JPS63631B2 - - Google Patents
Info
- Publication number
- JPS63631B2 JPS63631B2 JP54123670A JP12367079A JPS63631B2 JP S63631 B2 JPS63631 B2 JP S63631B2 JP 54123670 A JP54123670 A JP 54123670A JP 12367079 A JP12367079 A JP 12367079A JP S63631 B2 JPS63631 B2 JP S63631B2
- Authority
- JP
- Japan
- Prior art keywords
- bypass valve
- flow rate
- signal
- circuit
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Flow Control (AREA)
Description
【発明の詳細な説明】
本発明は、所要循環流量(水量)が刻々変化す
る流量変動回路に複数基のポンプ群によつて必要
流量を給送循環するさいのポンプ流量制御装置に
係り、さらに詳しくは、並列配置したポンプ群の
台数制御のさいのポンプ投入時に発生する圧力と
流量の急激な変動に基づく制御系の内乱を効果的
に抑制する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pump flow rate control device for supplying and circulating a required flow rate by a plurality of pump groups to a flow rate fluctuation circuit in which the required circulation flow rate (water amount) changes every moment, and further relates to More specifically, the present invention relates to a device that effectively suppresses internal disturbances in a control system due to rapid fluctuations in pressure and flow rate that occur when pumps are turned on when controlling the number of pumps arranged in parallel.
従来、例えば建物内に多数の冷水コイルを設置
し、この冷水コイル(負荷)必要量の冷水を冷凍
機によつて供給循環するシステムとして、第1図
のような回路が使用されている。すなわち、比較
的大型の建物などでは、多数の冷水コイル1に複
数基の並列配置冷凍機2からの冷水を複数基の並
列配置ポンプ3によつて循環供給するシステムを
採用している。このような系において、負荷の冷
水コイル1に入る水量はサーモスタツト4の信号
を受けたバルブ5で調整されるので、往管6およ
び還管7の総水量は負荷量の大小によつて刻々増
減する。ところが、並列配置したポンプ3の台数
制御によりこの要求水量をまかなう場合には、駆
動ポンプ台数の増減によりステツプ的な変化とな
る。小容量のポンプを多数配置すればこのステツ
プ巾は減少させることができるが、冷凍機の設置
数にも関係してポンプ数やその容量の上限も自か
ら限りがあり(通常は冷凍機2〜4機、これに対
応してポンプ数も2〜4台とする場合が多い)、
圧力および流量のステツプ的な変化は避けられな
い。 BACKGROUND ART Conventionally, a circuit as shown in FIG. 1 has been used as a system in which, for example, a large number of chilled water coils are installed in a building, and a refrigerator supplies and circulates the required amount of chilled water to the chilled water coils (loads). That is, in relatively large buildings, etc., a system is adopted in which chilled water from a plurality of parallel refrigerators 2 is circulated and supplied to a large number of chilled water coils 1 by a plurality of parallel pumps 3. In such a system, the amount of water entering the chilled water coil 1 of the load is adjusted by the valve 5 that receives a signal from the thermostat 4, so the total amount of water in the outgoing pipe 6 and return pipe 7 changes from moment to moment depending on the amount of load. Increase or decrease. However, if this required amount of water is to be met by controlling the number of pumps 3 arranged in parallel, there will be a stepwise change as the number of driven pumps increases or decreases. This step width can be reduced by arranging a large number of small-capacity pumps, but the number of pumps and the upper limit of their capacity are also limited due to the number of refrigerators installed (normally, two or more refrigerators are installed). 4 machines, correspondingly the number of pumps is often 2 to 4),
Step changes in pressure and flow rates are inevitable.
一方、冷凍機2の各々の冷水量は常に一定であ
ることが要求される。つまり、負荷の無段階的な
変化に対しても、冷凍機2の各々を通る水量は一
定としなければならない。このため、通常ヘツダ
ー8と9の間にバイパス管10をとり、余りの水
量はこのバイパス管10により循環させている。
そしてこのバイパス水量を決めるために、このバ
イパス管10に介装したバイパス弁11の制御を
行なつている。このバイパス弁11の開度制御は
差圧検出器12で検出した差圧信号を圧力調節器
13によつて調節することによつて行なう。だ
が、常に変動する負荷水量に対してバイパス弁1
1の開度を刻々対応させておくとこの制御回路の
おさまりがつかないので、圧力調節器13は小変
動の水量に対しては鈍くなるように設定して運転
することが必要となる。従つて、ポンプ投入時な
どの急激な変動に対してはバイパス弁が即時に開
度が100%にまで追従しない事態となり、トラブ
ルとなることがある。例えば冷凍機付属の断水リ
レーが作動してしまうことなどがある。 On the other hand, the amount of cold water in each of the refrigerators 2 is required to be always constant. In other words, the amount of water passing through each of the refrigerators 2 must be constant even with stepless changes in load. For this reason, a bypass pipe 10 is usually provided between the headers 8 and 9, and the remaining amount of water is circulated through this bypass pipe 10.
In order to determine the amount of bypass water, a bypass valve 11 installed in the bypass pipe 10 is controlled. The opening degree of the bypass valve 11 is controlled by adjusting a differential pressure signal detected by a differential pressure detector 12 using a pressure regulator 13. However, the bypass valve 1
If the opening degree of 1 is made to correspond moment by moment, this control circuit will not settle down, so it is necessary to operate the pressure regulator 13 by setting it so that it becomes dull with respect to small fluctuations in the amount of water. Therefore, when there is a sudden change such as when the pump is turned on, the bypass valve may not be able to immediately follow the opening to 100%, which may cause trouble. For example, the water cutoff relay attached to the refrigerator may become activated.
本発明は、このような流量変量系の要求流量を
並列配置のポンプ群の台数制御を行ないながら満
たそうとする場合の前記のようなポンプ投入時の
内乱の問題を効果的に抑制する装置を開発したも
のである。すなわち本発明は、流量変動回路の要
求流量をこの回路にヘツダーを介して挿入した並
列配置のポンプ群の台数制御により給送循環する
水配管系であつて、該回路の往管と還管とに連通
するバイパス管路を設け、このバイパス管路に介
装したバイパス弁を往管側と還管側との差圧に応
じて開度制御するようにした水配管系において、
該差圧に応じてバイパス弁の開度制御を行う差圧
制御回路のほかに、ポンプのON信号により該バ
イパス弁に開度信号を付与する流量緩衝回路を設
け、この差圧制御回路と流量緩衝回路とのいずれ
かの出力信号に基づいて該バイパス弁を開度制御
する構成となし、流量緩衝回路からの出力信号に
よつて該バイパス弁を開度制御する時点をポンプ
のON信号受信時から所定の時間の範囲とし且つ
その所定の時間の範囲においてバイパス弁の開度
を漸次減少する方向にその出力信号を変化させる
構成としたことを特徴とする流量変動系における
ポンプ流量制御装置を提供するものである。 The present invention provides a device that effectively suppresses the problem of internal disturbance when pumps are turned on when trying to satisfy the required flow rate of such a flow rate variable system while controlling the number of pumps arranged in parallel. It was developed. That is, the present invention provides a water piping system in which the required flow rate of a flow rate fluctuation circuit is supplied and circulated by controlling the number of pumps arranged in parallel, which are inserted into this circuit via a header, and which is connected to an outgoing pipe and a return pipe of the circuit. In a water piping system, a bypass pipe is provided that communicates with the water pipe, and the opening degree of a bypass valve installed in the bypass pipe is controlled according to the differential pressure between the outgoing pipe side and the return pipe side.
In addition to the differential pressure control circuit that controls the opening of the bypass valve according to the differential pressure, there is also a flow buffer circuit that provides an opening signal to the bypass valve based on the ON signal of the pump. The bypass valve is configured to control the opening of the bypass valve based on an output signal from the buffer circuit, and the timing of controlling the opening of the bypass valve based on the output signal from the flow rate buffer circuit is when the ON signal of the pump is received. Provided is a pump flow rate control device for a flow rate fluctuation system, characterized in that the output signal is changed in a direction in which the opening degree of a bypass valve is gradually decreased within a predetermined time range from It is something to do.
本発明装置を図面の実施例に従つて以下に説明
する。第2図は第1図の従来例の回路に流量緩衝
機構を組み入れた本発明装置の機器配置系統図で
ある。すなわち第1図のバイパス管10に介装し
たバイパス弁11の開度制御を、第2図に示した
ような制御機器を挿入して行なえるようにしたも
のである。第2図において、12は第1図同様の
差圧設定器、13は圧力調節器であるが、この圧
力調節器13とバイパス弁11との回路に、電磁
弁15とハイセレタター16を介装し、このハセ
レクター16には、信号媒体のメインエア17に
より作動する圧力設定器18に継がる電磁弁19
が接続されており、この電磁弁15と19がポン
プ3のON信号により作動し、ハイセレクター1
6で選択された信号がバイパス弁11の開度を制
御するようになつている。そして、自動弁19に
は、本発明装置の作動によつて水配管系に急激な
圧力変動を与えないようにするためのしぼり機構
20が取付てある。これらの制御機器の各々は、
いづれもエアを媒介とした信号で作動するものを
使用する。しかし、水配管系が小規模なものでは
電気信号で作動するものを使用してもよい。 The apparatus of the present invention will be explained below according to the embodiments shown in the drawings. FIG. 2 is an equipment layout system diagram of an apparatus of the present invention in which a flow buffer mechanism is incorporated into the conventional circuit shown in FIG. That is, the opening degree of the bypass valve 11 installed in the bypass pipe 10 shown in FIG. 1 can be controlled by inserting a control device as shown in FIG. 2. In FIG. 2, 12 is a differential pressure setting device similar to that shown in FIG. , this selector 16 has a solenoid valve 19 connected to a pressure setting device 18 operated by main air 17 as a signal medium.
are connected, and these solenoid valves 15 and 19 are activated by the ON signal of pump 3, and high selector 1
The signal selected at 6 controls the opening degree of the bypass valve 11. A throttling mechanism 20 is attached to the automatic valve 19 to prevent sudden pressure fluctuations from being applied to the water piping system due to the operation of the device of the present invention. Each of these control devices is
All of these devices use signals that are transmitted through the air. However, if the water piping system is small-scale, one that operates by electric signals may be used.
各機器の作動を述べると、電磁弁15および1
9はいづれも3方弁であり、媒介エアによつてそ
の切換えが行なわれる電磁作動弁である。電磁弁
15は圧力調節器13からの信号をハイセレクタ
ー16を介してバイパス弁11に流すが、ポンプ
のON信号で大気解放側に切換り、差圧信号は放
出(消失)されるようにしてある。電磁弁19は
平常時は信号伝達機能を消失するようにしぼり機
構20の方に切換つており、ポンプのON信号を
受けてバイパス弁11の開度を一定値にするよう
な信号を与えるが、所定時間(10〜30秒)の経過
後は元に戻すようにする。圧力設定器18はポン
プ投入時にバイパス弁11の開度が何%位である
事が望ましいかを判断して(容量が異るポンプの
台数制御の場合にこの判断が重要となる)設定値
を決定する。しぼり機構20はバイアス圧力から
差圧信号圧力に切換る時に急激は変動を与えない
ようにバイアス圧力(圧力設定器18からの圧
力)を除々に消失させるタイマー作動のしぼり作
用を供するものである。ハイセレクター16はバ
イアス圧力から差圧信号圧力に切換る時に、前記
しぼり機構20によつて除々に減少するバイアス
圧力と徐々に増加する差圧信号圧力とを比較して
高い方を選択し、バイパス弁11の開度が急激に
変化するのを回避する作用を果たす。 To describe the operation of each device, the solenoid valves 15 and 1
Each of the valves 9 is a three-way valve, and is an electromagnetically operated valve whose switching is performed by mediating air. The solenoid valve 15 sends the signal from the pressure regulator 13 to the bypass valve 11 via the high selector 16, but is switched to the atmosphere release side by the ON signal of the pump, and the differential pressure signal is released (disappeared). be. Under normal conditions, the solenoid valve 19 is switched to the throttling mechanism 20 so as to lose its signal transmission function, and upon receiving the pump ON signal, gives a signal to keep the opening of the bypass valve 11 at a constant value. After a predetermined period of time (10 to 30 seconds) has elapsed, it should be returned to its original state. The pressure setting device 18 determines the desired opening degree of the bypass valve 11 when the pump is turned on (this determination is important when controlling the number of pumps with different capacities) and sets the set value. decide. The throttling mechanism 20 provides a timer-operated throttling action that gradually dissipates the bias pressure (pressure from the pressure setting device 18) to prevent sudden fluctuations when switching from bias pressure to differential pressure signal pressure. When switching from bias pressure to differential pressure signal pressure, the high selector 16 compares the bias pressure that gradually decreases with the differential pressure signal pressure that gradually increases by the throttle mechanism 20, selects the higher one, and selects the higher one. This serves to prevent the opening degree of the valve 11 from changing rapidly.
第3図は、平常時の動作回路を示すもので、電
磁弁15はa―bが開、cが閉成した状態にあ
り、電磁弁19はa―cが開、bが閉成した状態
にあるので、圧力調整器13からの信号が生かさ
れてバイパス弁11の開度を制御する。第4図は
ポンプON信号が入信したときの動作回路を示す
もので、電磁弁15はa―cが開、つまり圧力調
整器13からの信号(エア信号)はこの電磁弁1
5でcを経て大気解放されて消失し、電磁弁19
はa―bが開となり、圧力設定器18によつてバ
イアスされた信号がタイマー作動中だけ強制的に
かかり、バイパス弁11の開度を所定の開度にす
る。このタイマーが切れると、電磁弁15と18
は第3図の状態に戻るが、しぼり機構20の作動
によつてバイアス信号圧力は除々に小さくなり、
同時に差圧信号圧力も復帰に向う。この間は、ハ
イセレクター16に双方からの信号が流入し、ハ
イセレクター16はそのうち高圧の方を選択して
バイパス弁に出力する。 FIG. 3 shows the operating circuit during normal operation, in which the solenoid valve 15 is in a state where a-b is open and c is closed, and the solenoid valve 19 is in a state where a-c is open and b is closed. Therefore, the signal from the pressure regulator 13 is utilized to control the opening degree of the bypass valve 11. Figure 4 shows the operating circuit when the pump ON signal is received, and the solenoid valves 15 and 15 are open, meaning that the signal (air signal) from the pressure regulator 13 is
At 5, it is released to the atmosphere through c and disappears, and the solenoid valve 19
When a-b is opened, a signal biased by the pressure setting device 18 is forcibly applied only during the timer operation, and the opening degree of the bypass valve 11 is set to a predetermined opening degree. When this timer expires, solenoid valves 15 and 18
returns to the state shown in FIG. 3, but the bias signal pressure gradually decreases due to the operation of the throttle mechanism 20.
At the same time, the differential pressure signal pressure also returns to normal. During this time, signals from both sources flow into the high selector 16, and the high selector 16 selects the higher pressure one of them and outputs it to the bypass valve.
このようにして、ポンプONの投入時にも、ポ
ンプ1台当りの流量変動を緩衝することができ、
平常運転に到るまでの遷移期間中もなめらかな流
量制御が達成される。したがつて、冷凍機2を通
過する冷水量も、ポンプ投入による従来の如き変
動が回避され、断水リレー作動のようなトラブル
も未然に防止できる。 In this way, even when the pump is turned on, it is possible to buffer the flow rate fluctuations per pump.
Smooth flow control is achieved even during the transition period up to normal operation. Therefore, the amount of cold water passing through the refrigerator 2 can be avoided from changing as in the conventional case due to pump input, and troubles such as water cutoff relay operation can be prevented.
第1図は従来の流量変動回路の制御装置の機器
配置系統図、第2図は本発明に従う流量変動回路
の制御を示す機器配置系統図、第3図は制御機器
部分の作動状態を示す回路図、第4図は制御機器
部分の他の作動状態を示す回路図である。
1……冷水コイル、2……冷凍機、3……ポン
プ群、8,9……ヘツダー、10……バイパス管
路、11……バイパス弁、12……差圧設定器、
13……圧力調節器、15……電磁弁、16……
ハイセレクター、17……メインエア、18……
圧力設定器、19……電磁弁、20……しぼり機
構。
FIG. 1 is an equipment layout system diagram of a conventional flow rate fluctuation circuit control device, FIG. 2 is an equipment layout system diagram showing control of a flow rate fluctuation circuit according to the present invention, and FIG. 3 is a circuit diagram showing the operating state of the control equipment part. 4 are circuit diagrams showing other operating states of the control equipment section. 1... Cold water coil, 2... Refrigerator, 3... Pump group, 8, 9... Header, 10... Bypass pipe line, 11... Bypass valve, 12... Differential pressure setting device,
13...Pressure regulator, 15...Solenoid valve, 16...
High selector, 17... Main air, 18...
Pressure setting device, 19... Solenoid valve, 20... Squeezing mechanism.
Claims (1)
ーを介して挿入した並列配置のポンプ群の台数制
御により給送循環する水配管系であつて、該回路
の往管と還管とに連通するバイパス管路を設け、
このバイパス管路に介装したバイパス弁を往管側
と還管側との差圧に応じて開度制御するようにし
た水配管系において、 該差圧に応じてバイパス弁の開度制御を行う差
圧制御回路のほかに、ポンプのON信号により該
バイパス弁に開度信号を付与する流量緩衝回路を
設け、この差圧制御回路と流量緩衝回路とのいず
れかの出力信号に基づいて該バイパス弁を開度制
御する構成となし、流量緩衝回路からの出力信号
によつて該バイパス弁を開度制御する時点をポン
プのON信号受信時から所定の時間の範囲とし且
つその所定の時間の範囲においてバイパス弁の開
度を漸次減少する方向にその出力信号を変化させ
る構成としたことを特徴とする流量変動系におけ
るポンプ流量制御装置。[Scope of Claims] 1. A water piping system in which the required flow rate of a flow rate fluctuation circuit is supplied and circulated by controlling the number of pumps arranged in parallel, which are inserted into this circuit via a header, and which is connected to an outgoing pipe and a return pipe of the circuit. A bypass pipe line communicating with the pipe is provided,
In a water piping system in which the opening of a bypass valve installed in the bypass pipe is controlled according to the differential pressure between the outgoing pipe side and the return pipe side, the opening degree of the bypass valve is controlled according to the differential pressure. In addition to the differential pressure control circuit, a flow rate buffer circuit is provided that applies an opening signal to the bypass valve in response to the ON signal of the pump. The bypass valve is configured to control the opening of the bypass valve, and the timing of controlling the opening of the bypass valve by the output signal from the flow buffer circuit is set within a predetermined time range from the time when the pump ON signal is received, and within that predetermined time. 1. A pump flow rate control device for a flow rate fluctuation system, characterized in that the output signal is changed in the direction of gradually decreasing the opening degree of a bypass valve within a range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12367079A JPS5647691A (en) | 1979-09-26 | 1979-09-26 | Device to control flow rate through pump in flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12367079A JPS5647691A (en) | 1979-09-26 | 1979-09-26 | Device to control flow rate through pump in flow |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5647691A JPS5647691A (en) | 1981-04-30 |
JPS63631B2 true JPS63631B2 (en) | 1988-01-07 |
Family
ID=14866383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12367079A Granted JPS5647691A (en) | 1979-09-26 | 1979-09-26 | Device to control flow rate through pump in flow |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5647691A (en) |
-
1979
- 1979-09-26 JP JP12367079A patent/JPS5647691A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5647691A (en) | 1981-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7028768B2 (en) | Fluid heat exchange control system | |
US4012921A (en) | Refrigeration and hot gas defrost system | |
EP0568264B1 (en) | Air conditioner | |
Kirsner | Chilled water plant design | |
JP2001091087A (en) | Method for controlling refrigerator of absorption heater chiller | |
US10948211B2 (en) | Water circulation system for air conditioning system and control method thereof | |
US4484454A (en) | Air conditioning apparatus | |
EP0282772A2 (en) | Operating method for an air conditioning system | |
JPS63631B2 (en) | ||
US4584844A (en) | Heat pump | |
JPH0130014B2 (en) | ||
EP0266301B1 (en) | Refrigerant metering in a variable flow system | |
JPS62196555A (en) | Refrigerator | |
JPS6212218Y2 (en) | ||
JPS62116846A (en) | Control device for the number of operating refrigerating machines | |
EP3722706B1 (en) | Thermal cycle system and control method for a thermal cycle system | |
CN220601654U (en) | Water supply system | |
US2463671A (en) | Refrigerant feed for multiple evaporator refrigerating systems | |
JPH08100805A (en) | Pressure control valve | |
JP2699487B2 (en) | Hot water mixing control device | |
JPH06272798A (en) | Device and method for parallel operation argon evaporator | |
JP2916381B2 (en) | Separate heat pump | |
CA1319518C (en) | Air conditioning apparatus | |
JP4060654B2 (en) | Water supply pump recirculation flow control device | |
JP2600815B2 (en) | Heat pump system |