JPS6363016A - Light beam scanner - Google Patents

Light beam scanner

Info

Publication number
JPS6363016A
JPS6363016A JP61205950A JP20595086A JPS6363016A JP S6363016 A JPS6363016 A JP S6363016A JP 61205950 A JP61205950 A JP 61205950A JP 20595086 A JP20595086 A JP 20595086A JP S6363016 A JPS6363016 A JP S6363016A
Authority
JP
Japan
Prior art keywords
light beam
reflecting mirror
cylindrical
deflector
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61205950A
Other languages
Japanese (ja)
Inventor
Takaki Hisada
隆紀 久田
Atsuo Osawa
敦夫 大沢
Masaharu Deguchi
出口 雅晴
Masahiko Tanitsu
雅彦 谷津
Minoru Takami
穣 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61205950A priority Critical patent/JPS6363016A/en
Publication of JPS6363016A publication Critical patent/JPS6363016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a deflector having a good linearity of a scan (scarcely having a distortion), and to obtain a scanner having a high practicability, by sing a columnar reflecting mirror for making a bus vertical to a principal scanning plane, and vibrating the reflecting mirror in the principal scanning surface. CONSTITUTION:A light beam which has been emitted from a laser light source 1 is collimated by a coupling lens 2, passes through a cylindrical lens 3 having play only in the main scanning direction as roughly a parallel luminous flux, made incident on a deflector 4 of a columnar reflecting mirror, and the light beam which has been deflected by the columnar reflecting mirror 4 passes through a cylindrical lens 5 having play only in the sub-scanning direction, and scans on a photosensitive drum 6. The columnar reflecting mirror deflector 4 is driven in the direction vertical to a bisector of an angle made by a light beam going to the scanning center and the incident light beam, in the main scanning plane by a driving device 7. In this way, a light beam scanner of a post-objective type, which has reduced a distortion to <=+ or -0.3% which does not become a problem to practical use can be obtained by a small-sized and simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポストオブジェクティブ型走査装置における
、走査速度のリニアリティを改善した光ビーム走査装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light beam scanning device that improves the linearity of scanning speed in a post-objective scanning device.

〔従来の技術〕[Conventional technology]

レーザビームプリンタ等の光学系として用いられる光ビ
ーム走査装置には、光ビームが偏向された後に集束レン
ズを置くプレオブジェクティブ型と、集束レンズで集束
光とした後に偏向装置を配置するポストオブジェクティ
ブ型とがある。前者は偏向後に集束レンズ系があり、走
査のリニアリティ等の性能を上記集束レンズで補正でき
るため、高性能が得易く現在主流になっているが、レン
ズ系には広角のものが必要となり、複雑になると口径が
大きなレンズを用いることになってしまう。
There are two types of light beam scanning devices used as optical systems in laser beam printers and the like: a pre-objective type in which a focusing lens is placed after the light beam has been deflected, and a post-objective type in which a deflection device is placed after the light beam is focused by a focusing lens. There is. The former has a focusing lens system after the deflection, and performance such as scanning linearity can be corrected with the focusing lens, so it is easy to obtain high performance and is currently the mainstream, but the lens system requires a wide angle and is complicated. In this case, a lens with a large aperture must be used.

上記のような走査装置には、例えば特開昭57−358
23号等がある。
The above-mentioned scanning device includes, for example, Japanese Patent Application Laid-Open No. 57-358.
There are No. 23, etc.

上記例に対し、ポストオブジェクティブ型では、集束レ
ンズは軸上光束だけの集束を行えばよいため、レンズ系
は極めて簡単になり、かつ小型になるが、偏向にともな
う走査速度の一様性が得られない等性能上の問題があっ
た。従来のポストオブジェクティブ型の例としては、例
えば特開昭60−133414号がある。
In contrast to the above example, in the post-objective type, the focusing lens only needs to focus the axial light beam, so the lens system becomes extremely simple and compact, but the uniformity of the scanning speed due to deflection is achieved. There were performance problems such as not being able to An example of the conventional post-objective type is JP-A-60-133414.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、従来の技術ではポストオブジェクティブ
型走査装置は、レンズ系が小型で簡単になるにもかかわ
らず、走査性能の上で走査のりニアリティが悪いという
問題があった。例えば、偏向器として回転多面体を用い
た場合、±20°の偏向でも4%の歪を生じる。
As described above, in the conventional technology, post-objective type scanning devices have a problem of poor scanning linearity in terms of scanning performance, although the lens system is small and simple. For example, when a rotating polyhedron is used as a deflector, even a deflection of ±20° causes a distortion of 4%.

本発明の目的は、上記問題点を解決し、走査のリニアリ
ティがよい(歪が少ない)偏向器を見出すことにより、
実用性が高いポストオブジェクティブ型の走査装置を得
ることにある。
The purpose of the present invention is to solve the above problems and to find a deflector with good scanning linearity (less distortion).
The object of the present invention is to obtain a highly practical post-objective type scanning device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ポストオブジェクティブ型光ビーム走査装
置の偏向器として、母線を主走査平面に垂直にした円柱
反射鏡を用い、上記反射鏡を主走査面内で振動させ、入
射光ビームが円柱に当る位置が変ることによって上記円
柱反射鏡の法線の向きが変り、光ビームを偏向させるよ
うにし、さらに上記円柱反射鏡の振動の振幅を円柱反射
鏡の断面円の半径の0.4倍以下にすることによって達
成される。
The above purpose is to use a cylindrical reflecting mirror with its generatrix perpendicular to the main scanning plane as a deflector of a post-objective light beam scanning device, and to vibrate the reflecting mirror within the main scanning plane so that the incident light beam hits the cylinder. By changing the position, the direction of the normal line of the cylindrical reflector changes, thereby deflecting the light beam, and further, the amplitude of the vibration of the cylindrical reflector is set to 0.4 times or less the radius of the cross-sectional circle of the cylindrical reflector. This is achieved by

〔作用〕[Effect]

本発明における偏向器の原理的作用について説明する。 The principle operation of the deflector in the present invention will be explained.

第7図は上記偏向器の偏向作用を示す概念図であり、図
は主走査面での断面を示している。
FIG. 7 is a conceptual diagram showing the deflection action of the deflector, and the figure shows a cross section in the main scanning plane.

第7図において、円柱反射鏡が8の位置にあるときは、
入射光ビーム10を11の方向に反射する。上記方向1
1をターゲット15の走査中央とする。この時の反射点
における円柱反射鏡の法線を13とし。
In Figure 7, when the cylindrical reflector is at position 8,
The incident light beam 10 is reflected in a direction 11. Above direction 1
1 is the scanning center of the target 15. At this time, the normal line of the cylindrical reflecting mirror at the reflection point is set to 13.

上記法線13に垂直な方向にhだけ平行移動した時の円
柱反射鏡を破IA9で示す。この時法線の傾きは14に
示すようになるため、入射光ビーム10は12の方向に
反射される。上記のように円柱反射鏡8をh方向しこ平
行移動させることによって、光ビームの偏向が可能にな
る。
The cylindrical reflecting mirror when translated by h in the direction perpendicular to the normal line 13 is shown by broken IA9. At this time, the slope of the normal line becomes as shown at 14, so the incident light beam 10 is reflected in the direction 12. By moving the cylindrical reflecting mirror 8 in parallel in the h direction as described above, the light beam can be deflected.

つぎに、−上記偏向器による走査のリニアリティについ
て説明する。走査のりニアリテイとはターゲット上で光
ビームが当る位置が時間に対し等速度で動くことであり
、この等速性からのずれ量を歪曲収差ということにする
Next, - linearity of scanning by the above deflector will be explained. Scanning linearity means that the position on the target where the light beam hits moves at a constant speed with respect to time, and the amount of deviation from this constant speed is referred to as distortion.

第7図に示すように、ターゲット15上の走査位置Qは
、偏向角θにより次式で示されるゆQ=tanθ   
     ・・・・・・(1)一方、円柱反射鏡の駆動
は、機械的な共振点などを利用するため、通常円柱反射
鏡の変位量りは次のようになる。
As shown in FIG. 7, the scanning position Q on the target 15 is determined by the deflection angle θ as follows: Q=tanθ
(1) On the other hand, since the cylindrical reflecting mirror is driven using a mechanical resonance point, etc., the displacement of the cylindrical reflecting mirror is normally determined as follows.

h = h、sinωt       −・= (2)
ここに、hoは振幅、tは時間、ωは振動の角周波数で
ある。また、第2図よりhと法線との傾き?の関係は h =Rsiny       −−(3)となり、さ
らに、反射の法則から第7図から判るとおり、偏向角θ
は2ヂに等しくなる。
h = h, sinωt −・= (2)
Here, ho is the amplitude, t is the time, and ω is the angular frequency of vibration. Also, from Figure 2, what is the slope between h and the normal line? The relationship is h = Rsiny - (3), and furthermore, as can be seen from the law of reflection in Figure 7, the deflection angle θ
is equal to 2.

上記をまとめると、つぎの2つの関係を得ることができ
る。
Summarizing the above, the following two relationships can be obtained.

ho  。Ho.

(2)(3)式よりsin tp = −sinωt・
・・・・・(4)(1)より   n =tan 2y
     −・・−(5)走査のリニアリティとは、(
4)式のωtに対しく5)式のΩが直線関係にあればよ
い。
(2) From equations (3), sin tp = −sinωt・
...(4) From (1) n = tan 2y
−・・−(5) Scanning linearity means (
It is sufficient that Ω in equation 5) has a linear relationship with ωt in equation 4.

そこで、(4)、(5)式よりヂを消去して、ωtとQ
との関係をり、/Rをパラメータにして示したものを第
8図に示す。図では横軸がωt、縦軸がtanθ=Ωで
あり、実線が上記の関係を示すグラフで、その横に付し
た数値はパラメータh、/Rの値である。また、破線で
示す直線は各グラフが原点近傍で接する直線であり、上
記実線がそれぞれの直線に近い程歪曲収差が小さい。第
8図から判るように、例えば偏向角が少なくとも±20
″の範囲内でリニアリティを得ようとすると、パラメー
タb0/Rは0.3〜0.4の間に選ぶ必要がある。特
に、h、/R=0.4の場合は、tanθ=0.9、す
なわち±40”まで歪曲収差が0.3%以下である。
Therefore, by eliminating ji from equations (4) and (5), ωt and Q
FIG. 8 shows the relationship with /R as a parameter. In the figure, the horizontal axis is ωt, the vertical axis is tanθ=Ω, the solid line is a graph showing the above relationship, and the numerical values attached next to it are the values of parameters h and /R. Moreover, the straight line shown by a broken line is a straight line where each graph touches near the origin, and the closer the solid line is to each straight line, the smaller the distortion is. As can be seen from Figure 8, for example, the deflection angle is at least ±20
'', the parameter b0/R must be selected between 0.3 and 0.4. In particular, when h,/R=0.4, tanθ=0. 9, that is, up to ±40'', the distortion is 0.3% or less.

上記のように、円柱反射鏡を主走査平面内で平行移動さ
せることにより光ビームの偏向ができ、その移動の振幅
り。と円柱反射鏡の曲率半径Rとの比h0/Rを最適に
選ぶことにより、走査において所望のリニアリティを得
ることができる。
As mentioned above, the light beam can be deflected by moving the cylindrical reflecting mirror in parallel within the main scanning plane, and the amplitude of the movement varies. By optimally selecting the ratio h0/R between the radius of curvature R and the radius of curvature R of the cylindrical reflecting mirror, desired linearity can be obtained in scanning.

さらに小さい偏向角で用いる場合は、h、/Rが0.3
%以下でもよい。h0/Rが0.4%以上では。
When used at an even smaller deflection angle, h,/R is 0.3
It may be less than %. When h0/R is 0.4% or more.

リニアリティを保てる範囲が極端に少ないことが第8図
から判る。従って、h、/Rは0.4%以下が望ましい
。上記のように、リニアリティを得るためには、円柱反
射鏡を平行移動させることが重要である。
It can be seen from FIG. 8 that the range in which linearity can be maintained is extremely small. Therefore, h, /R is preferably 0.4% or less. As mentioned above, in order to obtain linearity, it is important to move the cylindrical reflecting mirror in parallel.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による光ビーム走査装置の第1実施例を
示す構成概略図、第2図は上記実施例の歪曲収差特性を
示す図、第3図は上記実施例の駆動装置の断面図、第4
図は本発明の第2実施例における駆動装置の構成図、第
5図は本発明の第3実施例における駆動装置の構成図、
第6図は本発明の第4実施例における駆動装置を示す断
面図である。第1図に示す第1実施例は、レーザプリン
タの光学系を示している。レーザ光源1から出射した光
はカップリングレンズ2でコリメートされ。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a light beam scanning device according to the present invention, FIG. 2 is a diagram showing distortion aberration characteristics of the above embodiment, and FIG. 3 is a sectional view of a driving device of the above embodiment. , 4th
The figure is a configuration diagram of a drive device in a second embodiment of the present invention, FIG. 5 is a configuration diagram of a drive device in a third embodiment of the present invention,
FIG. 6 is a sectional view showing a driving device in a fourth embodiment of the present invention. A first embodiment shown in FIG. 1 shows an optical system of a laser printer. Light emitted from a laser light source 1 is collimated by a coupling lens 2.

はぼ平行光束として主走査方向にだけバリーをもつシリ
ンドリカルレンズ3を経て、円柱反射鏡の偏向器4に入
射する。7は上記円柱反射鏡4の駆動装置である。上記
円柱反射鏡4で偏向された光は副走査方向だけにバリー
を有するシリンドリカルレンズ5を経て、感光ドラム6
上を走査する。
The light passes through a cylindrical lens 3 having burrs only in the main scanning direction as a substantially parallel light beam, and then enters a deflector 4, which is a cylindrical reflecting mirror. 7 is a driving device for the cylindrical reflecting mirror 4. The light deflected by the cylindrical reflector 4 passes through a cylindrical lens 5 having burrs only in the sub-scanning direction, and then passes through a photosensitive drum 6.
Scan above.

すなわち、上記シリンドリカルレンズ3は、主走査方向
にだけ光ビームを集束し、つぎの円柱反射鏡の偏向器4
による光ビームの発散を補償して、ターゲットの感光ド
ラム6上に光ビームが集束されるよう(主走査方向)に
、位置および焦点距離が設定されている。上記シリンド
リカルレンズ3を通過した光ビームは、円柱反射鏡偏向
器4上では副走査方向に長いビーム形状になる。上記円
柱反射鏡偏向器4は駆動装置7により主走査平面内で、
走査中央に行く光ビームと入射光ビームとのなす角の2
等分線に垂直な方向に駆動される。
That is, the cylindrical lens 3 focuses the light beam only in the main scanning direction, and the deflector 4 of the next cylindrical reflector focuses the light beam in the main scanning direction.
The position and focal length are set so that the light beam is focused on the target photosensitive drum 6 (in the main scanning direction) by compensating for the divergence of the light beam caused by the light beam. The light beam that has passed through the cylindrical lens 3 becomes a long beam in the sub-scanning direction on the cylindrical reflector deflector 4. The cylindrical reflector deflector 4 is moved within the main scanning plane by a driving device 7.
2 of the angle between the light beam going to the center of scanning and the incident light beam
It is driven in the direction perpendicular to the equisector.

駆動装置7の構成を第3図の断面図で示す。第3図に示
す駆動装置はいわゆるボイスコイルであす、マグネット
21が作る磁界の中でコイル2oに交流電流を流すこと
により、上記円柱反射鏡偏向器4を取付けた取付台23
が図に示す矢印の方向に移動し、往復運動を行う。ガイ
ド22はベアリングになっており、取付台23が平行に
移動するように保持している。
The configuration of the drive device 7 is shown in a sectional view in FIG. The driving device shown in FIG. 3 is a so-called voice coil, and by passing an alternating current through the coil 2o in the magnetic field created by the magnet 21, the mount 23 on which the cylindrical reflector deflector 4 is mounted
moves in the direction of the arrow shown in the figure, performing reciprocating motion. The guide 22 is a bearing and holds the mounting base 23 so that it can move in parallel.

円柱反射鏡偏向器4で反射された光ビームはシリンドリ
カルレンズ5を通過し、この時、副走査方向に集束作用
を受け、感光ドラム6の面上でほぼ円形をした所望の大
きさのビーム形状に絞られる。
The light beam reflected by the cylindrical reflector deflector 4 passes through the cylindrical lens 5, and at this time, it is focused in the sub-scanning direction, so that the beam shape is approximately circular and has a desired size on the surface of the photosensitive drum 6. Narrowed down to.

つぎに本実施例における形状・寸法等について説明する
。偏向角は±22°とした。この場合、前記した原理的
説明から、第8図を用いてパラメータh、/Hの値を0
.3とすれば、十分なリニアリティを得ることができる
。円柱反射鏡偏向器4の曲率半径は小さい程コンパクト
になるが、実用的大きさを考慮して5mII+とした。
Next, the shape, dimensions, etc. of this embodiment will be explained. The deflection angle was ±22°. In this case, from the above-mentioned theoretical explanation, the values of parameters h and /H are set to 0 using FIG.
.. If it is set to 3, sufficient linearity can be obtained. The smaller the radius of curvature of the cylindrical reflector deflector 4, the more compact it becomes, but considering the practical size, it was set to 5 mII+.

そのため偏向器4の駆動の振幅は1.5mm必要になる
Therefore, the driving amplitude of the deflector 4 needs to be 1.5 mm.

感光ドラム6上の走査幅を±100mmとし、円柱反射
鏡偏向器4から上記感光ドラム6の表面までの距離は2
50mmである。
The scanning width on the photosensitive drum 6 is ±100 mm, and the distance from the cylindrical reflector deflector 4 to the surface of the photosensitive drum 6 is 2.
It is 50mm.

円柱反射鏡偏向器4のレンズとしての焦点距離はf =
 −2,5mmになる。これからシリンドリカルレンズ
3の焦点距離と配置をつぎのようにした。
The focal length of the cylindrical reflector deflector 4 as a lens is f =
-2.5mm. From now on, the focal length and arrangement of the cylindrical lens 3 are as follows.

焦点距離f = −2,51amのレンズで反射されて
上記250mm遠方の感光ドラム6上に集束されるため
には、円柱反射鏡偏向器4に入射する光ビームは。
In order to be reflected by a lens with a focal length f = -2,51 am and focused on the photosensitive drum 6 which is 250 mm away, the light beam incident on the cylindrical reflector deflector 4 is.

上記偏向器4からSだけすぎた点に集束するように入射
させる必要があるとする。上記Sの値は、し、a:物点
とレンズの距離、b:像点とレンズの距離)よりつぎの
ように求められる。
Suppose that it is necessary to make the light incident on a point that is a distance S away from the deflector 4 so as to be focused. The above value of S is obtained from (a: distance between the object point and the lens, b: distance between the image point and the lens) as follows.

従ってシリンドリカルレンズ3は円柱反射鏡偏向器4か
ら2.53mm遠方に集束するように設定する。
Therefore, the cylindrical lens 3 is set to focus 2.53 mm away from the cylindrical reflector deflector 4.

上記シリンドリカルレンズ3を円柱反射鏡偏向器4から
20mm光源寄りに配置することとし、この時、シリン
ドリカルレンズ3の焦点距離をfc=22.53ml1
とする。
The cylindrical lens 3 is placed 20 mm closer to the light source than the cylindrical reflector deflector 4, and at this time, the focal length of the cylindrical lens 3 is fc=22.53ml1
shall be.

上記実施例において、歪曲収差は第2図に示すように±
0.25mmとなり、許容値±0 、3mm以内となる
。許容値のレベルは第2図において2本の直線18およ
び19で示している。
In the above embodiment, the distortion is ±
It becomes 0.25mm, which is within the tolerance value ±0, 3mm. The tolerance levels are shown in FIG. 2 by two straight lines 18 and 19.

円柱反射鏡偏向器4の駆動方法は第3図に示す以外にも
種々の方法が可能であり、つぎにそれぞれの例を示す。
Various methods for driving the cylindrical reflector deflector 4 are possible in addition to the method shown in FIG. 3, and examples of each method will be shown next.

第4図に示す本発明の第2実施例では、モータにより円
板24を回転させ、この回転をシャフト27によって取
付台26の往復運動に変換する。シャフト27は支点2
8で円板24に回転自在に固定され、一方の端は支点2
9により取付台26に回転自在に固定されている。上記
取付台26はガイド25の支持に従って矢印で示す方向
に平行な往復運動を行う。
In the second embodiment of the present invention shown in FIG. 4, a motor rotates a disk 24, and a shaft 27 converts this rotation into reciprocating motion of a mounting base 26. Shaft 27 is fulcrum 2
8 is rotatably fixed to the disk 24, and one end is attached to the fulcrum 2.
9, it is rotatably fixed to the mounting base 26. The mount 26 is supported by the guide 25 and reciprocates in parallel in the direction indicated by the arrow.

第5図に示す本発明の第3実施例では、圧電素子を用い
て円柱反射鏡偏向器4を駆動するようにしたものである
。すなわち、圧電素子33のたわみの変化により、アー
ム35は点34を支点として振られ1円柱反射鏡偏向器
4の取付台32を平行移動させる。取付台32はガイド
30.31により保持される。
In a third embodiment of the present invention shown in FIG. 5, the cylindrical reflector deflector 4 is driven using a piezoelectric element. That is, due to the change in the deflection of the piezoelectric element 33, the arm 35 is swung about the point 34 as a fulcrum, and the mounting base 32 of the one-cylindrical reflector deflector 4 is moved in parallel. The mount 32 is held by guides 30.31.

アーム36の圧電素子側はバネ36によって常に圧電素
子33に接触するように引張られている。
The piezoelectric element side of the arm 36 is pulled by the spring 36 so as to be in constant contact with the piezoelectric element 33.

第6図に示す第4実施例は、第1実施例におけるガイド
22を2個にし、取付台23の両側に37.38のよう
に配置した例を示したものである。
The fourth embodiment shown in FIG. 6 is an example in which the number of guides 22 in the first embodiment is reduced to two, and they are arranged as shown at 37 and 38 on both sides of the mounting base 23.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による光ビーム走査装置は、光ビー
ムを発生する光源と、該光源からの光ビームをほぼ平行
光束にするための結合レンズ系と、母線の方向が主走査
方向と垂直になるように設置された円柱反射鏡と、上記
結合レンズからの光ビームを主走査方向にだけ集束する
光ビームとして、上記円柱反射鏡に入射させるレンズ系
と、上記円柱反射鏡で反射された光ビームを副走査方向
にだけ集束して、ターゲット上で1点に集束させる円柱
形レンズと、上記円柱反射鏡を主走査面内で往復運動さ
せる駆動装置とを備えたことにより、歪曲収差を実用上
問題にならない±0.3%以下にまで低減した、ポスト
オブジェクティブ型の光ビーム走査装置を、小型でしか
も簡易な構成で得ることができる。
As described above, the light beam scanning device according to the present invention includes a light source that generates a light beam, a coupling lens system that converts the light beam from the light source into a substantially parallel beam, and a generating line whose direction is perpendicular to the main scanning direction. a cylindrical reflecting mirror installed so that By including a cylindrical lens that focuses the beam only in the sub-scanning direction to a single point on the target, and a drive device that reciprocates the cylindrical reflector within the main scanning plane, distortion can be practically eliminated. It is possible to obtain a post-objective type light beam scanning device with a small and simple configuration in which the deviation is reduced to ±0.3% or less, which does not cause any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光ビーム走査装置の第1実施例を
示す構成概略図、第2図は上記実施例の歪曲収差特性を
示す図、第3図は上記実施例の駆動装置を示す断面図、
第4図は本発明の第2実施例における駆動装置の構成図
、第5図は本発明の第3実施例における駆動装置の構成
図、第6図は本発明の第4実施例における駆動装置を示
す断面図、第7図は本発明の原理を示す概念図、第8図
は走査のリニアリティを示す図である。 1・・・レーザ光源 2・・・カップリングレンズ 3・・・シリンドリカルレンズ 4・・円柱反射鏡(偏向器) 5・・・シリンドリカルレンズ 6・・・ターゲット(感光ドラム) 7・・駆動装置 代理人弁理士  中 村 純之助 第2図 走 11 イ左 ”f          Cmm)才
 3図 ヤ4 図 り==少  4 第5 図 1フ
Fig. 1 is a schematic configuration diagram showing a first embodiment of a light beam scanning device according to the present invention, Fig. 2 is a diagram showing distortion aberration characteristics of the above embodiment, and Fig. 3 is a cross section showing a driving device of the above embodiment. figure,
FIG. 4 is a block diagram of a drive device in a second embodiment of the present invention, FIG. 5 is a block diagram of a drive device in a third embodiment of the present invention, and FIG. 6 is a block diagram of a drive device in a fourth embodiment of the present invention. FIG. 7 is a conceptual diagram showing the principle of the present invention, and FIG. 8 is a diagram showing scanning linearity. 1... Laser light source 2... Coupling lens 3... Cylindrical lens 4... Cylindrical reflector (deflector) 5... Cylindrical lens 6... Target (photosensitive drum) 7... Drive device substitute Junnosuke Nakamura, a private patent attorney Figure 2 Run 11 A left “f Cmm) 3 Figure Ya 4 Figure == Small 4 Figure 1 F

Claims (1)

【特許請求の範囲】 1、光ビームを発生する光源と、該光源からの光ビーム
をほぼ平行光束にするための結合レンズ系と、母線の方
向が主走査方向と垂直になるように設置された円柱反射
鏡と、上記結合レンズからの光ビームを主走査方向にだ
け集束するビームとして、上記円柱反射鏡に入射させる
レンズ系と、上記円柱反射鏡で反射された光ビームを副
走査方向にだけ集束して、ターゲット上で1点に集束さ
せる円柱状レンズと、上記円柱反射鏡を主走査面内で往
復運動させる駆動装置とを備えた光ビーム走査装置。 2、上記円柱反射鏡の往復運動は、駆動時振幅が上記円
柱反射鏡の半径の0.4倍以下であることを特徴とする
特許請求の範囲第1項記載の光ビーム走査装置。
[Claims] 1. A light source that generates a light beam, a coupling lens system that converts the light beam from the light source into a substantially parallel beam, and is installed so that the direction of the generatrix is perpendicular to the main scanning direction. a cylindrical reflector, a lens system that makes the light beam from the coupling lens enter the cylindrical reflector as a beam that focuses only in the main scanning direction, and a lens system that directs the light beam reflected by the cylindrical reflector in the sub-scanning direction. A light beam scanning device comprising: a cylindrical lens that focuses the light to a single point on a target; and a drive device that causes the cylindrical reflecting mirror to reciprocate within a main scanning plane. 2. The light beam scanning device according to claim 1, wherein the amplitude of the reciprocating motion of the cylindrical reflecting mirror during driving is 0.4 times or less the radius of the cylindrical reflecting mirror.
JP61205950A 1986-09-03 1986-09-03 Light beam scanner Pending JPS6363016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205950A JPS6363016A (en) 1986-09-03 1986-09-03 Light beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205950A JPS6363016A (en) 1986-09-03 1986-09-03 Light beam scanner

Publications (1)

Publication Number Publication Date
JPS6363016A true JPS6363016A (en) 1988-03-19

Family

ID=16515390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205950A Pending JPS6363016A (en) 1986-09-03 1986-09-03 Light beam scanner

Country Status (1)

Country Link
JP (1) JPS6363016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598292A (en) * 1992-03-02 1997-01-28 Matsushita Electric Industrial Co., Ltd. Method of designing a post-objective type optical scanner and product made by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598292A (en) * 1992-03-02 1997-01-28 Matsushita Electric Industrial Co., Ltd. Method of designing a post-objective type optical scanner and product made by the method

Similar Documents

Publication Publication Date Title
US4906061A (en) Collimated light beam scanning method including curvature of field correction
JPH03179420A (en) Optical apparatus
JPH09304720A (en) Optical scanning device and optical lens
JPS60233616A (en) Optical scanning device
JPH0221565B2 (en)
JPS6363016A (en) Light beam scanner
JP3367313B2 (en) Optical scanning device
JPH08248345A (en) Optical scanner
JPH0514885B2 (en)
JPH0527195A (en) Scanning optical system
JP2743861B2 (en) Laser scanning device
JPH05249689A (en) Light beam scanner
JP2615850B2 (en) Light beam scanning optical system
JPS6269224A (en) Optical scanning device
JP3507285B2 (en) Optical scanning device
JPH09179053A (en) Optical scanning device
JPH09236764A (en) Optical scanner
KR100717040B1 (en) Light scanning system and image forming apparatus employing the same
JPS6275617A (en) Optical beam scanner
JPH0772408A (en) Scanning optical system
JP2005326466A (en) Optical scanner and image forming apparatus
JPH02304516A (en) Image surface curvature corrector for scanning optical device
JPH05297306A (en) Optical scanning device
JPH03179421A (en) Optical apparatus
JP2006113449A (en) Laser beam scanner