JP3507285B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP3507285B2
JP3507285B2 JP17285397A JP17285397A JP3507285B2 JP 3507285 B2 JP3507285 B2 JP 3507285B2 JP 17285397 A JP17285397 A JP 17285397A JP 17285397 A JP17285397 A JP 17285397A JP 3507285 B2 JP3507285 B2 JP 3507285B2
Authority
JP
Japan
Prior art keywords
lens
light beam
optical system
scanning device
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17285397A
Other languages
Japanese (ja)
Other versions
JPH112773A (en
Inventor
圭一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17285397A priority Critical patent/JP3507285B2/en
Publication of JPH112773A publication Critical patent/JPH112773A/en
Application granted granted Critical
Publication of JP3507285B2 publication Critical patent/JP3507285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に光源手段から
出射した光束を偏向手段により偏向し、結像光学系を介
して被走査面上を光走査して画像情報を記録するように
した、例えば電子写真プロセスを有するレーザービーム
プリンタや、デジタル複写機等の装置に好適な光走査装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is particularly adapted for deflecting a light beam emitted from a light source means by a deflecting means and optically scanning a surface to be scanned through an imaging optical system to record image information. For example, the present invention relates to an optical scanning device suitable for a device such as a laser beam printer having an electrophotographic process and a digital copying machine.

【0002】[0002]

【従来の技術】従来から、レーザービームプリンタ等の
光走査装置においては、画像信号に応じて光源手段から
出射された光束を光変調している。そして、この光変調
された光束を例えばポリゴンミラーから成る偏向手段に
より周期的に偏向し、fθ特性を有する結像光学系によ
って感光性を有する記録媒体面上にスポット状に集光
し、光走査して画像情報を記録している。
2. Description of the Related Art Conventionally, in an optical scanning device such as a laser beam printer, a light beam emitted from a light source means is optically modulated according to an image signal. Then, this light-modulated light beam is periodically deflected by a deflecting unit composed of, for example, a polygon mirror, and is condensed in a spot shape on a surface of a recording medium having photosensitivity by an imaging optical system having an fθ characteristic to perform optical scanning. Then, the image information is recorded.

【0003】図5は従来の走査光学系の斜視図である。
光源手段1から出射した発散光束はコリメータレンズ2
により略平行光となり、絞り3により光束幅を制限して
シリンドリカルレンズ4に入射する。シリンドリカルレ
ンズ4に入射した平行光束のうち主走査面においてはそ
のまま出射し、副走査面内においては収束して偏光手段
であるポリゴンミラー5の反射面5aにほぼ線像として
結像する。
FIG. 5 is a perspective view of a conventional scanning optical system.
The divergent light flux emitted from the light source means 1 is collimator lens 2
Becomes substantially parallel light, and the light flux width is limited by the diaphragm 3 to enter the cylindrical lens 4. The parallel light flux incident on the cylindrical lens 4 is emitted as it is on the main scanning surface, is converged on the sub-scanning surface, and is formed as a substantially linear image on the reflecting surface 5a of the polygon mirror 5 which is a polarizing means.

【0004】反射面5aで反射偏向された光束は、fθ
特性を有する結像光学系6を介して被走査面7に導光さ
れる。そして、ポリゴンミラー5を略等角速度に回転さ
せることにより、略一定速度で被走査面7上を走査す
る。
The luminous flux reflected and deflected by the reflecting surface 5a is fθ.
The light is guided to the surface to be scanned 7 through the image forming optical system 6 having characteristics. Then, by rotating the polygon mirror 5 at a substantially constant angular velocity, the surface to be scanned 7 is scanned at a substantially constant velocity.

【0005】ここで、結像レンズ6a、6bから成りf
θ特性を有する結像光学系6が所望の位置に配置されて
いないと、スポット光が被走査面7上の所望の位置に集
光されずに、画質の低下を招く虞れがある。そこで、結
像光学系6を精度良く配置するために、位置決め部材8
を結像レンズ6aのポリゴンミラー5側に設けて、結像
レンズ6aを位置決めして固定するのが通常である。
Here, f is composed of imaging lenses 6a and 6b.
If the imaging optical system 6 having the θ characteristic is not arranged at a desired position, the spot light may not be condensed at a desired position on the surface 7 to be scanned, and the image quality may be deteriorated. Therefore, in order to arrange the imaging optical system 6 with high accuracy, the positioning member 8
Is usually provided on the polygon mirror 5 side of the imaging lens 6a, and the imaging lens 6a is usually positioned and fixed.

【0006】[0006]

【発明が解決しようとする課題】ところで、最近では光
走査装置をより小型化することが求められているが、そ
のためには走査光学系をコンパクトに構成することが有
効である。
By the way, recently, there is a demand for further miniaturization of the optical scanning device, but for that purpose, it is effective to make the scanning optical system compact.

【0007】走査光学系の小型化の方法として、先ず結
像光学系6をポリゴンミラー5の近傍に配置すること
で、光学ユニット単体を小さく設定できる。また、これ
により結像レンズ6a、6bも小さく設定することがで
きるので、同時にコストダウンも図ることができる。更
に、光源手段1から出射された光束の有効走査角を広く
とり、結像光学系6の焦点距離を短く設定することによ
り光路長を短くすることができる。また、光源手段1か
ら射出された光束のポリゴンミラー5への入射角と走査
半角の差を小さく設定すれば、これによりポリゴンミラ
ー5も小さく設定できるという利点もある。
As a method of downsizing the scanning optical system, first, the image forming optical system 6 is arranged in the vicinity of the polygon mirror 5, so that the optical unit alone can be set small. Further, since the image forming lenses 6a and 6b can be set small, the cost can be reduced at the same time. Further, the optical path length can be shortened by widening the effective scanning angle of the light flux emitted from the light source means 1 and setting the focal length of the imaging optical system 6 short. Further, if the difference between the incident angle of the light beam emitted from the light source means 1 on the polygon mirror 5 and the scanning half angle is set small, the polygon mirror 5 can also be set small.

【0008】これらの方法で、走査光学系ひいては光走
査装置を小型化できるが、ここで1つ問題が生ずる。そ
れは、結像光学系6のポリゴンミラー5側に最も近く配
置された結像レンズ6aが入射光束L1に近接し、ポリゴ
ンミラー5への入射光束L1が例えば結像レンズ6aの位
置決め部材8やレンズの鍔部9等によって遮光されるこ
とである。
By these methods, the scanning optical system and thus the optical scanning device can be miniaturized, but one problem arises here. This is because the imaging lens 6a arranged closest to the polygon mirror 5 side of the imaging optical system 6 is close to the incident light beam L1, and the incident light beam L1 to the polygon mirror 5 is, for example, the positioning member 8 of the imaging lens 6a or the lens. It is to be shielded from light by the collar portion 9 and the like.

【0009】本発明の目的は、上述の問題点を解消し、
レンズのに面取り部分を設け、この面取り部分を入射光
束が通過するようにして、結像光学系を偏向手段にでき
るだけ近付けることにより、小型化を実現する光走査装
置を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide an optical scanning device which realizes downsizing by providing a chamfered portion on a lens and allowing an incident light beam to pass through the chamfered portion so that an imaging optical system is brought as close as possible to a deflecting unit.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る光走査装置は、光走査用の光束を出射
する光源手段と、該光源手段からの入射光束を偏向反射
面により反射し、偏向光束として等角速度的に偏向させ
る偏向手段と、前記偏向光束を被走査面上にスポットと
して結像させるレンズから成る結像光学系とを有する光
走査装置において、前記結像光学系の中で前記偏向手段
に最も近く配置したレンズの前記入射光束側の有効部外
形を前記入射光束を遮光しないように面取りし、前記偏
向手段への前記入射光束は前記面取りした部分を通過す
るようにしたことを特徴とする
An optical scanning device according to the present invention for achieving the above object comprises a light source means for emitting a light beam for optical scanning, and a deflective reflection surface for deflecting an incident light beam from the light source means. In the optical scanning device, there is provided an optical scanning device having a deflecting means for reflecting and deflecting the deflected light flux at a constant angular velocity, and an imaging optical system comprising a lens for imaging the deflected light flux as a spot on a surface to be scanned. Of the lens disposed closest to the deflecting means, the outer shape of the effective portion of the lens on the incident light beam side is chamfered so as not to block the incident light beam, and
The incident light beam to the directing means passes through the chamfered portion.
It is characterized by doing so .

【0011】[0011]

【発明の実施の形態】本発明を図1〜図3に図示の実施
例に基づいて詳細に説明する。図1は第1の実施例の光
走査装置を示す斜視図である。図示しない半導体レーザ
ー光源から成る光源手段から出射された光束Liが入射す
るポリゴンミラー11は、モータ等の駆動手段によって
矢印方向に回転している。ポリゴンミラー11の反射方
向には、合成樹脂製の第1レンズ12a、第2レンズ1
2bから成るfθ結像光学系12が配列されている。そ
して、第1レンズ12aは被走査面側に凸のメニスカス
レンズであり、第2レンズ12bは非球面形状を有し、
正のパワーを有する非球面レンズとされている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a perspective view showing the optical scanning device of the first embodiment. The polygon mirror 11 on which the light flux Li emitted from the light source means composed of a semiconductor laser light source (not shown) is incident is rotated in the arrow direction by a driving means such as a motor. The first lens 12a and the second lens 1 made of synthetic resin are arranged in the reflection direction of the polygon mirror 11.
An fθ imaging optical system 12 composed of 2b is arranged. The first lens 12a is a meniscus lens having a convex surface on the surface to be scanned, and the second lens 12b has an aspherical shape.
It is an aspherical lens having a positive power.

【0012】光源手段から出射した発散光束は集光レン
ズによって収束光束となり、副走査方向のみに屈折する
シリンドリカルレンズに入射する。この内、主走査方向
の光束はそのまま偏向手段であるポリゴンミラー11に
入射するが、副走査方向の光束はシリンドリカルレンズ
によりポリゴンミラー11の反射面11a付近に結像さ
れる。従って、ポリゴンミラー11に入射する光束Liは
主走査方向に長い線像となる。ポリゴンミラー11に入
射した光束Liはポリゴンミラー11の回動によって反射
偏向され、fθ結像光学系12によって被走査面上に結
像され主走査される。
The divergent light beam emitted from the light source means becomes a convergent light beam by the condenser lens and is incident on the cylindrical lens refracted only in the sub-scanning direction. Among them, the light flux in the main scanning direction is incident on the polygon mirror 11 which is a deflecting means as it is, but the light flux in the sub scanning direction is imaged near the reflecting surface 11a of the polygon mirror 11 by the cylindrical lens. Therefore, the light flux Li incident on the polygon mirror 11 becomes a long line image in the main scanning direction. The light flux Li incident on the polygon mirror 11 is reflected and deflected by the rotation of the polygon mirror 11, and is imaged on the surface to be scanned by the fθ imaging optical system 12 to be main-scanned.

【0013】小型化のために、fθ結像光学系12をポ
リゴンミラー11に近付けてゆくと、fθ結像光学系1
2を構成するレンズを小さくできるので、走査光学系を
コンパクトに収めることができ、コストダウンも図れる
利点がある。また、入射角を小さく設定すると、所望の
スポット径を得るのに小さな偏向手段で済み、走査効率
もかせげるためfθ結像光学系12の焦点距離を短くで
きる。
When the f.theta. Image forming optical system 12 is moved closer to the polygon mirror 11 for downsizing, the f.theta. Image forming optical system 1 is moved.
Since the lens constituting the lens 2 can be made small, the scanning optical system can be compactly housed, and the cost can be reduced. Further, if the incident angle is set to be small, a small deflecting means is required to obtain a desired spot diameter, and the scanning efficiency can be obtained, so that the focal length of the fθ imaging optical system 12 can be shortened.

【0014】この両条件を満たす走査光学系が小型化に
最適であるが、fθ結像光学系12をポリゴンミラー1
1に近付け、同時に入射角を小さく設定すると、第1レ
ンズ12aが入射光束Liに近接し、入射光束Liを遮断し
てしまうことがあり、画質の低下を招く虞れがある。
The scanning optical system satisfying both of these conditions is most suitable for downsizing, but the fθ imaging optical system 12 is replaced by the polygon mirror 1.
If the angle of incidence is set to 1 and the incident angle is set to be small at the same time, the first lens 12a may approach the incident light beam Li and block the incident light beam Li, which may lead to deterioration in image quality.

【0015】そこで第1の実施例では、第1レンズ12
aの有効部外の入射光束Liの光路に相当する部分を図示
のように面取りし、入射光束Liを遮断しないような構成
としている。これにより、入射光束Liはこの面取り部を
通過することにより、走査光学系の小型化が実現でき
る。
Therefore, in the first embodiment, the first lens 12
A portion corresponding to the optical path of the incident light flux Li outside the effective portion of a is chamfered as shown in the drawing so that the incident light flux Li is not blocked. As a result, the incident light beam Li passes through the chamfered portion, so that the scanning optical system can be downsized.

【0016】図2は上述の構成を設定する際の条件を示
す主走査方向の断面図である。入射光束Liはポリゴンミ
ラー11により反射偏向され、fθ結像光学系12を介
して被走査面13上にスポット状に結像される。ここ
で、入射光束Liの幅をWb、結像レンズ12aの幅をWL、
結像レンズ12aの入射側の端部と入射光束Liの主光線
がポリゴンミラー11の反射面上で反射偏向されるとき
の偏向点との光軸方向の距離をL、入射光束Liとfθ結
像光学系12の光軸Oとのなす角つまり入射角をαとす
ると、WL≧L×tan α−2×Wb/cos α>0(α<90
°)を満足するとき、面取り面の主走査断面内の光軸O
に対する傾きθが、90°よりも小さく設定されてい
る。
FIG. 2 is a sectional view in the main scanning direction showing the conditions for setting the above-mentioned structure. The incident light beam Li is reflected and deflected by the polygon mirror 11, and is imaged in a spot shape on the surface to be scanned 13 via the fθ imaging optical system 12. Here, the width of the incident light beam Li is Wb, the width of the imaging lens 12a is WL,
The distance in the optical axis direction between the incident end of the imaging lens 12a and the deflection point when the principal ray of the incident light beam Li is reflected and deflected on the reflecting surface of the polygon mirror 11 is L, and the incident light beam Li and fθ are combined. If the angle formed by the optical axis O of the image optical system 12, that is, the incident angle is α, WL ≧ L × tan α−2 × Wb / cos α> 0 (α <90
°) is satisfied, the optical axis O in the main scanning section of the chamfered surface
The inclination θ with respect to is set to be smaller than 90 °.

【0017】これにより、走査光学系を画質の低下を招
くことなくコンパクトにでき、ひいては光走査装置を小
型化することができる。
As a result, the scanning optical system can be made compact without degrading the image quality, and the optical scanning device can be made compact.

【0018】このとき、合成樹脂製の第1レンズ12a
は射出成形のために型を用いて成形されている。しか
し、合成樹脂材が型に注入される際に、注入部が狭いと
その部分で合成樹脂材が急激に圧縮され流速が速まり、
摩擦によって発熱が生じ、その熱により部分的な歪み等
の様々な問題が生じてしまう。また、合成樹脂材の流れ
を急に曲げると、レンズ面のうねり、複屈折、外観不良
等の画質を低下させる要因となる現象が大きく発生する
虞れがある。そのため、第1レンズ12aのゲート側は
厚く、かつ直線的に成形する必要がある。
At this time, the first lens 12a made of synthetic resin
Is molded using a mold for injection molding. However, when the synthetic resin material is injected into the mold, if the injection part is narrow, the synthetic resin material is abruptly compressed in that part and the flow velocity is increased.
The friction causes heat generation, and the heat causes various problems such as partial distortion. In addition, when the flow of the synthetic resin material is sharply bent, there is a possibility that phenomena such as waviness of the lens surface, birefringence, poor appearance, and the like that may cause deterioration in image quality may occur. Therefore, the gate side of the first lens 12a needs to be thick and linearly shaped.

【0019】第1レンズ12aは有効部外の入射光束Li
の光路に相当する部分を面取りした形状としているが、
この形状は薄くまた角度を付けて成形しているため、射
出成形のみで形状を得ている第1レンズ12aにおいて
は、成形型の入射側であるゲート側を第1レンズ12a
の入射光束側に設けることは、高品位な画像を得るため
に不利となる。そこで、上述の成形上の問題から、第1
レンズ12aの反入射光束側に対応する方向をゲート側
にして、上述の必要条件を満足させる形状に設定し、第
1レンズ12aの入射光束Li側に対応する方向を反ゲー
ト側に設定することが好適である。
The first lens 12a is an incident light beam Li outside the effective portion.
The part corresponding to the optical path of is chamfered,
Since this shape is thin and is formed at an angle, in the first lens 12a obtained only by injection molding, the gate side, which is the incident side of the molding die, is located at the first lens 12a.
It is disadvantageous to provide it on the incident light flux side in order to obtain a high quality image. Therefore, from the above-mentioned molding problem,
The direction corresponding to the anti-incident light beam side of the lens 12a is set to the gate side, and the shape is set so as to satisfy the above-mentioned necessary conditions, and the direction corresponding to the incident light beam Li side of the first lens 12a is set to the anti-gate side. Is preferred.

【0020】図3は第2の実施例の光走査装置を示す斜
視図であり、第1レンズ12aの有効部外の形状とし
て、入射光束Liの光路にあたる部分は溝状に刻設するこ
とにより面取りされ、入射光束Liを通過させる構造とさ
れている。
FIG. 3 is a perspective view showing the optical scanning device of the second embodiment. As a shape of the outside of the effective portion of the first lens 12a, the portion corresponding to the optical path of the incident light beam Li is engraved in a groove shape. The structure is chamfered and allows the incident light flux Li to pass therethrough.

【0021】この場合も、第1の実施例の場合と同等の
効果を得ることができ、画質の低下を招くことなく走査
光学系をコンパクトに、ひいては光走査装置を小型化す
ることができる。
Also in this case, the same effect as that of the first embodiment can be obtained, and the scanning optical system can be made compact and the optical scanning device can be made compact without deteriorating the image quality.

【0022】なお、上述の第1、第2の実施例におい
て、fθ結像光学系12は非球面を有するレンズで構成
されていても、これと同等の効果を得ることができる。
また、fθ結像光学系12は主走査方向、副走査方向の
少なくとも何れか一方に偏心していても、同等の効果を
得ることができる。このとき、偏向手段から反射偏向さ
れた偏向光束が、像面上に垂直に走査されるときの偏向
光束の光路をfθ結像光学系12の仮想の光軸とする。
In the first and second embodiments described above, even if the fθ imaging optical system 12 is composed of a lens having an aspherical surface, the same effect as this can be obtained.
Even if the fθ imaging optical system 12 is decentered in at least one of the main scanning direction and the sub scanning direction, the same effect can be obtained. At this time, the optical path of the deflected light beam reflected and deflected by the deflecting means when it is vertically scanned on the image plane is the virtual optical axis of the fθ imaging optical system 12.

【0023】図4は参考例の光走査装置を示す斜視図で
あり、光源手段からの発散光束を主走査断面内において
収束光束に変換することによって、fθ結像光学系12
の屈折力の一部を集光レンズに分担させ、fθ結像光学
系12の屈折力を小さくしている。また、第1レンズ1
2aの被走査面13側には、第1レンズ12aを精度良
く配置するための位置決め部材14が設けられている。
FIG. 4 is a perspective view showing an optical scanning device of a reference example. By converting a divergent light beam from the light source means into a convergent light beam in the main scanning cross section, the fθ imaging optical system 12 is shown.
The refracting power of the fθ imaging optical system 12 is reduced by allowing the condensing lens to share a part of the refracting power of. Also, the first lens 1
A positioning member 14 for accurately arranging the first lens 12a is provided on the scanned surface 13 side of 2a.

【0024】従来の光走査装置では、第1レンズ12a
の位置精度における公差上の理由から、入射光束と第1
レンズ12aとの間には第1レンズ12aの保持部材
や、位置決め部材等の部材が配置されており、入射光束
Liを遮断しないように配置するためには、入射光束Liと
第1レンズ12aとを或る程度離して配置する必要があ
る。
In the conventional optical scanning device, the first lens 12a
Due to tolerances in the position accuracy of the
Members such as a holding member for the first lens 12a and a positioning member are arranged between the lens 12a and the lens 12a, and
In order to dispose Li so as not to be blocked, it is necessary to dispose the incident light beam Li and the first lens 12a at a certain distance.

【0025】しかしそれでは、結像レンズ、偏向手段、
光路長をコンパクトにすることができず、光走査装置を
小型化できない。そこで、第1レンズ12aの光軸O方
向の位置決め部材14を被走査面13側に配置して位置
決めすることにより、この問題が解決される。
However, then, the imaging lens, the deflection means,
The optical path length cannot be made compact and the optical scanning device cannot be made compact. Therefore, this problem is solved by arranging and positioning the positioning member 14 of the first lens 12a in the optical axis O direction on the scanned surface 13 side.

【0026】これにより、入射光束Liと第1レンズ12
aとを十分に近接させて配置することが可能となり、光
走査装置を小型化に設定することができる。
As a result, the incident light flux Li and the first lens 12
It is possible to dispose them so that they are sufficiently close to each other, and it is possible to set the optical scanning device to be compact.

【0027】[0027]

【発明の効果】以上説明したように本発明に係る光走査
装置は、偏向手段への入射光束の光路に相当するレンズ
の有効部外の部分を面取りすることにより入射角を小さ
くすると共に、走査角を大きくし結像光学系の焦点距離
を短く設定し、光学系全体をコンパクトに収めることを
可能とする。
As described above, in the optical scanning device according to the present invention, the incident angle is reduced and the scanning is performed by chamfering the portion outside the effective portion of the lens corresponding to the optical path of the incident light beam to the deflecting means. By making the angle large and setting the focal length of the imaging optical system short, it is possible to make the entire optical system compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment.

【図2】第1の実施例の主走査方向の断面図である。FIG. 2 is a sectional view of the first embodiment in the main scanning direction.

【図3】第2の実施例の斜視図である。FIG. 3 is a perspective view of a second embodiment.

【図4】参考例の斜視図である。FIG. 4 is a perspective view of a reference example.

【図5】従来例の斜視図である。FIG. 5 is a perspective view of a conventional example.

【符号の説明】[Explanation of symbols]

11 ポリゴンミラー 12 fθ結像光学系 12a 第1レンズ 12b 第2レンズ 13 被走査面 14 fθレンズの位置決め部材 Li 入射光束 0 光軸 11 polygon mirror 12 fθ imaging optical system 12a first lens 12b second lens 13 Scanned surface 14 fθ lens positioning member Li incident light flux 0 optical axis

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光走査用の光束を出射する光源手段と、
該光源手段からの入射光束を偏向反射面により反射し、
偏向光束として等角速度的に偏向させる偏向手段と、前
記偏向光束を被走査面上にスポットとして結像させるレ
ンズから成る結像光学系とを有する光走査装置におい
て、前記結像光学系の中で前記偏向手段に最も近く配置
したレンズの前記入射光束側の有効部外形を前記入射光
束を遮光しないように面取りし、前記偏向手段への前記
入射光束は前記面取りした部分を通過するようにしたこ
とを特徴とする光走査装置。
1. Light source means for emitting a light beam for optical scanning,
The incident light flux from the light source means is reflected by the deflective reflection surface,
An optical scanning device comprising: a deflecting means for deflecting a deflected light beam at a constant angular velocity; and an imaging optical system including a lens for imaging the deflected light beam as a spot on a surface to be scanned. The effective light beam side of the lens disposed closest to the deflecting means on the side of the incident light beam is defined by the incident light.
Chamfer the bundle so that it does not block light,
The incident light flux should pass through the chamfered portion.
And an optical scanning device.
【請求項2】 前記面取りしたレンズは合成樹脂製とし
たことを特徴とする請求項1に係る光走査装置。
2. The optical scanning device according to claim 1, wherein the chamfered lens is made of synthetic resin.
【請求項3】 前記請求項1又は2に記載の光走査装置
を備えたことを特徴とするレーザービームプリンタ。
3. A laser beam printer comprising the optical scanning device according to claim 1 or 2 .
JP17285397A 1997-06-13 1997-06-13 Optical scanning device Expired - Fee Related JP3507285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17285397A JP3507285B2 (en) 1997-06-13 1997-06-13 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17285397A JP3507285B2 (en) 1997-06-13 1997-06-13 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH112773A JPH112773A (en) 1999-01-06
JP3507285B2 true JP3507285B2 (en) 2004-03-15

Family

ID=15949521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17285397A Expired - Fee Related JP3507285B2 (en) 1997-06-13 1997-06-13 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3507285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768840B2 (en) * 2000-07-17 2006-04-19 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JPH112773A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3291906B2 (en) Scanning optical device
JPH05346549A (en) Scanning optical device
JP3104618B2 (en) Optical scanning device and optical lens
JP2830670B2 (en) Optical scanning device
JP3507285B2 (en) Optical scanning device
JPH063610A (en) Scanning optical device
JP3566529B2 (en) Optical scanning device
US5901256A (en) Laser beam scanning device and apparatus provided with a laser beam scanning device
JP3367313B2 (en) Optical scanning device
JP3288970B2 (en) Optical scanning device
JPH063609A (en) Scanning optical device
US5671004A (en) Internal drum scanning type image recording apparatus
JP3254367B2 (en) Optical scanning optical system
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP3192537B2 (en) Scanning optical device
JPH1164759A (en) Light scanning optical device
JPH10260371A (en) Scanning optical device
JP2000292722A (en) Multi-beam optical scanner
JPH10206728A (en) Optical element and optical scanning device using the same
JP2850255B2 (en) Optical scanning optical device
JPH03274016A (en) Scanning optical device
JPH08179236A (en) Beam scanner
JP3434153B2 (en) Optical scanning device
JPH05346547A (en) Optical scanning device
JPH0458211A (en) Scanning optical device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees