JPS6362997B2 - - Google Patents

Info

Publication number
JPS6362997B2
JPS6362997B2 JP56046843A JP4684381A JPS6362997B2 JP S6362997 B2 JPS6362997 B2 JP S6362997B2 JP 56046843 A JP56046843 A JP 56046843A JP 4684381 A JP4684381 A JP 4684381A JP S6362997 B2 JPS6362997 B2 JP S6362997B2
Authority
JP
Japan
Prior art keywords
fluid
electrode
charging
collector electrode
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56046843A
Other languages
Japanese (ja)
Other versions
JPS57160373A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4684381A priority Critical patent/JPS57160373A/en
Publication of JPS57160373A publication Critical patent/JPS57160373A/en
Publication of JPS6362997B2 publication Critical patent/JPS6362997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明はEHD発電装置に関し、特に作動流体
が温度差によつて自然循環するように構成された
自然循環式EHD発電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an EHD power generation device, and more particularly to a natural circulation type EHD power generation device configured such that a working fluid is naturally circulated due to a temperature difference.

EHD発電すなわち電気流体力学発電の原理は
既によく知られているように、流路の入口で気体
中にコロナ放電を行つて該気体をイオン化した
後、流路の出口でコレクター電極によつて該気体
を除荷することにより該気体の有する運動エネル
ギーもしくは圧力エネルギーを電気エネルギーと
して回収する発電方式であるが、従来知られてい
るEHD発電装置は該気体を循環させるために、
ポンプ等の機械装置を必要としていたため、装置
構造が複雑となつており、かつ、ポンプなどの回
転部分を定期的に保守する必要があるなどの欠点
があつた。
As the principle of EHD power generation, or electrohydrodynamic power generation, is already well known, corona discharge is performed in the gas at the entrance of the flow path to ionize the gas, and then the gas is ionized by the collector electrode at the exit of the flow path. This is a power generation method that recovers the kinetic energy or pressure energy of the gas as electrical energy by unloading the gas. Conventionally known EHD power generation devices circulate the gas by:
Since a mechanical device such as a pump was required, the structure of the device was complicated, and there were drawbacks such as the need for periodic maintenance of rotating parts such as the pump.

本発明は前記欠点を除き、ポンプ等の回転部分
を持つ機械装置を必要とせず、構造が簡単で回転
部分のないEHD発電装置を提供することを目的
とするものである。
It is an object of the present invention to eliminate the above-mentioned drawbacks, to provide an EHD power generation device that does not require a mechanical device having rotating parts such as a pump, has a simple structure, and has no rotating parts.

以下、図によつて本発明の一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図に於て1は環状の密閉ケーシングであり、該
密閉ケーシング1内には上昇流路1Aと下降流路
1Bとを含む流体循環流路が内蔵されており、該
流体循環流路内にはフレオン等の作動流体が収容
されている。上昇流路1Aの下部には該流体を気
化させるための加熱装置2が設けられ該加熱装置
2は該密閉ケーシング1外から供給される高温源
によつて加熱されるようになつている。高温源に
はたとえば比較的高温の廃ガス等(温排水であつ
てもよい)が使われ、管3によつて供給されてお
り、熱交換によつてその廃ガス等の保有熱を回収
した後、排出管4を通つて廃棄するようになつて
いる。
In the figure, 1 is an annular sealed casing, and a fluid circulation channel including an upward flow channel 1A and a downward flow channel 1B is built into the closed casing 1. A working fluid such as freon is contained. A heating device 2 for vaporizing the fluid is provided at the lower part of the ascending flow path 1A, and the heating device 2 is heated by a high temperature source supplied from outside the sealed casing 1. The high temperature source is, for example, relatively high-temperature waste gas (which may also be heated wastewater), which is supplied through pipe 3, and the heat retained in the waste gas is recovered through heat exchange. Afterwards, it is disposed of through a discharge pipe 4.

加熱装置2の直上位置には金属板でできてい
て、0.1mm程度の小さい穴5のたくさんあいた入
口電極6と網状もしくは格子状の荷電電極7とが
設けられ、該両電極間高電圧をかけることによ
り、分極あるいはコロナ放電を使つて液滴を荷電
するように構成されている。
Immediately above the heating device 2, an inlet electrode 6 made of a metal plate with many small holes 5 of about 0.1 mm in size and a net-like or grid-like charging electrode 7 are provided, and a high voltage is applied between the two electrodes. Accordingly, the droplets are configured to be charged using polarization or corona discharge.

一方、上昇流路1Aの上部位置、すなわち下降
流路1Bの上部位置には網状もしくは格子状のコ
レクター電極8が設けられ、該コレクター電極8
は密閉ケーシング1外の電気的な負荷9を介して
入口電極6及び荷電電極7に電気的に接続されて
いる。コレクター電極8の下流側の下降流路1B
の上部位置には冷却装置10が設けられ、該冷却
装置10は密閉ケーシング1外の低温源から供給
される冷却水によつて冷却されている。冷却水は
管11によつて供給されており、該冷却水はフレ
オン蒸気等の熱媒体を冷却した後に排出管12を
通つて排出されるようになつている。
On the other hand, a net-like or grid-like collector electrode 8 is provided at the upper position of the upward flow path 1A, that is, at the upper position of the downward flow path 1B.
is electrically connected to the inlet electrode 6 and the charging electrode 7 via an electrical load 9 outside the closed casing 1. Downstream channel 1B of collector electrode 8
A cooling device 10 is provided at an upper position of the casing 1, and the cooling device 10 is cooled by cooling water supplied from a low temperature source outside the sealed casing 1. Cooling water is supplied through a pipe 11, and is discharged through a discharge pipe 12 after cooling a heat medium such as Freon steam.

次に前記の如き構成の本発明EHD発電装置の
概略的作動を説明する。
Next, the general operation of the EHD power generation apparatus of the present invention having the above-mentioned configuration will be explained.

密閉ケーシング1内に密封されているフレオン
等の作動流体は冷却装置10によつて冷却される
と凝縮して液体となり、下降流路1Bを流下して
密閉ケーシング1の底部にたまる。しかしなが
ら、上昇流路1Aの下部にある作動流体は加熱装
置2によつて加熱されるため入口電極6の小穴5
から吹き出すと共に、作動流体の一部が気化し
て、その温度における飽和蒸気圧力になつてい
る。この圧力と密閉ケーシング上部の冷却源の温
度に対応する蒸気圧力との圧力差により、上向き
の駆動力が働き、液滴をも押し上げてしまうミス
トフローが実現する。この時に、入口電極6と荷
電電極7との間に高電圧をかけることにより、液
滴に電荷を与えると、液滴は流れにより抵抗を受
けながら上昇し、この上昇過程で発電してゆく。
液滴を含むミスト流が、コレクター電極8に達す
ると、コレクター電極8によつて該作動流体の流
れは除荷されて電流が負荷9に流れ、その結果、
荷電電極7の電位が上昇して荷電状態が持続す
る。この過程に於て、作動流体が上昇流路1A内
を上昇するためのエネルギーは加熱装置2によつ
て作動流体に与えられた熱エネルギーであるが、
この熱エネルギーは負荷9への電流に変換された
ことになる。
When the working fluid such as freon sealed in the sealed casing 1 is cooled by the cooling device 10, it condenses into a liquid, flows down the downward flow path 1B, and accumulates at the bottom of the sealed casing 1. However, since the working fluid in the lower part of the ascending flow path 1A is heated by the heating device 2, the small hole 5 of the inlet electrode 6
At the same time, a portion of the working fluid is vaporized and reaches the saturated vapor pressure at that temperature. The pressure difference between this pressure and the steam pressure corresponding to the temperature of the cooling source at the top of the sealed casing creates an upward driving force, creating a mist flow that also pushes up the droplets. At this time, when a high voltage is applied between the inlet electrode 6 and the charging electrode 7 to give a charge to the droplet, the droplet rises while being resisted by the flow, and generates electricity during this rising process.
When the mist stream containing droplets reaches the collector electrode 8, the working fluid stream is unloaded by the collector electrode 8 and current flows to the load 9, so that:
The potential of the charging electrode 7 increases and the charged state continues. In this process, the energy for the working fluid to rise within the ascending flow path 1A is the thermal energy given to the working fluid by the heating device 2;
This thermal energy has been converted into a current to the load 9.

また、高温源と低温源の部分の圧力差が、上昇
流路と下降流路の液位の差による圧力差とつりあ
つているので、たとえば、圧力差が1気圧あれ
ば、液位の差は、R−113フレオンの場合、約6
mである。
In addition, the pressure difference between the high temperature source and the low temperature source is balanced by the pressure difference due to the difference in liquid level between the ascending flow path and the descending flow path, so for example, if the pressure difference is 1 atmosphere, the difference in liquid level is about 6 for R-113 Freon.
It is m.

除荷された作動流体は次に冷却装置10を通過
するが、その際に冷却されて凝縮し、液体に戻
る。このため、液体となつた作動流体は重力の作
用で下降流路1Bを落下して再び上昇流路1Aの
下部にためられる。
The unloaded working fluid then passes through a cooling device 10 where it is cooled and condensed back to liquid form. Therefore, the working fluid that has become a liquid falls down the downward flow path 1B under the action of gravity and is collected again at the lower part of the upward flow path 1A.

以上のように、本発明によれば、従来無駄に捨
てられていた低レベルの廃熱等を利用してEHD
発電用の作動流体を加熱して気化させるとともに
該作動流体をミスト化して、液滴と気体の混合流
とし、このミスト流を廃熱の温度差により生じる
圧力差を利用して輸送することにより重力に逆ら
つて、作動流体を上部まで持ち上げることが可能
となり、上部から下部へは重力の作用で液体が輸
送されるので、ポンプ等の循環装置を設けること
なく作動流体の自然循環が完了する。さらに、電
界によるドリフト速度の小さい液滴の方が電気出
力が大きくなるので上昇流中の液滴を荷電するこ
とにより、熱エネルギーを電気エネルギーに効率
よく変換することができるようになる。このた
め、構造簡単な自然循環式EHD発電装置が提供
される。
As described above, according to the present invention, EHD is achieved by utilizing low-level waste heat, etc., which was wasted in the past.
By heating and vaporizing the working fluid for power generation and turning the working fluid into a mist to form a mixed flow of droplets and gas, this mist flow is transported using the pressure difference caused by the temperature difference of waste heat. It is possible to lift the working fluid to the top against gravity, and the liquid is transported from the top to the bottom by the action of gravity, so natural circulation of the working fluid is completed without the need for a circulation device such as a pump. . Furthermore, droplets with a lower drift velocity due to the electric field have a larger electrical output, so by charging the droplets in the upward flow, it becomes possible to efficiently convert thermal energy into electrical energy. Therefore, a natural circulation type EHD power generation device with a simple structure is provided.

【図面の簡単な説明】[Brief explanation of drawings]

添附図面は本発明の実施例の縦断面図である。 1:密閉ケーシング、1A:上昇流路、1B:
下降流路、2:加熱装置、6:入口電極、7:荷
電電極、8:コレクター電極、9:負荷、10:
冷却装置。
The accompanying drawings are longitudinal sectional views of embodiments of the invention. 1: Sealed casing, 1A: Rising channel, 1B:
Downflow path, 2: heating device, 6: inlet electrode, 7: charged electrode, 8: collector electrode, 9: load, 10:
Cooling system.

Claims (1)

【特許請求の範囲】[Claims] 1 フロン等の低温蒸発流体の上昇流路と下降流
路とを含む流体循環流路を内蔵した密閉ケーシン
グと、前記上昇流路の下部に設けられて前記流体
を加熱する廃熱利用の加熱装置と、前記加熱装置
の直上位置に設けられ、前記流体を荷電するため
の荷電電極及び入口電極と、前記上昇流路の上部
に設けられたコレクター電極と、前記コレクター
電極を通過後の前記流体を冷却するために前記下
降流路の上部近傍に設けられた冷却装置と、を有
した自然循環式EHD発電装置。
1. A sealed casing with a built-in fluid circulation channel including an ascending channel and a descending channel for low-temperature evaporated fluid such as fluorocarbons, and a heating device using waste heat that is provided at the bottom of the ascending channel and heats the fluid. a charging electrode and an inlet electrode provided directly above the heating device for charging the fluid; a collector electrode provided at the top of the upward flow path; and a collector electrode for charging the fluid after passing through the collector electrode. a cooling device provided near the top of the downflow passage for cooling; a natural circulation EHD power generation device;
JP4684381A 1981-03-30 1981-03-30 Natural circulation type ehd power generation apparatus Granted JPS57160373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684381A JPS57160373A (en) 1981-03-30 1981-03-30 Natural circulation type ehd power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684381A JPS57160373A (en) 1981-03-30 1981-03-30 Natural circulation type ehd power generation apparatus

Publications (2)

Publication Number Publication Date
JPS57160373A JPS57160373A (en) 1982-10-02
JPS6362997B2 true JPS6362997B2 (en) 1988-12-06

Family

ID=12758617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684381A Granted JPS57160373A (en) 1981-03-30 1981-03-30 Natural circulation type ehd power generation apparatus

Country Status (1)

Country Link
JP (1) JPS57160373A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560363B (en) * 2017-03-09 2019-09-11 Ionech Ltd Energy storage and conversion

Also Published As

Publication number Publication date
JPS57160373A (en) 1982-10-02

Similar Documents

Publication Publication Date Title
KR101137377B1 (en) Electric converter unit and electric converter system
US3807137A (en) Electrostatic gas-scrubber and method
JP2003250262A (en) Method and apparatus for converting dissipated heat to work energy
US8283613B2 (en) Heat-pipe electric-power generating device
JPH03181302A (en) Distilling apparatus
US4742682A (en) Energy-saving, direct-contact, parallel-flow heat exchanger
CN113227671A (en) Apparatus and method for accumulating energy in the form of heat based on a fluidized bed
US4381463A (en) Method and apparatus for producing electrical power and for the simultaneous heating of fluid, utilizing a magnetohydrodynamic generator
JPS6035182A (en) Method and device of geothermal power generation
US20090166170A1 (en) Porous honeycomb water treatment device
JPS6362997B2 (en)
US3223860A (en) Heat exchange system
Yabe et al. Augmentation of condensation heat transfer by applying non-uniform electric fields
US6841891B1 (en) Electrogasdy anamic method for generation electrical energy
JPS59500080A (en) energy conversion system
EP0018822B1 (en) A closed-circuit magnetohydrodynamic (mhd) system for producing electrical power and a method for producing electrical power by means of a magnetohydrodynamic (mhd) generator
US11063199B2 (en) Internally heated concentrated solar power (CSP) thermal absorber
Dean Zero gravity phase separator technologies-past, present and future
JPH06163089A (en) Alkali metal thermoelectric generating device
Roberts Jr A review of heat pipe liquid delivery concepts
JP4008392B2 (en) Alkali metal thermoelectric generator
JPH06245558A (en) Thermoelectric generator
JPH11354132A (en) Fuel cell power generating set
Gauvin A novel approach to spray drying using plasmas of water vapour
KR19980702088A (en) Electro sorption reaction cell