JPH06245558A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH06245558A
JPH06245558A JP2654893A JP2654893A JPH06245558A JP H06245558 A JPH06245558 A JP H06245558A JP 2654893 A JP2654893 A JP 2654893A JP 2654893 A JP2654893 A JP 2654893A JP H06245558 A JPH06245558 A JP H06245558A
Authority
JP
Japan
Prior art keywords
sodium
tube container
alkali metal
double tube
thermoelectric generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2654893A
Other languages
Japanese (ja)
Other versions
JP3453159B2 (en
Inventor
Akira Yamada
山田  明
Hiroshi Kikuchi
洋 菊地
Eishiro Sasagawa
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2654893A priority Critical patent/JP3453159B2/en
Publication of JPH06245558A publication Critical patent/JPH06245558A/en
Application granted granted Critical
Publication of JP3453159B2 publication Critical patent/JP3453159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently convert heat energy from a high-temperature heat source to electricity. CONSTITUTION:A thermoelectric generator comprises a closed type double tube container 21 equipped with a heater 23 in the lower portion and a cooler 22 in the upper portion at the opposite side, groups of metal thermoelectric elements consisting of alkali metal thermoelectric generating elements 24 stored in a double tube container 21, and a condensed sodium circulating passage 26 located outside of the groups of the alkali metal thermoelectric elements within a double tube container 21. Heat energy from a high temperature heat source can be converted into electricity at a high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電発電装置に関し、特
に宇宙及び深海用を対象とした熱電発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator, and more particularly to a thermoelectric generator for space and deep sea applications.

【0002】[0002]

【従来の技術】図2(A),(B)は、アルカリ金属と
してアントリウムを作動媒体とするアルカリ金属熱電発
電装置の発電原理を示すもので、図2(B)は図2
(A)の固体電解質及び電極部の詳細図を示す。
2. Description of the Related Art FIGS. 2A and 2B show the power generation principle of an alkali metal thermoelectric generator using anthium as an alkali metal as a working medium, and FIG.
The detailed view of the solid electrolyte of (A) and an electrode part is shown.

【0003】図中の1はナトリウム導電性固体電解質
(例えば、β”−アルミナ)であり、この固体電解質1
のナトリウム低蒸気圧側に多孔性電極2が設けられ、反
対側に内面メッシュ電極3を設けられている。ここで、
内面メッシュ電極3は、加熱されたナトリウムが液体で
供給されるときは不要となる。前記多孔性電極2と内面
メッシュ電極3には、外部負荷回路4が接続されてい
る。なお、図中の5は電磁ポンプである。
In the figure, 1 is a sodium conductive solid electrolyte (for example, β ″ -alumina).
The porous electrode 2 is provided on the sodium low vapor pressure side, and the inner mesh electrode 3 is provided on the opposite side. here,
The inner surface mesh electrode 3 becomes unnecessary when heated sodium is supplied as a liquid. An external load circuit 4 is connected to the porous electrode 2 and the inner mesh electrode 3. In addition, 5 in the figure is an electromagnetic pump.

【0004】熱源よりの入熱6より1000〜1300
K程度に加熱された液体ナトリウム7は、前記内面メッ
シュ電極3にてナトリウムイオンと電子に分かれる。ナ
トリウムイオンは、入熱6側と凝縮熱8排熱側のナトリ
ウム蒸気圧差に基づくエネルギ差により固体電解質1中
を通過させる。一方、電子は、外部経路4経由で多孔性
電極2に導き、ナトリウムイオンと電子を結合させて再
度ナトリウム蒸気9とすることで直接電気に変換する。
なお、アルカリ金属熱電変換の電気出力は次式(1)で
表わされる。
From the heat input from the heat source 6, 1000 to 1300
The liquid sodium 7 heated to about K is divided into sodium ions and electrons at the inner mesh electrode 3. Sodium ions pass through the solid electrolyte 1 due to the energy difference based on the sodium vapor pressure difference between the heat input 6 side and the condensation heat 8 exhaust heat side. On the other hand, the electrons are guided to the porous electrode 2 via the external path 4, and are directly converted into electricity by combining the sodium ions and the electrons to form the sodium vapor 9 again.
The electrical output of alkali metal thermoelectric conversion is represented by the following equation (1).

【0005】 I×V=I×(RT2 /F)×ln{P(T2 )/A}−I2 0 …(1) ここで、A=(T2 /T1 0.5 P(T1 )+(2πM
RT2 /F2 0.5
I × V = I × (RT 2 / F) × ln {P (T 2 ) / A} -I 2 R 0 (1) where A = (T 2 / T 1 ) 0.5 P (T 1 ) + (2πM
RT 2 / F 2 ) 0.5 I

【0006】式(1)で、Vは電圧、Iは電流、Mはナ
トリウムの分子量、R0 は内部抵抗、T1 ,T2 は低
温,高温側温度、P(T1 ),P(T2 )はT1 ,T2
におけるナトリウムの飽和蒸気圧を示す。
In the equation (1), V is voltage, I is current, M is molecular weight of sodium, R 0 is internal resistance, T 1 and T 2 are low temperature and high temperature side, P (T 1 ), P (T 2 ) is T 1 , T 2
Shows the saturated vapor pressure of sodium in.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
アルカリ金属熱電気発電装置によれば、冷却部の温度を
600K程度とすれば効率は約20%と低い。また、冷
却部の温度を200K程度にすれば、理論上効率は約3
0%に上昇するが、実際には不凝縮ガスの影響があり、
式(1)のP(T2 )がみかえ上高くなり、それ程上昇
しない。なお、P(T2 )はT2 が低くなると、対数的
に低くなり、したがって不凝縮ガスの影響が指数関数的
に大きくなる。
However, according to the conventional alkali metal thermoelectric generator, the efficiency is as low as about 20% when the temperature of the cooling section is about 600K. Also, if the temperature of the cooling section is set to about 200K, the theoretical efficiency is about 3
Although it rises to 0%, there is actually the influence of non-condensed gas,
P (T 2 ) in the equation (1) is apparently high and does not rise so much. It should be noted that P (T 2 ) becomes logarithmically lower as T 2 becomes lower, so that the influence of the noncondensable gas exponentially increases.

【0008】本発明は上記事情を鑑みてなされたもの
で、密閉型二重管容器内にアルカリ金属熱電素子群,凝
縮ナトリウム循環通路等を収納させることにより、高温
熱源からの熱エネルギを高効率で電気に変換しえる熱電
発電装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by accommodating a group of alkali metal thermoelectric elements, a condensed sodium circulation passage, and the like in a sealed double-tube container, the heat energy from a high-temperature heat source is highly efficient. It is an object of the present invention to provide a thermoelectric power generation device that can be converted into electricity with.

【0009】[0009]

【課題を解決するための手段】本発明は、一方に加熱器
をその反対側に冷却器を夫々配置した密閉型二重管容器
と、前記二重管容器内に収納されたアルカリ金属熱電素
子群と、前記二重管容器内で前記アルカリ金属熱電素子
群の外側に設けられた凝縮ナトリウム循環通路とを具備
することを特徴とする熱電発電装置である。
DISCLOSURE OF THE INVENTION The present invention is directed to a hermetically sealed double tube container having a heater on one side and a cooler on the opposite side, and an alkali metal thermoelectric element housed in the double tube vessel. And a condensed sodium circulation passage provided outside the alkali metal thermoelectric element group in the double tube container.

【0010】[0010]

【作用】本発明においては、ナトリウム凝縮部と冷却器
の間に半導体熱電変換素子を配置する。従って、ナトリ
ウム凝縮部の温度は600Kであり、不凝縮ガスの影響
は無視しうる。また、冷却器の温度を200Kとするこ
とにより、ナトリウム凝縮部との間で温度差を生じ、半
導体熱電変換部で発電でき、変換効率を上昇できる。
In the present invention, the semiconductor thermoelectric conversion element is arranged between the sodium condensing section and the cooler. Therefore, the temperature of the sodium condensing part is 600 K, and the influence of the non-condensing gas can be ignored. Further, by setting the temperature of the cooler to 200K, a temperature difference is generated between the condenser and the sodium condensing section, power can be generated in the semiconductor thermoelectric conversion section, and the conversion efficiency can be increased.

【0011】[0011]

【実施例】以下、本発明の一実施例に係るアルカリ金属
熱電発電装置についてを図1を参照して説明する。
EXAMPLE An alkali metal thermoelectric generator according to an example of the present invention will be described below with reference to FIG.

【0012】図中の21は、上部に冷却器(凝縮器)22
を、下部に加熱器(蒸発器)23を夫々配置した密閉型二
重管容器を示す。前記加熱器23側の前記容器21内には、
複数のアルカリ金属熱電発電素子24からなる発電素子群
が収納されている。これらの発電素子群と前記冷却器22
との間には、輻射シールド25が設置されている。前記発
電素子群と装置の加熱面との間には、凝縮ナトリウム循
環通路(二重管構造)26が設けられている。前記凝縮ナ
トリウム循環通路26の下部側及び前記二重管容器21の下
部には、金属ウール27が収納されている。前記二重管容
器21の上側外周部には半導体熱電発電素子28が取り付け
られ、二重管容器21の略中央外周部には電磁ポンプ29が
設置され、更に二重管容器21の下側外周部には伝熱促進
フィン30が取り付けられている。前記半導体熱電発電素
子28は、例えば上方から下方に向かってPタイプ,Nタ
イプの素子が交互に配列されている。なお、図中の符号
31は二重管容器21の上部に取り付けられて電極を、符号
32は二重管容器21の下部に収納されたナトリウム液を、
符号33はナトリウム蒸気を、符号34は入熱を、符号35は
放熱を、36はアルカリ金属蒸気を示す。なお、入熱源と
しては太陽熱、及び放射性同位体が考えられるが、10
00〜1300Kの熱源であれば種類は問わない。
Reference numeral 21 in the figure denotes a cooler (condenser) 22 at the upper part.
Shows a sealed double-tube container in which a heater (evaporator) 23 is arranged at the bottom. In the container 21 on the heater 23 side,
A power generation element group including a plurality of alkali metal thermoelectric power generation elements 24 is stored. These power generation element groups and the cooler 22
A radiation shield 25 is installed between and. A condensed sodium circulation passage (double pipe structure) 26 is provided between the power generation element group and the heating surface of the apparatus. A metal wool 27 is housed in the lower part of the condensed sodium circulation passage 26 and the lower part of the double tube container 21. A semiconductor thermoelectric power generating element 28 is attached to the upper outer peripheral portion of the double-pipe container 21, an electromagnetic pump 29 is installed in the substantially central outer periphery of the double-pipe container 21, and the lower outer periphery of the double-pipe container 21 is further installed. A heat transfer promotion fin 30 is attached to the section. In the semiconductor thermoelectric generator 28, for example, P-type and N-type elements are alternately arranged from the upper side to the lower side. The symbols in the figure
31 is an electrode attached to the top of the double-tube container 21,
32 is the sodium solution stored in the lower part of the double-tube container 21,
Reference numeral 33 indicates sodium vapor, reference numeral 34 indicates heat input, reference numeral 35 indicates heat radiation, and 36 indicates alkali metal vapor. Solar heat and radioactive isotopes are conceivable as heat input sources.
Any type of heat source may be used as long as it is a heat source of 00 to 1300K.

【0013】こうした構成のアルカリ金属熱電発電装置
において、加熱器23にて加熱されたナトリウム液32は蒸
発してナトリウム蒸気33となり、発電素子群へ供給され
発電に寄与する。発電素子群における発電機構は図2を
参照して説明した通りなので、省略する。発電に寄与し
た後のナトリウク蒸気33は、容器21の上部にある冷却器
21にてナトリウム液に凝縮され、電磁ポンプ29へ導かれ
るとともに発電素子群周辺のナトリウム分圧を低く保
つ。また、半導体熱電変換部はさらに外部へ放熱するこ
とで発電する。電磁ポンプ29にて加圧されたナトリウム
液は、再び容器下部の加熱器23にて加熱されることにな
る。上記実施例に係る発電装置によれば、以下に述べる
利点を有する。
In the alkali metal thermoelectric power generator having such a structure, the sodium liquid 32 heated by the heater 23 evaporates into sodium vapor 33, which is supplied to the power generation element group and contributes to power generation. The power generation mechanism in the power generation element group has been described with reference to FIG. After contributing to the power generation, the Natriuk steam 33 is cooled by the cooler at the top of the container 21.
At 21, the liquid is condensed into sodium liquid and guided to the electromagnetic pump 29, and the sodium partial pressure around the power generating element group is kept low. Further, the semiconductor thermoelectric conversion unit further radiates heat to the outside to generate power. The sodium liquid pressurized by the electromagnetic pump 29 is heated again by the heater 23 at the bottom of the container. The power generator according to the above embodiment has the following advantages.

【0014】(1)複数の発電素子24からなる発電素子
群、冷却器22、加熱器23及び凝縮ナトリウム循環通路26
等の装置構成要素を、密閉型二重管容器21内に収納した
構成となっているため、リークや外気混入による故障を
回避できる。また、万一に備えてナトリウムが外界へ漏
出する危険性を減らし、安全性を確保できる。更に、同
様な理由により、信頼性,保守性が高い。
(1) Power generation element group consisting of a plurality of power generation elements 24, cooler 22, heater 23, and condensed sodium circulation passage 26
Since the device components such as the above are housed in the sealed double-tube container 21, it is possible to avoid a failure due to a leak or mixing of outside air. In addition, the safety can be secured by reducing the risk of sodium leaking to the outside in case of emergency. Further, the reliability and maintainability are high for the same reason.

【0015】(2)ナトリウム蒸気の凝縮熱を利用して
半導体熱電変換発電素子で発電するので、ナトリウム凝
縮温度が600Kと高く不凝縮ガスの影響が少ない状態
で作動しても効率は高い。
(2) Since the semiconductor thermoelectric conversion power generation element generates electricity by utilizing the heat of condensation of sodium vapor, the efficiency is high even when operated in a state where the sodium condensation temperature is as high as 600K and the influence of noncondensable gas is small.

【0016】[0016]

【発明の効果】以上詳述した如く本発明によれば、密閉
型二重管容器内にアルカリ金属熱電素子群,凝縮ナトリ
ウム循環通路等を収納させることにより、高温熱源から
の熱エネルギを高効率で電気に変換しえる熱電発電装置
を提供できる。
As described above in detail, according to the present invention, the heat energy from the high temperature heat source can be highly efficiently provided by accommodating the alkali metal thermoelectric element group, the condensed sodium circulation passage, etc. in the closed type double tube container. It is possible to provide a thermoelectric generator that can be converted into electricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る熱電発電装置の全体
図。
FIG. 1 is an overall view of a thermoelectric generator according to an embodiment of the present invention.

【図2】従来のアルカリ金属熱電発電装置の原理説明図
であり、図2(A)はその概略図、図2(B)は図2
(A)の固体電解質及び電極部分におけるイオンの動き
を示す説明図。
2A and 2B are explanatory diagrams of the principle of a conventional alkali metal thermoelectric generator, FIG. 2A is a schematic diagram thereof, and FIG.
Explanatory drawing which shows the movement of the ion in the solid electrolyte of (A) and an electrode part.

【符号の説明】[Explanation of symbols]

21…密閉二重管容器、 22…冷却器、 23
…加熱器、24…アルカリ金属熱電発電素子、25…輻射シ
ールド、26…凝縮ナトリウム循環通路、 27…金属ウー
ル、28…半導体熱電発電素子、 29…電磁ポンプ、
30…伝熱促進フィン、31…電極、
32…ナトリウム液、33…ナトリウム蒸気、34…入熱、
35…放熱。
21 ... Closed double-tube container, 22 ... Cooler, 23
… Heater, 24… Alkali metal thermoelectric generator, 25… Radiation shield, 26… Condensed sodium circulation passage, 27… Metal wool, 28… Semiconductor thermoelectric generator, 29… Electromagnetic pump,
30 ... Heat transfer promotion fins, 31 ... Electrodes,
32 ... Sodium liquid, 33 ... Sodium vapor, 34 ... Heat input,
35 ... Heat dissipation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方に加熱器をその反対側に冷却器を夫
々配置した密閉型二重管容器と、前記二重管容器内に収
納されたアルカリ金属熱電素子群と、前記二重管容器内
で前記アルカリ金属熱電素子群の外側に設けられた凝縮
ナトリウム循環通路とを具備することを特徴とする熱電
発電装置。
1. A sealed double tube container in which a heater is arranged on one side and a cooler on the opposite side, an alkali metal thermoelectric element group housed in the double tube container, and the double tube container. A thermoelectric generator comprising a condensed sodium circulating passage provided inside the alkali metal thermoelectric element group.
JP2654893A 1993-02-16 1993-02-16 Thermoelectric generator Expired - Fee Related JP3453159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2654893A JP3453159B2 (en) 1993-02-16 1993-02-16 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2654893A JP3453159B2 (en) 1993-02-16 1993-02-16 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH06245558A true JPH06245558A (en) 1994-09-02
JP3453159B2 JP3453159B2 (en) 2003-10-06

Family

ID=12196572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2654893A Expired - Fee Related JP3453159B2 (en) 1993-02-16 1993-02-16 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3453159B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007850B1 (en) * 2008-07-25 2011-01-14 한국에너지기술연구원 AMTEC apparatus with heat pipe
KR20150129193A (en) * 2014-05-08 2015-11-19 한국에너지기술연구원 An AMTEC cell housing and an AMTEC cell using the same
KR20150129974A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 Alkali metal thermal to Electric Converter and manipulating method the same
KR20150129969A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 An alkali metal thermal to electric converter and electricity generating method using it
KR101877844B1 (en) * 2016-11-08 2018-07-13 한국에너지기술연구원 Amtec apparatus having detachable amtec cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007850B1 (en) * 2008-07-25 2011-01-14 한국에너지기술연구원 AMTEC apparatus with heat pipe
KR20150129193A (en) * 2014-05-08 2015-11-19 한국에너지기술연구원 An AMTEC cell housing and an AMTEC cell using the same
KR20150129974A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 Alkali metal thermal to Electric Converter and manipulating method the same
KR20150129969A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 An alkali metal thermal to electric converter and electricity generating method using it
KR101877844B1 (en) * 2016-11-08 2018-07-13 한국에너지기술연구원 Amtec apparatus having detachable amtec cell

Also Published As

Publication number Publication date
JP3453159B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US8253008B2 (en) AMTEC with heat pipe
CN109742976B (en) Static temperature difference power generation device based on high-temperature heat pipe heat transfer
TWI387685B (en) Heat-pipe electric power generating device,heat electric-power generator, apparatus with heat energy recycling capability
CN101645674B (en) Liquid metal-cooled focus type solar energy thermionic generating set
JP4320445B2 (en) Liquid metal cooled nuclear reactor with alkali metal thermoelectric generator
CN111524624A (en) Thermionic conversion and Brayton cycle combined power generation reactor system
CN101225756A (en) Hot pipe type power generation element
CN109958479B (en) Thermochemical heat storage hot electron power generation device
JPH06245558A (en) Thermoelectric generator
CN201270483Y (en) Fluid metal cooling focusing type solar thermoionic power generation apparatus
US6495749B2 (en) Hybrid combustion power system
US3605074A (en) Electrical connector assembly having cooling capability
JP4147299B2 (en) Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element
JPS5749787A (en) Boiling cooler
JP3481959B2 (en) Alkali metal thermoelectric generator
US3509386A (en) Heat pipe thermionic diode power system
JP2004147397A (en) Thermoelectric converter
RU2013715C1 (en) Solar power plant
US3157802A (en) Thermionic energy converter
JPH06253561A (en) Alkaline metal thermoelectric generator
JP2637442B2 (en) Thermoelectric converter
RU2144242C1 (en) Thermionic cell
CN114975757A (en) Waste heat power generation device of hydrogen fuel cell vehicle
Byrd Heat pipe thermionic diode power system Patent
US3541342A (en) Submerged energy converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

LAPS Cancellation because of no payment of annual fees