963A
Other languages
Japanese (ja)
Other versions
JPS5924623A (en
Inventor
Ikuo Kubota
Shigeharu Arai
Kunyoshi Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP57132963A priority Critical patent/JPS5924623A/en
Publication of JPS5924623A publication Critical patent/JPS5924623A/en
Priority to JP62056673A priority patent/JPS62216706A/en
Publication of JPS636331B2 publication Critical patent/JPS636331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details

Description

【発明の詳細な説明】 本発明は水タンク用パネルを製造する方法に関
するものであり、操作が簡単であり、且つ強度の
大きい耐蝕性の良好なタンク用パネルを得ること
のできる、工業的な製造方法を提供することを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing water tank panels, and is an industrial method that is easy to operate, and can produce tank panels with high strength and good corrosion resistance. The purpose is to provide a manufacturing method.

水タンク、油タンク等のタンク用パネルは周縁
部に立上りフランジ部を有する箱型方形の形状を
有し、このフランジ部で該パネルを隣接のパネル
と結合することによつてタンクが組立てられる。
Panels for tanks such as water tanks and oil tanks have a box-like rectangular shape with a rising flange at the periphery, and the tank is assembled by joining the panel to an adjacent panel at the flange.

水タンクは0.7Kg/cm2程度乃至それ以上の水圧
に耐える必要がある。水タンクはFRTP、金属等
各種材料で構成することができる。金属製タンク
は耐蝕性能が充分でなく、FRTP製タンクは耐蝕
性能は大きいが、強度が充分でなく、耐蝕性能及
び強度が要求される場合、FRP製とすることが
望ましいが、従来強度の大きい、均質なFRP製
水タンクを簡単な操作で製造する工業的な方法は
知られておらず、従来の水タンク用パネルの製造
法には次のような難点があつた。
The water tank must withstand water pressure of approximately 0.7 kg/cm 2 or more. The water tank can be constructed from various materials such as FRTP, metal, etc. Metal tanks do not have sufficient corrosion resistance, and FRTP tanks have high corrosion resistance but do not have sufficient strength.If corrosion resistance and strength are required, it is desirable to use FRP, but conventional tanks with high strength However, there is no known industrial method for manufacturing homogeneous FRP water tanks with simple operations, and conventional methods for manufacturing water tank panels have the following drawbacks.

FRPは液状の熱硬化性樹脂を硝子繊維よりな
る補強体に含浸せしめ、この樹脂含浸補強体(未
硬化FRPと云う)を硬化せしめることによつて
製造することができる。しかしながらその都度樹
脂を補強体に含浸させるのは操作及び取扱いが面
倒であるだけでなく、FRP中の硝子繊維量の割
合(GCと云う)にバラツキが生じたり、或は使
用中に樹脂粘度が変化したりし易く均質な製品の
得難い難点がある。
FRP can be manufactured by impregnating a reinforcing body made of glass fiber with a liquid thermosetting resin and curing this resin-impregnated reinforcing body (referred to as uncured FRP). However, impregnating the reinforcing body with resin each time is not only cumbersome to operate and handle, but also causes variations in the proportion of glass fibers (GC) in FRP, or the resin viscosity changes during use. There are disadvantages to obtaining a homogeneous product that is subject to change.

このため硝子繊維束に増粘剤を含む液状の熱硬
化性樹脂組成物を含浸させ、該樹脂を増粘させて
なるSMC(シートモールデイングコンパウンド)
がFRP製造に広く用いられ、この方法は取扱い、
操作が簡単であり均質な製品が得られる利点を有
している反面次のような難点を有する。
For this reason, SMC (sheet molding compound) is made by impregnating glass fiber bundles with a liquid thermosetting resin composition containing a thickener and increasing the viscosity of the resin.
is widely used in FRP manufacturing, this method is easy to handle,
Although it has the advantage of being easy to operate and producing a homogeneous product, it has the following drawbacks.

一般にFRPの強度は、他の条件が一定の場合、
使用する硝子繊維束の長さを大とする程大となる
傾向を有する。このため従来、耐圧、強度0.7
Kg/cm2以上の水タンク用パネルを製造する際、極
めて長さの長い、好ましくは連続した硝子繊維束
よりなるマツト(コンテイニユアスストランドマ
ツト、以下CSMと略称)を使用することが必要
とされて来た。SMCを成型する場合、実施例に
示すように、SMCを一対の金型を用いて挾圧し
つつ、熱硬化性樹脂の硬化温度以上に加熱し、樹
脂を硬化せしめる。SMC中に含まれる増粘され
た樹脂は加熱されると、一旦粘度が大幅に低下し
て、金型の隅々迄流動するが、この際SMCに用
いられる補強繊維と樹脂が分離して樹脂のみが流
動し、成型品中に補強繊維の存在しない部分(或
は補強繊維の乏しい部分)が生じたり、欠肉等が
生じ易い。このため均一な成型品をうるために
は、SMC用補強用繊維として長さの短い流動性
の良好なものを用いる必要があり、CSMやステ
ツチされたマツトを使用することはできない。
In general, the strength of FRP is, when other conditions are constant,
It tends to increase as the length of the glass fiber bundle used increases. For this reason, conventional pressure resistance and strength of 0.7
When manufacturing panels for water tanks of Kg/cm2 or more , it is necessary to use extremely long mats, preferably made of continuous glass fiber bundles (Container Strand Mats, hereafter abbreviated as CSM). I've been When molding SMC, as shown in the examples, the SMC is held between a pair of molds and heated to a temperature higher than the curing temperature of the thermosetting resin to harden the resin. When the thickened resin contained in SMC is heated, its viscosity decreases significantly and it flows to every corner of the mold, but at this time, the reinforcing fibers used in SMC and the resin separate and the resin Only the reinforcing fibers flow, and parts where no reinforcing fibers are present (or parts with insufficient reinforcing fibers) are likely to occur in the molded product, or insufficient thickness may occur. Therefore, in order to obtain a uniform molded product, it is necessary to use short reinforcing fibers for SMC with good fluidity, and CSM or stitched mat cannot be used.

このため、強度の大きいタンク用パネルを
SMCのみを用いて工業的に製造することができ
ず、従来水タンク用パネル等のタンク用パネルは
次のような方法で製造されて来た。
For this reason, strong tank panels are used.
Since it is not possible to industrially manufacture SMC alone, tank panels such as water tank panels have conventionally been manufactured by the following method.

(1) CSMを方形の型面に載せ、液状の熱硬化性
樹脂を含浸させ、ついで、該型と対をなす箱型
で押圧し、加熱する方法。(以下第1方法とい
う) この方法によるとき強度の大きいパネルを得
ることができるが、操作が面倒であり、品質の
バラツキが生じ易い。
(1) A method in which CSM is placed on a rectangular mold surface, impregnated with liquid thermosetting resin, and then pressed with a box mold paired with the mold and heated. (Hereinafter referred to as the first method) Although it is possible to obtain a panel with high strength using this method, the operation is troublesome and variations in quality are likely to occur.

(2) CSMの薄層で方形の型面を覆い、ついでこ
のCSMに所定厚みの2.5cm程度の長さの硝子繊
維束切断物を補強体として用いたSMCを重ね、
該型と対をなす箱型で押圧し加熱する方法。
(以下第2方法という) この方法によるときは、SMC中の樹脂が型
の挾圧、加熱によつてCSMに向つて流動する。
従つて第2方法によるときは液状の樹脂を予め
CSMに含浸させておかなくても、表面層が
CSMで補強されたパネルを得ることができる。
(2) Cover the rectangular mold surface with a thin layer of CSM, then overlay SMC on this CSM using cut glass fiber bundles of a predetermined thickness and a length of about 2.5 cm as reinforcement,
A method of pressing and heating using a box mold paired with the mold.
(Hereinafter referred to as the second method) When using this method, the resin in the SMC flows toward the CSM due to the clamping pressure of the mold and heating.
Therefore, when using the second method, liquid resin is added in advance.
Even if the surface layer is not impregnated with CSM,
You can get panels reinforced with CSM.

第2方法は第1方法より操作も簡単であるが、
SMCのみを用いる方法に比し操作が煩雑である
のみならず、表面層中の樹脂の分布が不均一とな
つたり、樹脂とCSMの馴染みが不良となつたり
することもあり、又パネルの強度も第1方法によ
るものに比し劣ることは否めない。
The second method is easier to operate than the first method, but
Not only is the operation more complicated than the method using only SMC, but the distribution of the resin in the surface layer may become uneven, the compatibility between the resin and CSM may be poor, and the strength of the panel may be reduced. It cannot be denied that this method is also inferior to that obtained by the first method.

本発明者はかかる難点を解決し、操作も簡単で
あり、均質な、強度の大きい水タンク用パネルの
製造方法を得るため研究を重ねる過程において、
従来の常識に反し、次のような予想外の事実を見
出した。
In the course of repeated research in order to solve these difficulties and obtain a method for manufacturing a water tank panel that is easy to operate, homogeneous, and strong, the inventors
Contrary to conventional wisdom, we discovered the following unexpected facts.

(1) SMCを構成する硝子繊維束の長さを増大せ
しめると、このSMCを使用して得られるタン
クパネルの耐圧強度は次第に増加する。そして
硝子繊維束の長さが8cm以上となると、この
SMCのみを用いて成型を行なつた場合でも、
第2方法で得られるパネルより耐圧強度の大き
い、第1方法で得られるパネルに実用上遜色の
ない、均質なパネルが得られること。
(1) When the length of the glass fiber bundles constituting the SMC is increased, the pressure resistance of the tank panel obtained using this SMC gradually increases. And when the length of the glass fiber bundle is 8 cm or more, this
Even when molding is performed using only SMC,
It is possible to obtain a homogeneous panel that has higher pressure resistance than the panel obtained by the second method, is practically comparable to the panel obtained by the first method.

(2) 硝子繊維束の長さを8cmを超えて増大させて
も、得られたパネルの耐圧強度は殆んど増大せ
ず、強度は硝子繊維束の長さと無関係にほぼ一
定値を示すこと (3) 硝子繊維束の長さが45cmを超えると、得られ
たパネルの耐圧強度は逆に低下すること。
(2) Even if the length of the glass fiber bundle is increased beyond 8 cm, the compressive strength of the resulting panel hardly increases, and the strength remains almost constant regardless of the length of the glass fiber bundle. (3) If the length of the glass fiber bundle exceeds 45 cm, the pressure resistance of the resulting panel will decrease.

本発明は上記知見に基づく新たなる提案であ
る。
The present invention is a new proposal based on the above knowledge.

何故このような結果が得られるか充分明らかで
はないが、硝子繊維束の長さを大とするとFRP
の強度は増大する反面、この硝子繊維束を補強体
として使用したSMCは流動性が悪く、硝子繊維
束の分布が不均一となり、又硝子繊維束が一方向
に配列し易くなり、このためこのSMCを用いた
パネルは耐圧強度が低下する傾向が生ずる。この
ような硝子繊維束の長さ増大に伴なう相反する効
果が相殺される結果硝子繊維束の長さが8〜45cm
の間では耐圧強度がほぼ一定であり、硝子繊維束
の長さが8cm以下では前者の効果の方が大きく、
又硝子繊維束の長さが45cm以上では後者の効果の
方が大きく作用するためと思われる。
It is not completely clear why such a result is obtained, but when the length of the glass fiber bundle is increased, FRP
On the other hand, SMC using glass fiber bundles as reinforcement has poor fluidity, the distribution of glass fiber bundles is uneven, and the glass fiber bundles tend to be arranged in one direction. Panels using SMC tend to have lower compressive strength. As a result of canceling out the contradictory effects of increasing the length of the glass fiber bundle, the length of the glass fiber bundle increases from 8 to 45 cm.
The compressive strength is almost constant between the glass fiber bundles, and the former effect is greater when the length of the glass fiber bundle is less than 8 cm.
Moreover, it is thought that this is because the latter effect acts more strongly when the length of the glass fiber bundle is 45 cm or more.

次に本発明を更に具体的に説明する。 Next, the present invention will be explained in more detail.

本発明においては8〜45cm、好ましくは10〜30
cmの長さに切断した硝子繊維束を使用する。硝子
繊維束としては直径6〜15μの硝子繊維を50〜
200本程度集束したものが適当である。このよう
な硝子繊維束を使用し、例えば次のような方法で
SMCを製造する。
In the present invention, 8 to 45 cm, preferably 10 to 30 cm
Use glass fiber bundles cut into cm lengths. As a glass fiber bundle, 50 to 50 glass fibers with a diameter of 6 to 15μ are used.
A convergence of about 200 lines is appropriate. Using such a glass fiber bundle, for example, the following method is used.
Manufacture SMC.

増粘剤を含む液状の熱硬化性樹脂、好ましくは
不飽和ポリエステル樹脂組成物(通常樹脂100重
量部に対し80〜150重量部の充填材、3〜8重量
部程度のトーナー(顔料組成物)、0.8〜1.5重量
部の重合開始剤、4〜7重量部の離型剤、0.3〜
1重量部の増粘剤、を加え均一に混合したもの
(以下単に樹脂組成物という)を、長尺の合成樹
脂フイルム上に連続的に所定量塗布し、この上に
硝子繊維束切断物を落下せしめ、別の合成樹脂フ
イルムで覆い、ロール等で挾圧して硝子繊維束に
樹脂組成物を含浸せしめ、円筒状に巻取り、養生
して樹脂組成物を増粘せしめSMCとする。
Liquid thermosetting resin containing a thickener, preferably an unsaturated polyester resin composition (usually 80 to 150 parts by weight of filler and 3 to 8 parts by weight of toner (pigment composition) per 100 parts by weight of resin) , 0.8 to 1.5 parts by weight of polymerization initiator, 4 to 7 parts by weight of mold release agent, 0.3 to 1.5 parts by weight
1 part by weight of a thickener was added and mixed uniformly (hereinafter simply referred to as a resin composition), and a predetermined amount of the mixture was continuously applied onto a long synthetic resin film, and cut glass fiber bundles were placed on top of this. The glass fiber bundle is allowed to fall, covered with another synthetic resin film, and compressed with a roll or the like to impregnate the glass fiber bundle with the resin composition, wound into a cylindrical shape, and cured to thicken the resin composition to form SMC.

硝子繊維束100重量部に対する樹脂組成物の割
合は100〜300重量部とするのが適当であり、又
SMCの厚み(単位面積当りの重量)は2〜5
Kg/m2程度とするのが適当である。
It is appropriate that the proportion of the resin composition to 100 parts by weight of the glass fiber bundle is 100 to 300 parts by weight, and
The thickness of SMC (weight per unit area) is 2 to 5
It is appropriate to set it at around Kg/ m2 .

次に上述のようなSMC(本SMC)を使用し、
第1,2図に示すような水タンク用パネル1を製
造する方法に就いて説明する。
Next, use the SMC as described above (this SMC),
A method of manufacturing a water tank panel 1 as shown in FIGS. 1 and 2 will be explained.

本SMCを雄型の主要面とほぼ同じ大きさに切
断し、所定枚数、雄型の主要面に重ねる。
This SMC is cut to approximately the same size as the main surface of the male mold, and a predetermined number of sheets are stacked on the main surface of the male mold.

本SMCの大きさは型の主要面をほぼ覆うに足
る大きさで充分であり、本SMCを折り曲げて雄
型の側面を覆う必要はない。該雄型と対をなす箱
型状の雌型でSMCを押圧しつつ加熱すると、本
SMCは雄型の側面に向つて流動し、均一な、高
強度の水タンク用パネルを得ることができる。
The size of this SMC is sufficient to cover almost the main surface of the mold, and there is no need to bend this SMC to cover the side of the male mold. When the SMC is heated while being pressed with a box-shaped female mold paired with the male mold, the main mold is heated.
The SMC can flow towards the side of the male mold to obtain a uniform, high-strength water tank panel.

上述のように、本発明の方法によるときは、簡
単な操作で、均質な、高強度の水タンク用パネル
を製造することができ、本発明は工業上有益なも
のである。
As described above, when using the method of the present invention, a homogeneous, high-strength water tank panel can be manufactured with simple operations, and the present invention is industrially useful.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 液状不飽和ポリエステル樹脂100重量部、酸化
マグネシユーム(増粘剤)0.5重量部、炭酸カル
シユーム(充填剤)100重量部、t−ブチルパー
ベンゾエート(重合開始剤)1重量部、トーナー
3重量部、ステアリン酸亜鉛(離型剤)5重量部
の均一な混合物よりなる樹脂組成物を、合成樹脂
フイルム上に2.5Kg/m2の割合で塗布し、この上
に直径13μの硝子繊維に酢ビ系集束剤を附与し、
100本集束してなる硝子繊維束を10cmの長さに切
断したものを1Kg/m2の割合で落下せしめ、この
上に別の合成樹脂フイルムを重ね、常法に従い、
樹脂組成物を増粘させ、硝子繊維束が無方向に分
布したSMCを得た。このSMCを93cm×93cmの大
きさに切断し、この切断物を4枚、雄型の主要面
上に重ね、対をなす箱型状の雌型で40Kg/cm2の圧
力で押圧しつつ140℃に6分間加熱し、100cm×
100cm、平均厚み4.5mm、フランジ部の高さ7.5cm
厚み8mmの、第1図に示すようなパネルを製造し
た。
Examples 100 parts by weight of liquid unsaturated polyester resin, 0.5 parts by weight of magnesium oxide (thickener), 100 parts by weight of calcium carbonate (filler), 1 part by weight of t-butyl perbenzoate (polymerization initiator), 3 parts by weight of toner A resin composition consisting of a homogeneous mixture of 5 parts by weight of zinc stearate (mold release agent) was applied onto a synthetic resin film at a rate of 2.5 kg/m 2 , and a glass fiber with a diameter of 13 μm was coated with vinyl acetate. Adding a system sizing agent,
A bundle of 100 glass fibers cut into a length of 10 cm was dropped at a rate of 1 kg/m 2 , another synthetic resin film was layered on top of this, and according to the usual method,
The resin composition was thickened to obtain an SMC in which glass fiber bundles were distributed nondirectionally. This SMC was cut into a size of 93 cm x 93 cm, and four of the cut pieces were stacked on the main surface of the male mold, and pressed with a pair of box-shaped female molds at a pressure of 40 kg/cm 2 for 140 m ℃ for 6 minutes, 100cm x
100cm, average thickness 4.5mm, flange height 7.5cm
A panel as shown in FIG. 1 with a thickness of 8 mm was manufactured.

このパネルの耐水圧強度は0.75Kg/cm2であつ
た。
The water pressure strength of this panel was 0.75 Kg/cm 2 .

比較例 1 これに対し、雄型の側部迄300gr/m2のCSMで
覆い、この上に2.9Kg/m2の2.5cmの硝子繊維束で
補強されたSMCを4枚重ね、同様に成型して得
られたパネルの耐圧強度は0.7Kg/cm2であつた。
Comparative Example 1 On the other hand, the sides of the male mold were covered with 300gr/m 2 CSM, and on top of this, four SMC reinforced with 2.5cm glass fiber bundles of 2.9Kg/m 2 were layered and molded in the same way. The compressive strength of the panel obtained was 0.7 Kg/cm 2 .

比較例 2 又、雄型の側部迄450gr/m2のCSM6枚で覆い、
このCSMに不飽和ポリエステル樹脂100重量部、
炭酸カルシユーム100重量部、t−ブチルパーベ
ンゾエート1重量部、トーナー3重量部、ステア
リン酸亜鉛5重量部よりなる樹脂組成物を3.9
Kg/m2の割合で含浸せしめ、同様にして成型して
得られたパネルの耐水圧強度は0.76Kg/cm2であつ
た。
Comparative example 2 In addition, the sides of the male mold were covered with 6 sheets of CSM of 450gr/ m2 ,
Add 100 parts by weight of unsaturated polyester resin to this CSM.
3.9 parts by weight of a resin composition consisting of 100 parts by weight of calcium carbonate, 1 part by weight of t-butyl perbenzoate, 3 parts by weight of toner, and 5 parts by weight of zinc stearate.
A panel obtained by impregnating it at a rate of Kg/m 2 and molding in the same manner had a water pressure strength of 0.76 Kg/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で製造されるタンク用パ
ネルの平面図、第2図は正面図である。 なお図中1はパネル、2は立上りフランジ部を
示す。
FIG. 1 is a plan view of a tank panel manufactured by the method of the present invention, and FIG. 2 is a front view. In the figure, 1 indicates a panel, and 2 indicates a rising flange portion.

Claims (1)

【特許請求の範囲】 1 ランダムに配向された長さ8〜45cmの硝子繊
維束切断物と、増粘された液状の熱硬化性樹脂組
成物とよりなるSMCを、辺縁部に立上りフラン
ジ部を有する箱形方形の雌型と、前記箱形の底部
の方形よりやや小さい面積の方形の雄型とよりな
る一対型で挾圧加熱し樹脂を硬化させることを特
徴とする水タンク用パネルの製造方法。 2 硝子繊維束は50〜200本の硝子繊維よりなる
ことを特徴とする特許請求の範囲第1項記載の水
タンク用パネルの製造方法。
[Scope of Claims] 1. An SMC consisting of randomly oriented cut glass fiber bundles with a length of 8 to 45 cm and a thickened liquid thermosetting resin composition is attached to a rising flange portion at the peripheral portion. A panel for a water tank, characterized in that the resin is cured by heating under pressure with a pair of molds, each consisting of a box-shaped rectangular female mold having a rectangular shape and a rectangular male mold having an area slightly smaller than the rectangular shape at the bottom of the box shape. Production method. 2. The method for manufacturing a water tank panel according to claim 1, wherein the glass fiber bundle is comprised of 50 to 200 glass fibers.
JP57132963A 1982-07-31 1982-07-31 Smc for tank panel and manufacture of panel for water tank Granted JPS5924623A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57132963A JPS5924623A (en) 1982-07-31 1982-07-31 Smc for tank panel and manufacture of panel for water tank
JP62056673A JPS62216706A (en) 1982-07-31 1987-03-13 Sheet molding compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132963A JPS5924623A (en) 1982-07-31 1982-07-31 Smc for tank panel and manufacture of panel for water tank

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62056673A Division JPS62216706A (en) 1982-07-31 1987-03-13 Sheet molding compound

Publications (2)

Publication Number Publication Date
JPS5924623A JPS5924623A (en) 1984-02-08
JPS636331B2 true JPS636331B2 (en) 1988-02-09

Family

ID=15093592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132963A Granted JPS5924623A (en) 1982-07-31 1982-07-31 Smc for tank panel and manufacture of panel for water tank

Country Status (1)

Country Link
JP (1) JPS5924623A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160808A (en) * 1986-12-25 1988-07-04 Nitto Boseki Co Ltd Sheet molding compound
WO2019240683A2 (en) * 2017-12-29 2019-12-19 Literatur Kimya Elek. Ins. Taah. Tur. Ve Otom. Ith. Ihr. San. Tic. Ltd. Sti. Glass fiber reinforced roofing and facing panel and production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133952A (en) * 1979-04-09 1980-10-18 Asahi Chemical Ind Fiber reinforcing thermoplastic sheet for compression molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133952A (en) * 1979-04-09 1980-10-18 Asahi Chemical Ind Fiber reinforcing thermoplastic sheet for compression molding

Also Published As

Publication number Publication date
JPS5924623A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
US4302499A (en) Moldable composite
US4207282A (en) Method for molding reinforced polymeric articles
US2748048A (en) Plastic structural member
US3684645A (en) Glass fiber reinforced thermoplastic article
US2742388A (en) Reinforced plastic structural member
JPH01132639A (en) Filled molding material and its production
JPH04163109A (en) Manufacture of fiber-reinforced thermoplastic resin molding material
JPS636331B2 (en)
JPS6334006B2 (en)
JPH0512127B2 (en)
JP3150785B2 (en) Manufacturing method of water tank panel
JP3155834B2 (en) Manufacturing method of water tank panel
JPS6210113Y2 (en)
JP2866394B2 (en) Molding method of resin impregnated fiber sheet molding
JPS5849378B2 (en) Sekisouhouhou
JPS58209560A (en) Reinforced synthetic resin shape for building material
JPS6210822B2 (en)
JPS6213793Y2 (en)
JPH0643659B2 (en) FRP press molding continuous strand mat
JPS6412205B2 (en)
JP4301110B2 (en) Continuous molding method and apparatus for fiber reinforced resin molded product
JPH0128695B2 (en)
JPS6313303Y2 (en)
JPH0771805B2 (en) Sheet molding compound and method of manufacturing the same
JPH0340058B2 (en)