JPS636289B2 - - Google Patents

Info

Publication number
JPS636289B2
JPS636289B2 JP15422379A JP15422379A JPS636289B2 JP S636289 B2 JPS636289 B2 JP S636289B2 JP 15422379 A JP15422379 A JP 15422379A JP 15422379 A JP15422379 A JP 15422379A JP S636289 B2 JPS636289 B2 JP S636289B2
Authority
JP
Japan
Prior art keywords
coil
wire
cooling
cooling fluid
wire coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15422379A
Other languages
Japanese (ja)
Other versions
JPS5677336A (en
Inventor
Kengo Noshiro
Kanji Goto
Takefumi Suzuki
Manabu Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15422379A priority Critical patent/JPS5677336A/en
Publication of JPS5677336A publication Critical patent/JPS5677336A/en
Publication of JPS636289B2 publication Critical patent/JPS636289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱間圧延後の線材の冷却方法および装
置に関し、詳しくは熱間圧延後の線材を引き続き
一方向に一定間隔毎にずらせて互いに重なり合つ
たリング群の状態(以下これを線材コイルと称す
る)でコンベア上に載置移送しながら強制衝風に
より冷却する方法および装置に係るものである。 熱間圧延直後の線材の圧延熱を利用して該線材
を引き続き直接熱処理するための調整冷却方法に
ついては広く知られており、既に数多くのものが
提案され、また実用化されている。これらのうち
代表的な処理方式としては熱間圧延後の線材を捲
取機によつてコイル状に送り出し、これをチエン
コンベアの如き移送コンベア上に受けて線材を一
定間隔毎にずらせて互いに重なり合つたリング群
の状態で載置移送し、移送中にコンベア下部から
の衝風を線材コイルに吹付けて線材を冷却する方
式が最もよく知られている(特公昭42−15463号
公報)。 しかしながら、最近のようにより優れた品質、
特に線材コイルの巾方向の機械的性質をバラツキ
の小さい値にするという要求に対しては、上記の
下部衝風方式では充分に対処し得ない問題点があ
る。すなわち、移送コンベア上の線材形態が前述
の線材リングの重合状態を採らざるを得ないこと
から、線材コイルの両縁部は中央部に比較して線
材の重なり密度が大きく層密部を形成するため、
単に同量の衝風をコイル巾方向に吹付けるだけで
は層密部の冷却速度は他部位に比べ当然小さくな
り、コイル巾方向の冷却速度は不均一となり、そ
の結果品質のバラツキが大きくなる。勿論、従来
でも線材コイルの密度の相異に起因する冷却速度
の不均一には気付いており、両縁側を吹付ける衝
風の回数を多くするなどして解決を計つている
が、これでもバラツキを小さくし得るには至つて
いないのが実状である。 かかる問題点を解消するものとして従来でもい
くつかの具体的な提案がなされているが、そのほ
とんどは前記下面衝風方式を基礎とするものであ
る。例えば、下面衝風方式をそのまま使用し、そ
の補助冷却手段として側面からも冷却流体を吹き
付ける冷却方法として特公昭52−32321号公報等
の技術がある。また、他の例として線材コイル両
縁部の冷却不足を解消するため、機械的に両縁部
をバラす手段も多く提案されている。しかしなが
ら、前述したように、これらの提案のほとんどは
前述の下面衝風方式を基にしたものであるから、
設備面および操業面での不利益があると共に、線
材コイル巾方向の冷却速度も満足し得る程度に均
一にならない。また、機械的な手段によつて線材
をほぐす方法についても、疵の発生等品質に与え
る影響および線材コイルの集束時等における作業
性が心配され、実用に供されているものは少な
い。 以上の従来技術の問題点を要約すると次のよう
なことがわかる。 (1) 機械的に線材コイルの両縁部をバラす手段は
作業性、品質等において不利なため、冷却流体
の吹き付けのみによる手段によつて線材の均一
な冷却を可能にする方法を確立すること。 (2) 冷却流体の吹き付け手段によるときは、線材
コイル下面からの冷却流体の吹き付けのみで
は、該線材コイル両縁部の冷却速度が遅くなる
ため不十分であること。 (3) 下面からの冷却流体の吹き付けに加えて、線
材コイル両縁部の側面部から冷却流体を吹き付
ける方法は、設備コストおよび操業面等から考
えて好ましくなく、またこの方法では線材コイ
ル下面から該コイルを通過し上面に向つて吹き
抜ける冷却流体により、該線材コイル両縁部の
側面から吹き付けられる冷却流体が遮断あるい
は弱められ、所望の冷却効果が得られないこ
と。 本発明者等は上記の点から線材コイル巾方向の
均一な冷却を行うためには、線材コイルの巾方向
の中央部から両縁部に向つてより大きな流速をも
つ流速分布を形成させることが必要であることに
着目し、これを実現するためには該線材コイルの
両縁部の側面のみからの冷却流体の吹き付けが有
効であることを見い出した。この冷却流体の側面
のみからの吹き付け(以下単に側面吹き付けと呼
ぶ)は特に重なり密度の大きい線材コイルの両縁
部の冷却に効果があると共に、設備面および操業
面を考慮した場合その有利性は大きい。 本発明の目的とするところは側面吹き付けによ
つて線材コイル巾方向全体にわたる冷却を均一に
行うことができかつこれによりコイル巾方向にお
ける品質のバラツキを従来では達成困難とされて
いる小さい範囲に抑えることが可能な熱間圧延線
材の冷却方法を提供することにある。 また、本発明の他の目的は側面吹き付けに際し
冷却流体の吹き付け角度、吹き付け位置あるいは
各吹き付け流体相互の関連を適宜選択することに
より、所望の流速分布が得られる熱間圧延線材の
冷却方法を提供することにある。 さらに、本発明の別の目的は上記冷却方法を効
果的に実施することができかつ設備的にも有利な
熱間圧延線材の冷却装置を提供することにある。 以下本発明の詳細を説明する。 まず、線材コイルの下面からのみ冷却流体を吹
き付ける従来方式について説明し、順次本発明の
構成を得るに至つた経緯を説明する。 線材コイル下面からのみ冷却流体を吹き付けた
場合の該線材コイル巾方向の冷却速度分布は、第
1図イの鎖線に示すように山形を呈す。コイル両
縁部の冷却速度を増すためには、両縁部の下面か
らの吹き付け流体の流体の流速を更に増大する必
要があるが、線材コイル縁部は重なり密度が大き
いため、冷却流体が線材コイル縁部上面にまわり
込み難く、平均冷却速度を増すためには相当の流
速増が要求され、その場合下面の冷却速度は極端
に大きくなり、結局該線材コイルの均一な冷却は
ほとんど不可能となる。 また、冷却流体の下面吹き付けの場合における
線材コイルの巾方向の引張り強さの分布は略第1
図ロに示すようなパターンとなる。これはJISで
規定されるSWRH72Aの5.5mmφを例とした場合
を示す。第1図ロから引張り強さの分布も、前記
の山形の冷却速度パターンに起因して端下がりで
しかも両縁でのバラツキがかなり大きいことを表
わしている。 本発明ではこの下面吹き付けに代え側面吹き付
けを採用するが、この側面吹き付けは基本的には
線材コイルの側面における吹き付け流体の主流線
の狙い位置をコイル縁部近傍としている。すなわ
ち、縁部近傍を狙い位置とすると吹き付け冷却流
体はまず線材コイル縁部を冷却し、しかる後コイ
ル巾方向中央部へ向つて拡散し、流速を漸減させ
ながら冷却を継続することになる。このときの線
材コイル巾方向の流速分布の一例を第2図に示
す。 なお、この冷却流体の流速の測定にあたつて、
本発明者等は線材コイルの冷却という点でより技
術的に意味をもつた流速を測定するため、略常温
の線材コイルを移送コンベア上に載置した状態
で、該線材コイルの上表面近傍および下面近傍の
流速を測定する方法をとつた。 第2図に示した流速はコイル上表面および下表
面の流速の平均値であるが、側面吹き付けの場合
は下面吹き付けに比較して、上表面および下表面
の流速差が少なく、特に該流速差は線材コイル縁
部表面近傍において顕著である。第2図に示す流
速パターンは、コイル両縁部の狙い位置が最も高
く、中央部に向うにしたがい減速され中央部で最
小となつている。 第3図は第2図の流速分布に対応した線材コイ
ル巾方向の冷却速度分布を示す。この結果は本発
明者等が当初期待した均一な冷却速度分布とは大
きく異なつており、線材コイル中央部が遅く、ま
たコイル中央部と縁部との間に冷却速度の最も速
い部分が存在し、全体として巾方向の同位置での
冷却速度のバラツキは小さいが、巾方向の位置に
よる冷却速度が均一にならない欠点がある。 その理由を第4図および第5図により説明す
る。第4図は線材がコイル状に捲取られた後、移
送コンベアにより一定間隔ずらされ重なり合つた
状態で移送される際の相隣り合う線材リングの一
部を示す平面図であり、dは線材の直径、Dは線
間距離、Dmaxは最大線間距離およびLはD>
1.5dなる範囲を示す。 線材コイルに冷却流体を吹き付けて冷却する場
合の熱移動は、主に強制対流により支配される。
すなわち、線間距離Dがある大きさ以上であれ
ば、冷却速度はほとんど冷却流体の流速のみによ
つて決まり、単一の線材をそれぞれ同一冷却流体
および同一流速で冷却した場合の冷却速度に近い
ものである。線間距離Dは第4図に示すように線
材コイル巾方向中央部で最大値(Dmax)をと
り、縁部へ向つて減少する。このときの冷却の特
徴は線間距離Dにより、次の2つに分けられる。
まず第1に線間距離DがDmaxより減少するにし
たがい、相隣り合う線間相互の輻射伝熱により、
各々の線材表面からの輻射による放熱が減少する
が、全体の熱移動に対してはこの減少分の占める
割合は小さい。第2に、更に線間距離Dが減少し
た場合は、冷却流体が線間を通過し難くなり、対
流伝熱量も顕著に減少する。 本発明者等の実験によれば第4図に示す範囲
L、即ち線間距離Dが線材直径dの略1.5倍以上
の範囲では、前記の冷却の特徴の前者(第1)に
相当し、また線間距離Dが線材直径dの略1.5倍
以下となる場合には後者(第2)の冷却特徴を示
す。しかして、線材コイルの巾方向に均一な冷却
速度分布を得るためには、第5図に示すような流
速分布を与える必要がある。すなわち、線間距離
が略D1.5dの間では、流速分布が略平坦で僅か
に縁部に向つて大きくなる分布を与え、また線間
距離が略D<1.5dの間では、縁部に向つて顕著に
増大する流速分布を付与する必要がある。 前述の如く冷却流体の線材コイル両縁部の側面
における吹き付け方向主流線の狙う位置が、該線
材コイルの巾方向略縁部を狙つてのみ吹き付けて
冷却した場合には、特にコイル巾方向中央部の流
速が他の部位に比較して遅くなる。この欠点を補
うため、冷却流体の線材コイル両縁部の側面にお
ける吹き付け方向主流線の狙い位置が、該線材コ
イルの巾方向略中央部の冷却流体のみを吹き付け
て冷却した場合の、線材コイル巾方向の流速分布
を調べたところ、第6図に示すように若干中高形
状の分布となつた。 上記第2図および第6図の分布を組合せると、
略第5図の流速分布となることから、冷却流体の
線材コイル両縁部の側面における吹き付け方向主
流線の狙い位置を、該線材コイルの巾方向略中央
部とした冷却流体吹付流と、同じくコイル巾方向
略縁部とした冷却流体吹付流とを組合せて吹き付
けてコイルを冷却すれば、ほぼ均一な冷却が達成
されることが明らかとなつた。 したがつて、本発明冷却方法においては熱間圧
延後の線材がコイル状に捲取られた後、移送コン
ベアにより一定間隔ずらされ互いに重なり合つた
状態で移送されつつ冷却されるに際し、線材コイ
ル巾方向両縁部の側面より、移送コンベア上に、
各々異なつた流速分布を付与する手段を複数種類
組合せて、冷却流体を吹き付け、該線材コイルを
均一に冷却することを内容とする。特に、この冷
却流体の線材コイル両縁部の側面における吹き付
け方向主流線の狙い位置が、該線材コイルの巾方
向略中央部の冷却流体と、同じくコイル巾方向略
縁部の冷却流体とを組合せて吹き付けることがよ
り一層の均一冷却を可能とする。 また、冷却流体の線材コイル両縁部の側面にお
ける吹き付け方向主流線と該線材コイルの移送方
向とのなす角度は15゜〜75゜の範囲に維持すること
が好ましい。この角度が15゜未満では冷却流体の
吐出口と、該流体の狙う位置との距離が長くなり
過ぎ、特に線材コイル巾方向中央部位置で所定の
流速を得ることは困難となる。また、角度が75゜
を超えると、線材コイル巾方向に対向して吹き付
けられる流体が衝突し合つて安定した所望の流速
分布が得られず、しかも線材コイル縁部近傍の流
速分布の変動が大きく、移送コンベア上における
線材コイルの巾方向の偏よりに対して冷却速度に
差を生じ易く、均一な冷却が期待できない。しか
して、上記角度範囲内で最も有効な角度、即ち最
も均一な冷却が可能となる角度は40゜〜50゜の範囲
である。 さらに、線材コイル巾方向略中央部を狙つて吹
き付ける冷却流体の吐出口の、線材コイルを含む
面からの距離を、コイル巾方向略縁部を狙つて吹
き付ける冷却流体の吐出口の線材コイルを含む面
からの距離より大きくすることが好ましい。これ
は上記中央部狙いの冷却流体側の距離を縁部狙い
の冷却流体側の距離より小さくすると、中央部狙
いの冷却流体の速度成分が、コイル巾方向中央部
と縁部の間の中間部分にも付加され、結局中央部
の流速は前記中間部分の流速より遅くなつてしま
い所望の流速分布が得られないことによる。 また、移送コンベア上における線材コイルの巾
方向の偏よりについては、操業条件からくる線材
速度、捲取機速度等の変更によつて線材コイルの
径が変動するので、線材コイルの巾方向の偏より
は完全に解消することが実質上困難である。 即ち、第10図に示すように操業条件が一定で
あれば、いつでもコイル縁部端近傍をねらうこと
が可能であるが、前述の様に線材速度の変更によ
つてはノズル13bで該縁部端近傍をねらうこと
が出来なくなるときがある。このため例えばノズ
ル13bの吐出する冷却流体がある巾をもつて拡
散出来るようなノズルを選定するか又例えば図示
はしないが事前にコイルの偏よりの距離を検知器
等によつて検知し、その信号によつて自動的にノ
ズルが自由自在に角度変更させ、常に線材コイル
縁部端近傍全てを冷却可能にしても良い。これら
はいずれの方法でも良い。 以上本発明冷却方法の基本的構成および望まし
い態様について説明したが、次にこの方法を最も
効果的に実施するための冷却装置について説明す
る。 本発明の冷却装置は熱間圧延機、水冷装置およ
び捲取機と続く設備に連設されるもので、該捲取
機からコイル状に送出される線材を一定間隔ずら
した互いに重なり合つたリング群の状態で所定の
速度で搬送する移送コンベアと、該移送コンベア
の両側に線材移送方向に沿つて配置される複数個
の冷却流体吹き付け用ノズルとから構成される。
該冷却流体吹き付け用ノズルは、移送コンベアの
両側に線材コイルが冷却を必要とする区間にわた
つて配置され、所望の流量および流速をもつて冷
却流体を噴射する如く適宜の冷却流体供給源と接
続している。 また、上記吹き付けノズルはその吹き付け方向
が平面的に見て線材コイルの移送方向に対して角
度をもつて配列されており、線材コイルをはさん
で対向するノズルから吹き付けられた冷却流体が
一定の角度で衝突し合流して線材コイルの移送方
向に円滑に流動するようになつている。しかも本
発明では吹き付けノズルの線材コイルに対する狙
い位置(吹き付け流体主流線がコイルに衝突する
位置)が、線材コイル巾方向の略中央部および略
縁部とする2種のノズルを採用し、これらを組合
せて配置している。ノズル配列の一例としては、
略中央部狙いのノズルと略縁部狙いのノズルを線
材コイル進行方向に交互にかつコイルをはさんで
対向する方向ではそれぞれ異種のノズルになる如
く配列することが冷却速度の均一化にとつてより
効果的であるが、これに限らず例えば対向する側
では異種の組合せとしても線材コイル進行方向側
では同種のノズルを複数個づつ隣接させ他種の1
個又は複数個のノズルをはさんで並設してもよ
い。勿論、移送コンベア上において目的とする流
速パターンが得られるものであれば、上記の組合
せは任意でよい。 さらに、略縁部狙いの吹き付けノズルの吐出方
向は下向きにコイル縁部を指向するかもしくは水
平方向に縁部を狙うように設置する。他方の略中
央部狙いの吹き付けノズルは前記略縁部狙いノズ
ル位置より上方に設置され下向きにコイル中央部
を指向しているが、略縁部および略中央部狙いの
吹き付けノズル共に同一高さに配置してもよい。
また、略縁部狙いノズルの吐出口位置は線材コイ
ルの巾方向偏よりに対して支障のないように線材
コイル縁部から離隔して設置される。 加えて冷却流体吹き付けノズル自体の構造はそ
の吐出口断面がスリツト形状、円形状等いずれの
形状でもよく、また各ノズルはそれぞれ個々に独
立して形成してもあるいは片側すべてのノズルを
一体にして内部仕切り板で区分けしてもよい。さ
らに、ノズルは線材コイルに対し退避自在に保持
することも可能であると共に、すべてのノズルを
共通の流体供給源としてもあるいは縁部狙いと中
央部狙いノズルとを別個の供給源と連設し流速、
流量を変えることもできる。 次に、本発明を図面に示す実施例設備に基いて
詳細に説明する。 第7図は熱間圧延機に続く水冷ノズル1、ピン
チロール2および捲取機のレイングヘツド3の後
位に、本発明に係る冷却装置80を配置したライ
ンを示す。すなわち、レイングヘツド3の直下に
はリング状に連続して落下してくる線材コイル4
を所望密度に形成して載置移送するコンベア5
(図示の例ではローラコンベアを示すが、チエン
コンベアでもよい)が配設され、該ローラコンベ
ア5に連続する位置には前記線材コイル4を所定
の搬送しつつ所定の冷却速度で冷却するための移
送テーブル、例えばローラテーブル6が設置され
ている。 前記ローラテーブル6の移送方向に沿つた一定
の区間(強制冷却区間)には、該ローラテーブル
6の両側に近接して冷却流体を線材コイル4に吹
き付ける衝風ノズル13が複数個並設されてお
り、該衝風ノズル13はローラテーブル6の両側
において、各々1以上(図示の例では6個)が1
個の集合ダクト27に連設されかつシールダクト
28を介して衝風ブロワ12から圧送される冷却
流体の流路を形成し、これによつてローラテーブ
ル6上に1つの冷却ゾーンを構成している。該冷
却ゾーンの1以上(図示の例では片側6個)が連
続した1つの冷却範囲を構成し、これによつて線
材コイルを搬送しながら所望の冷却曲線に沿つて
冷却する。 この冷却ゾーン単位の詳細は第8図および第9
図に示す通りで、衝風ノズル13はその吐出口主
流線の狙い位置がローラテーブル6上の線材コイ
ル4の略中央部となる衝風ノズル13aと、狙い
位置が線材コイル4の略縁部となる衝風ノズル1
3bとの2種のノズル組合せ配置からなる。これ
ら衝風ノズル13aおよび衝風ノズル13bは第
8図に示すように、ローラテーブル6の片側(即
ちローラテーブル移送方向)においては各々互い
ちがいに、かつローラテーブル6の巾方向に対向
する側においても異種の組合せとなる如く配列
(千鳥状配置)されている。 しかして、衝風ノズル13の吐出方向主流線と
ローラテーブル6の移送方向とのなす角度αは
15゜〜75゜の範囲、好ましくは40゜〜50゜になる如く
配置される。また、第10図の如く衝風ノズル1
3aおよび13bは各々の吐出口のローラテーブ
ル6のローラ6a天端からの距離をそれぞれh1
よびh2とすると、h1h2となる関係位置に設け
る。また、衝風ノズル13bは吐出口と線材コイ
ル4の縁部端からの距離l2が、該線材コイル4の
ローラテーブル6上における冷却中の予測される
巾方向への偏よりの距離より大きくなるよう配置
されている。さらに、中央部狙いの衝風ノズル1
3aの吐出口と線材コイル4の縁部端からの距離
l1は図示例ではl1>0となつているが、設備上お
よび操業上許されるならばl10とし、該衝風ノ
ズル13aの吐出口が線材コイル4の縁部端より
中央部側に近く配置すれば、所望の流速をコイル
中央部に生ぜしめることが容易となる。 なお、上記実施例では衝風ノズル13aおよび
13bは同数の割合でかつ相隣り合うノズルが異
なるよう配置されているが、前述したように本発
明の技術思想の範囲内であれば、同数の割合でな
くてもよく、また相隣り合うノズルが同種に配置
されてもよい。また、第8図において衝風ノズル
13a,13bおよびこれらが連設されている集
合ダクト27は固定構造でもよいが、シリンダー
の如き移動装置81により、ローラテーブル6か
ら離隔し退避させる構造としてもよい。これは作
業床を確保したい場合や、また該ローラテーブル
6を使用して例えば保熱カバーを配置して緩速冷
却を行う場合、さらに該ローラテーブル6の点検
保守を行う場合、その他に有利であるからであ
る。 また、衝風ノズル13aおよび13bから吹き
付けられる冷却流体としては、空気、蒸気、ミス
トおよび空気とミストとの混合気のうちから選択
すればよいが、ノズル13aおよび13bに同一
流体を供給してもあるいは異種の流体をそれぞれ
供給してもよい。例えば、冷却流体の吹き付け方
法としては略中央部狙いは空気とミストの混合気
を、また略両縁部狙いは空気を吹き付ければ、上
記中央部狙いの冷却流体の吹き付け量を空気を使
用した場合に比較して少量とすることができる。 次に本発明の作用を鋼線材の冷却を例にして説
明する。 熱間圧延された鋼線材は水冷ノズル1によつて
所望の温度に冷却された後、ピンチロール2によ
つて捲取機に送られ、そのレイングヘツド3によ
り、次のローラコンベア5上に、一定間隔ずらさ
れ互いに重なり合つた線材コイル4に形成され載
置される。線材コイル4は、ローラコンベア5に
よりローラテーブル6上を移送される間に、該ロ
ーラテーブル6の両側に配列された衝風ノズル1
3aおよび衝風ノズル13bから吹き付けられた
冷却流体により所望の冷却曲線に沿つて冷却され
変態を完了する。この時、衝風ノズル13aおよ
び衝風ノズル13bが形成する巾方向の流速分布
は、第5図に示すようなものとなり、また、該流
速分布下で冷却された該線材コイル4の巾方向
の、800℃から400℃に冷却される間の平均冷却速
度分布は、第1図イの実線に示すように、略平坦
な分布、すなわち、線材コイル4の巾方向に均一
に冷却される。この冷却によつて第1図ハに示す
ように均一な引張り強さの分布が得られる。而し
て、所望の温度まで冷却された線材コイル4は、
集束装置によつて集束される。 以上説明した如く本発明の方法によれば、冷却
流体を吹き付けることのみによつて、線材の極め
て均一な冷却を達成することができる。 以下本発明の実施例を説明する。 この実施例は、第7図に示す装置を用いて、試
験したもので、その条件および結果の代表例を第
1表に示す。 なお、該表における各鋼種は第2表に示す組成
のもので行つた。
The present invention relates to a method and apparatus for cooling a wire rod after hot rolling, and more specifically, to a state in which a wire rod after hot rolling is continuously shifted in one direction at regular intervals and stacked on top of each other in a group of rings (hereinafter referred to as a wire rod coil). The present invention relates to a method and apparatus for cooling by forced air blast while being placed and transferred on a conveyor. Controlled cooling methods for directly heat-treating a wire immediately after hot rolling using the rolling heat of the wire are widely known, and many methods have already been proposed and put into practical use. Among these, a typical processing method is to feed the hot-rolled wire into a coil using a winding machine, which is then received on a transfer conveyor such as a chain conveyor, where the wire is shifted at regular intervals and overlapped with each other. The most well-known method is to place and transport a group of rings, and cool the wire by blowing air from the lower part of the conveyor onto the wire coil during the transport (Japanese Patent Publication No. 15463/1983). However, as of late, better quality,
In particular, there is a problem that the above-mentioned lower blast method cannot satisfactorily meet the requirement of reducing the variation in the mechanical properties of the wire coil in the width direction. In other words, since the wire rod shape on the transfer conveyor has to take the above-mentioned overlapping state of wire rod rings, the overlapping density of the wire rods at both edges of the wire rod coil is larger than that at the center portion, forming a dense layered portion. For,
If the same amount of blast air is simply blown in the width direction of the coil, the cooling rate in the dense layer region will naturally be lower than in other parts, and the cooling rate in the width direction of the coil will be uneven, resulting in large variations in quality. Of course, we have been aware of the uneven cooling rate caused by differences in the density of wire coils in the past, and we have tried to resolve this by increasing the number of blasts that blow on both edges, but even with this, there is still variation. The reality is that it has not yet been possible to reduce the Several specific proposals have been made in the past to solve these problems, but most of them are based on the above-mentioned bottom blast method. For example, there is a technique disclosed in Japanese Patent Publication No. 52-32321 as a cooling method that uses the bottom blast method as it is and also sprays cooling fluid from the side as an auxiliary cooling means. Further, as another example, in order to solve the problem of insufficient cooling of both edges of a wire coil, many methods have been proposed for mechanically separating both edges. However, as mentioned above, most of these proposals are based on the above-mentioned bottom blast method;
There are disadvantages in terms of equipment and operation, and the cooling rate in the width direction of the wire coil is not uniform to a satisfactory extent. Furthermore, with regard to methods of unraveling wire rods by mechanical means, there are concerns about the effects on quality such as generation of flaws, and workability when converging wire rod coils, and there are few methods that have been put to practical use. The problems of the above-mentioned conventional techniques can be summarized as follows. (1) Mechanically separating both edges of a wire coil is disadvantageous in terms of workability, quality, etc., so we will establish a method that enables uniform cooling of the wire by only spraying cooling fluid. thing. (2) When using cooling fluid spraying means, spraying the cooling fluid only from the lower surface of the wire coil is insufficient because the cooling rate of both edges of the wire coil becomes slow. (3) In addition to spraying cooling fluid from the bottom surface, the method of spraying cooling fluid from the sides of both edges of the wire coil is undesirable in terms of equipment costs and operation. The cooling fluid that passes through the coil and blows toward the upper surface blocks or weakens the cooling fluid that is blown from the sides of both edges of the wire coil, making it impossible to obtain the desired cooling effect. Based on the above points, the present inventors have found that in order to uniformly cool the wire coil in the width direction, it is necessary to form a flow velocity distribution with a larger flow velocity from the center of the wire coil in the width direction toward both edges. They focused on this fact and found that it is effective to spray the cooling fluid only from the sides of both edges of the wire coil in order to achieve this. This spraying of cooling fluid only from the sides (hereinafter simply referred to as side spraying) is particularly effective in cooling both edges of the wire coil, which has a large overlap density. big. The purpose of the present invention is to be able to uniformly cool the entire width of the wire coil by side spraying, and thereby to suppress the variation in quality in the width direction of the coil to a small range that is difficult to achieve in the past. An object of the present invention is to provide a method for cooling a hot rolled wire rod. Another object of the present invention is to provide a method for cooling hot-rolled wire rods in which a desired flow velocity distribution can be obtained by appropriately selecting the spraying angle and spraying position of the cooling fluid or the relationship between each spraying fluid during side spraying. It's about doing. Furthermore, another object of the present invention is to provide a cooling device for hot rolled wire that can effectively carry out the above cooling method and is advantageous in terms of equipment. The details of the present invention will be explained below. First, a conventional method in which cooling fluid is sprayed only from the lower surface of a wire coil will be explained, and then the process of obtaining the configuration of the present invention will be explained in sequence. When the cooling fluid is sprayed only from the lower surface of the wire coil, the cooling rate distribution in the width direction of the wire coil takes on a mountain shape as shown by the chain line in FIG. 1A. In order to increase the cooling speed of both edges of the coil, it is necessary to further increase the flow rate of the fluid blown from the bottom surface of both edges, but since the edges of the wire coil have a large overlap density, the cooling fluid is It is difficult for the flow to flow around the upper surface of the coil edge, and a considerable increase in flow rate is required to increase the average cooling rate.In that case, the cooling rate on the lower surface becomes extremely high, and in the end it becomes almost impossible to uniformly cool the wire coil. Become. In addition, when the cooling fluid is sprayed on the bottom surface, the distribution of the tensile strength in the width direction of the wire coil is approximately the first
The pattern will be as shown in Figure B. This is an example of SWRH72A 5.5mmφ specified by JIS. As can be seen from FIG. 1B, the distribution of tensile strength also shows that due to the above-mentioned chevron-shaped cooling rate pattern, the dispersion is quite large at both ends, as well as at both ends. In the present invention, side spraying is used in place of this bottom spraying, and this side spraying basically targets the main line of the sprayed fluid on the side surface of the wire coil near the edge of the coil. That is, when the target position is near the edge, the blown cooling fluid first cools the edge of the wire coil, then diffuses toward the center in the width direction of the coil, and continues cooling while gradually decreasing the flow velocity. An example of the flow velocity distribution in the width direction of the wire coil at this time is shown in FIG. In addition, when measuring the flow velocity of this cooling fluid,
In order to measure the flow velocity, which has more technical meaning in terms of cooling the wire coil, the present inventors placed a wire coil at approximately room temperature on a transfer conveyor, and measured the flow rate near the upper surface of the wire coil and A method was used to measure the flow velocity near the bottom surface. The flow velocity shown in Figure 2 is the average value of the flow velocity on the upper and lower surfaces of the coil, but in the case of side spraying, the difference in flow velocity between the upper and lower surfaces is smaller than in the case of bottom spraying. is noticeable near the edge surface of the wire coil. In the flow velocity pattern shown in FIG. 2, the target position at both edges of the coil is highest, and the velocity decreases toward the center, reaching the minimum at the center. FIG. 3 shows the cooling rate distribution in the width direction of the wire coil, which corresponds to the flow rate distribution in FIG. 2. This result is significantly different from the uniform cooling rate distribution that the inventors had originally expected; the central part of the wire coil is slow, and the fastest cooling rate exists between the central part and the edge of the coil. Although the overall variation in the cooling rate at the same position in the width direction is small, there is a drawback that the cooling rate is not uniform depending on the position in the width direction. The reason for this will be explained with reference to FIGS. 4 and 5. FIG. 4 is a plan view showing a portion of adjacent wire rings when the wire rods are wound into a coil and then transferred by a transfer conveyor in a state where they are shifted at a certain interval and overlapped, and d is a plan view showing a part of the wire rod rings. , D is the distance between the lines, Dmax is the maximum distance between the lines, and L is D>
Indicates a range of 1.5d. Heat transfer when cooling a wire coil by spraying a cooling fluid is mainly controlled by forced convection.
In other words, if the distance D between the wires exceeds a certain value, the cooling rate is determined almost solely by the flow rate of the cooling fluid, and is close to the cooling rate when a single wire is cooled with the same cooling fluid and the same flow rate. It is something. As shown in FIG. 4, the distance D between the wires takes a maximum value (Dmax) at the center in the width direction of the wire coil, and decreases toward the edges. The cooling characteristics at this time can be divided into the following two depending on the distance D between the lines.
First of all, as the line distance D decreases from Dmax, due to mutual radiation heat transfer between adjacent lines,
Although heat dissipation due to radiation from the surface of each wire is reduced, the proportion of this reduction in the overall heat transfer is small. Second, if the distance D between the lines is further reduced, it becomes difficult for the cooling fluid to pass between the lines, and the amount of convective heat transfer is also significantly reduced. According to experiments conducted by the present inventors, the range L shown in FIG. 4, that is, the range where the distance D between the wires is approximately 1.5 times or more the wire diameter d, corresponds to the former (first) cooling feature. Further, when the distance D between the wires is approximately 1.5 times or less than the wire diameter d, the latter (second) cooling characteristic is exhibited. Therefore, in order to obtain a uniform cooling rate distribution in the width direction of the wire coil, it is necessary to provide a flow rate distribution as shown in FIG. That is, when the distance between the lines is approximately D1.5d, the flow velocity distribution is approximately flat and increases slightly toward the edge, and when the distance between the lines is approximately D < 1.5d, the flow velocity distribution is approximately flat toward the edge. It is necessary to provide a flow velocity distribution that increases significantly as the flow rate increases. As mentioned above, when the main line of the cooling fluid in the spray direction on the side surfaces of both edges of the wire coil is sprayed and cooled only at approximately the edges in the width direction of the wire coil, it is particularly difficult to spray the cooling fluid at the center of the coil in the width direction. The flow velocity is slower than in other parts. In order to compensate for this drawback, the main line of the blowing direction of the cooling fluid on the side surfaces of both edges of the wire coil is set so that the width of the wire coil is fixed when the cooling fluid is sprayed and cooled only at approximately the center in the width direction of the wire coil. When we investigated the flow velocity distribution in this direction, we found that it had a slightly medium-height distribution as shown in Figure 6. Combining the distributions in Figures 2 and 6 above, we get
Since the flow velocity distribution is approximately as shown in FIG. 5, the cooling fluid spray flow is the same as the one in which the main line of the cooling fluid blowing direction on the side surfaces of both edges of the wire coil is aimed at approximately the center in the width direction of the wire coil. It has become clear that substantially uniform cooling can be achieved if the coil is cooled by spraying the coil in combination with the cooling fluid sprayed at substantially the edges in the width direction of the coil. Therefore, in the cooling method of the present invention, after the wire rod after hot rolling is wound into a coil shape, the wire rod coil width is From the sides of both edges, on the transfer conveyor,
The purpose of this method is to uniformly cool the wire coil by spraying a cooling fluid by combining a plurality of types of means that provide different flow velocity distributions. In particular, the target position of the main flow of the cooling fluid in the direction of spraying on the side surfaces of both edges of the wire coil is such that the cooling fluid at approximately the center in the width direction of the wire coil is combined with the cooling fluid at approximately the edges in the width direction of the coil. Spraying with water allows for even more uniform cooling. Further, it is preferable that the angle formed between the main line in the direction in which the cooling fluid is sprayed on the side surfaces of both edges of the wire coil and the direction in which the wire coil is transferred is maintained within a range of 15° to 75°. If this angle is less than 15 degrees, the distance between the cooling fluid discharge port and the target position of the fluid becomes too long, and it becomes difficult to obtain a predetermined flow velocity, especially at the central position in the width direction of the wire coil. Furthermore, if the angle exceeds 75°, the fluids sprayed in opposite directions across the width of the wire coil will collide with each other, making it impossible to obtain a stable desired flow velocity distribution, and furthermore, the variation in the flow velocity distribution near the edge of the wire coil will be large. , the cooling rate tends to vary due to deviation in the width direction of the wire coil on the transfer conveyor, and uniform cooling cannot be expected. Therefore, the most effective angle within the above angle range, that is, the angle that allows the most uniform cooling, is in the range of 40° to 50°. Furthermore, the distance from the surface including the wire coil of the cooling fluid discharge port that sprays the cooling fluid aimed at approximately the center in the width direction of the wire coil includes the wire coil of the cooling fluid discharge port that sprays the cooling fluid aimed at approximately the edge in the width direction of the coil. It is preferable to make the distance larger than the distance from the surface. This means that if the distance on the cooling fluid side aiming at the center is made smaller than the distance on the cooling fluid side aiming at the edge, the velocity component of the cooling fluid aiming at the center will change to the middle part between the center and the edge in the width direction of the coil. This is because the flow velocity in the central portion becomes slower than that in the intermediate portion, making it impossible to obtain the desired flow velocity distribution. In addition, regarding the deviation in the width direction of the wire rod coil on the transfer conveyor, the diameter of the wire rod coil changes due to changes in the wire rod speed, winding machine speed, etc. caused by the operating conditions, so the deviation in the width direction of the wire rod coil It is actually difficult to eliminate it completely. That is, as shown in FIG. 10, if the operating conditions are constant, it is possible to aim at the vicinity of the edge of the coil at any time, but as described above, depending on the change in the wire speed, the nozzle 13b can aim at the edge. Sometimes it becomes impossible to aim near the edge. For this purpose, for example, a nozzle that can diffuse the cooling fluid discharged from the nozzle 13b over a certain width may be selected, or, for example, although not shown, the distance from the bias of the coil may be detected in advance with a detector or the like. The nozzle may automatically change its angle freely in response to a signal, so that the entire area near the edge of the wire coil can be cooled at all times. Any of these methods may be used. The basic configuration and desirable aspects of the cooling method of the present invention have been described above, and next, a cooling device for most effectively implementing this method will be described. The cooling device of the present invention is connected to equipment that includes a hot rolling mill, a water cooling device, and a winding machine, and the wire rods sent out in the form of a coil from the winding machine are arranged in overlapping rings shifted at a constant interval. It consists of a transfer conveyor that conveys the wire in groups at a predetermined speed, and a plurality of cooling fluid spray nozzles arranged on both sides of the transfer conveyor along the wire transfer direction.
The cooling fluid spraying nozzle is arranged on both sides of the transfer conveyor over the section where the wire coils need to be cooled, and is connected to an appropriate cooling fluid supply source so as to spray the cooling fluid at a desired flow rate and velocity. are doing. In addition, the above-mentioned spray nozzles are arranged so that the spray direction thereof is at an angle to the transfer direction of the wire coil when viewed from above, so that the cooling fluid sprayed from the nozzles facing each other across the wire coil is constant. They collide at an angle and merge to flow smoothly in the direction in which the wire coil is transported. Moreover, the present invention employs two types of nozzles in which the target position of the spray nozzle with respect to the wire coil (the position where the main flow of the sprayed fluid collides with the coil) is approximately at the center and approximately at the edge in the width direction of the wire coil. They are arranged in combination. An example of a nozzle arrangement is
In order to make the cooling rate uniform, arranging the nozzles aimed at the center and the nozzles aimed at the edges alternately in the direction of movement of the wire coil, and in opposite directions across the coil, are different types of nozzles. Although it is more effective, it is not limited to this, for example, even if a combination of different types is used on the opposing sides, multiple nozzles of the same type are adjacent to each other on the side in which the wire coil advances, and one of the other types is used.
One or more nozzles may be arranged in parallel. Of course, any combination of the above may be used as long as the desired flow velocity pattern can be obtained on the transfer conveyor. Furthermore, the discharge direction of the spray nozzle, which is aimed at approximately the edge, is installed so that the discharge direction is directed downward toward the edge of the coil or horizontally toward the edge. The other spray nozzle aimed at the approximate center is installed above the position of the nozzle aimed at the approximate edge and is directed downward toward the center of the coil, but both the spray nozzles aimed at the approximate edge and the center are at the same height. May be placed.
Further, the position of the ejection opening of the substantially edge-targeting nozzle is installed at a distance from the edge of the wire coil so as not to interfere with deviation in the width direction of the wire coil. In addition, the structure of the cooling fluid spray nozzle itself may be such that the cross section of its discharge port may have any shape such as a slit shape or a circular shape, and each nozzle may be formed individually or all nozzles on one side may be integrated. They may be separated using internal partition plates. Furthermore, the nozzles can be held retractably relative to the wire coil, and all nozzles can be connected to a common fluid supply source, or the edge aiming nozzle and the center aiming nozzle can be connected to separate supply sources. flow rate,
You can also change the flow rate. Next, the present invention will be explained in detail based on embodiment equipment shown in the drawings. FIG. 7 shows a line in which a cooling device 80 according to the invention is arranged downstream of a water-cooled nozzle 1, a pinch roll 2, and a rolling head 3 of a winding machine following a hot rolling mill. That is, directly below the laying head 3 is a wire coil 4 falling continuously in a ring shape.
A conveyor 5 that forms the materials to a desired density and transfers them by placing them.
(Although a roller conveyor is shown in the illustrated example, a chain conveyor may also be used) is provided at a position continuous with the roller conveyor 5 for cooling the wire coil 4 at a predetermined cooling rate while conveying the wire rod 4 at a predetermined rate. A transfer table, for example a roller table 6, is installed. In a certain section (forced cooling section) along the transfer direction of the roller table 6, a plurality of blast nozzles 13 that spray cooling fluid onto the wire coil 4 are arranged in parallel on both sides of the roller table 6. One or more blast nozzles 13 (six in the illustrated example) are provided on both sides of the roller table 6.
A cooling fluid flow path is formed which is connected to the individual collecting ducts 27 and is forcedly fed from the blast blower 12 via the seal duct 28, thereby configuring one cooling zone on the roller table 6. There is. One or more of the cooling zones (six on each side in the illustrated example) constitute one continuous cooling range, whereby the wire coil is cooled along a desired cooling curve while being conveyed. Details of this cooling zone unit are shown in Figures 8 and 9.
As shown in the figure, the blast nozzle 13 has a blast nozzle 13a whose main line of discharge outlet is aimed at approximately the center of the wire coil 4 on the roller table 6, and a blast nozzle 13a whose aimed position is approximately at the edge of the wire coil 4. Blast nozzle 1
It consists of two types of nozzle combination arrangement with 3b. As shown in FIG. 8, these blast nozzles 13a and 13b are arranged differently from each other on one side of the roller table 6 (that is, in the roller table transport direction), and also on the opposite side in the width direction of the roller table 6. They are arranged (staggered) to form a combination of different types. Therefore, the angle α between the main line in the discharge direction of the blast nozzle 13 and the transport direction of the roller table 6 is
The angle is in the range of 15° to 75°, preferably 40° to 50°. In addition, as shown in Fig. 10, the blast nozzle 1
3a and 13b are provided at positions h 1 and h 2 where the distances from the top of the roller 6a of the roller table 6 of the respective discharge ports are h 1 and h 2 , respectively. Further, the distance l 2 from the discharge port of the blast nozzle 13b to the edge end of the wire coil 4 is larger than the distance from the predicted deviation in the width direction of the wire coil 4 on the roller table 6 during cooling. It is arranged so that In addition, a blast nozzle 1 aimed at the center
Distance from the outlet of 3a and the edge of the wire coil 4
l 1 is l 1 > 0 in the illustrated example, but if permitted by equipment and operation, l 1 is set to 0, and the discharge port of the blast nozzle 13a is located closer to the center than the edge end of the wire coil 4. If the coil is placed close to the center of the coil, it becomes easy to generate the desired flow velocity in the center of the coil. In the above embodiment, the blast nozzles 13a and 13b are arranged in the same proportion and the adjacent nozzles are different, but as described above, within the scope of the technical idea of the present invention, Alternatively, adjacent nozzles may be arranged in the same manner. Further, in FIG. 8, the blast nozzles 13a, 13b and the collective duct 27 to which they are connected may have a fixed structure, but may also have a structure in which they are moved away from the roller table 6 by a moving device 81 such as a cylinder. . This is advantageous when you want to secure a work floor, when using the roller table 6 to perform slow cooling, for example by placing a heat insulating cover, and when performing inspection and maintenance of the roller table 6. Because there is. The cooling fluid blown from the blast nozzles 13a and 13b may be selected from air, steam, mist, and a mixture of air and mist, but the same fluid may be supplied to the nozzles 13a and 13b. Alternatively, different types of fluids may be supplied respectively. For example, as a method of spraying cooling fluid, if you aim at the center approximately, you can spray a mixture of air and mist, and if you aim at approximately both edges, you can spray air at the same amount as the amount of cooling fluid aimed at the center. This can be done in small amounts compared to other cases. Next, the operation of the present invention will be explained using cooling of a steel wire as an example. After the hot-rolled steel wire is cooled to a desired temperature by a water-cooled nozzle 1, it is sent to a winding machine by pinch rolls 2, and the rolling head 3 carries it onto the next roller conveyor 5 at a constant speed. The wire rod coils 4 are formed and placed at different intervals and overlapping each other. While the wire coil 4 is being transferred on a roller table 6 by a roller conveyor 5, blast nozzles 1 are arranged on both sides of the roller table 6.
3a and the cooling fluid blown from the blast nozzle 13b, it is cooled along a desired cooling curve to complete the transformation. At this time, the flow velocity distribution in the width direction formed by the blast nozzle 13a and the blast nozzle 13b becomes as shown in FIG. , the average cooling rate distribution during cooling from 800° C. to 400° C. is a substantially flat distribution, as shown by the solid line in FIG. By this cooling, a uniform tensile strength distribution can be obtained as shown in FIG. 1C. Thus, the wire coil 4 cooled to the desired temperature is
Focused by a focusing device. As explained above, according to the method of the present invention, extremely uniform cooling of the wire can be achieved only by spraying the cooling fluid. Examples of the present invention will be described below. This example was tested using the apparatus shown in FIG. 7, and Table 1 shows representative examples of the conditions and results. It should be noted that each steel type in the table had the composition shown in Table 2.

【表】【table】

【表】【table】

【表】 第1表において、試験No.1〜4は従来法による
冷却を行つた時、また、試験No.5〜10は本発明法
による冷却を行つた時の、各々引張強さの平均値
およびバラツキσを示すものである。尚、上記試
験No.1〜3は冷却流体を下面からのみ吹き付けた
場合、また試験No.4は冷却流体を下面からの吹き
付けに加えて補助冷却手段として側面からも吹き
付けた冷却方法によるものである。 第1表から明らかなように、同一鋼種、かつ同
一線径においては、本発明法により冷却したもの
は従来法で冷却したものに比較し、顕著なバラツ
キの減少があり、特に試験No.5,7,10に示す如
く冷却流体の流線と移送方向のなす角度が45゜の
場合は該バラツキ減少量は、従来法の40〜50%に
及ぶものもあつた。また、試験No.8に示すように
線材コイルを移送コンベア上で巾方向に偏よらせ
て試験した場合も、バラツキは小さいものであつ
た。 以上の如く、本発明によれば、冷却流体の吹き
付けのみにより線材の均一な冷却を行うことがで
き、例えば、先行技術で示されているような機械
的にコイル縁部をバラす等の手段を用いる必要も
なく、従つて設備費、運転費が嵩むこともなく、
また、品質に与える影響もなく、冷却を行うこと
ができる。 また運転中の移送コンベア上での線材コイルの
偏より等に対しても、良好な冷却を保つことがで
き、安定した操業を行うことができる等、工業的
価値は極めて高い。
[Table] In Table 1, Test Nos. 1 to 4 are the average tensile strengths when cooling is performed using the conventional method, and Tests Nos. 5 to 10 are when cooling is performed using the method of the present invention. It shows the value and the variation σ. In addition, Tests Nos. 1 to 3 above were conducted when the cooling fluid was sprayed only from the bottom surface, and Test No. 4 was based on a cooling method in which the cooling fluid was sprayed from the bottom surface and also from the side as an auxiliary cooling means. be. As is clear from Table 1, for the same steel type and wire diameter, those cooled by the method of the present invention have a remarkable reduction in variation compared to those cooled by the conventional method, especially in test No. 5. , 7, and 10, when the angle between the flow line of the cooling fluid and the transport direction was 45 degrees, the reduction in variation was as much as 40 to 50% in the conventional method. Also, when the wire coil was tested by being biased in the width direction on a transfer conveyor as shown in Test No. 8, the variation was small. As described above, according to the present invention, it is possible to uniformly cool the wire only by spraying the cooling fluid, for example, by mechanically separating the edges of the coil as shown in the prior art. There is no need to use a
Further, cooling can be performed without affecting quality. In addition, it is possible to maintain good cooling even against uneven twisting of the wire coil on the transfer conveyor during operation, and stable operation can be performed, so it has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは、従来法および本発明法における線
材コイルの800℃から400℃の間の平均冷却速度の
線材コイル巾方向の分布を示すグラフ、第1図ロ
および第1図ハは第1図イに各々対応した線材コ
イル巾方向の引張り強さの分布を示すグラフ、第
2図は、線材コイルの略縁部を狙つて側面吹き付
けした場合の、線材コイル巾方向の冷却流体の流
速分布を示すグラフ、第3図は、第2図の条件で
冷却した場合の、線材コイルの800℃から400℃の
間の平均冷却速度の線材コイル巾方向の分布を示
すグラフ、第4図は、線材コイルの相隣り合うリ
ングの線間距離と線径との関係に基く冷却特徴を
説明する図、第5図は本発明法により冷却すると
きの、線材コイル巾方向の冷却流体の流速分布を
示すグラフ、第6図は、線材コイルの略中央部を
狙つて側面吹き付けした場合の線材コイル巾方向
の、冷却流体の流速分布を示すグラフ、第7図〜
第10図は、本発明に係る冷却装置の一実施例を
示すもので、第7図は、線材圧延ラインに冷却装
置を配置した説明図、第8図は、第7図の冷却ゾ
ーンの詳細説明図、第9図および第10図は、第
7図の衝風ノズルの配置の詳細説明図である。 1……水冷ノズル、2……ピンチロール、3…
…レイングヘツド、4……線材コイル、5……ロ
ーラコンベア、6……ローラテーブル、6a……
ローラ、7a……基部、12……衝風ブロワ、1
3,13a,13b……衝風ノズル、27……集
合ダクト、28……シールダクト、80……冷却
装置、81……移動装置。
Figure 1A is a graph showing the distribution of the average cooling rate in the width direction of the wire coil between 800°C and 400°C in the conventional method and the method of the present invention; Figure 2 shows the flow velocity distribution of the cooling fluid in the width direction of the wire coil when side spraying is aimed at approximately the edge of the wire coil. Figure 3 is a graph showing the distribution of the average cooling rate in the width direction of the wire coil between 800°C and 400°C when cooling under the conditions shown in Figure 2. Figure 5 is a diagram explaining the cooling characteristics based on the relationship between the distance between adjacent rings of a wire coil and the wire diameter, and Figure 5 shows the flow velocity distribution of the cooling fluid in the width direction of the wire coil when cooling by the method of the present invention. The graph shown in FIG. 6 is a graph showing the flow velocity distribution of the cooling fluid in the width direction of the wire coil when side spraying is aimed at the approximate center of the wire coil, and FIGS.
Fig. 10 shows an embodiment of the cooling device according to the present invention, Fig. 7 is an explanatory diagram of the arrangement of the cooling device in a wire rod rolling line, and Fig. 8 shows details of the cooling zone in Fig. 7. The explanatory drawings, FIGS. 9 and 10, are detailed explanatory views of the arrangement of the blast nozzles in FIG. 7. 1...Water cooling nozzle, 2...Pinch roll, 3...
... Laying head, 4 ... Wire coil, 5 ... Roller conveyor, 6 ... Roller table, 6a ...
Roller, 7a...Base, 12...Blast blower, 1
3, 13a, 13b...Blast nozzle, 27...Collecting duct, 28...Seal duct, 80...Cooling device, 81...Moving device.

Claims (1)

【特許請求の範囲】 1 熱間圧延後の線材をコイル状に捲取つた後、
移送コンベアにより一定間隔ずらされ互いに重な
り合つた状態で移送しつつ冷却するに際し、 該線材コイルの両縁部の側面より、冷却流体吹
き付け方向主流線の狙い位置が、該線材コイル巾
方向略中央部と該コイル巾方向略縁部になる如く
組合せて、冷却流体を吹き付け線材を均一に冷却
することを特徴とする熱間圧延線材の冷却方法。 2 熱間圧延機を経て捲取機によりコイル状に捲
取られた線材を引き続き一定間隔ずらせた互いに
重なり合つた状態で載置移送するコンベアを備え
た線材の冷却装置において、 前記移送コンベアの両側に線材コイルの移送方
向に角度をもつて複数個の冷却流体吹付ノズルを
並設すると共に、該吹付ノズルを、該ノズル吐出
主流線が前記線材コイル巾方向の略中央部および
略縁部の各々を狙う少くとも2種の方向性を有し
かつ該線材コイルの移送方向に交互にかつ対向す
る側も異種の組合せになる如く配列してなること
を特徴とする熱間圧延線材の冷却装置。
[Claims] 1. After winding the hot-rolled wire into a coil,
When the wire rods are cooled while being transferred by a transfer conveyor in a state where they are shifted at a certain interval and overlapped with each other, the main line in the cooling fluid spraying direction is aimed from the side surfaces of both edges of the wire rod coil to approximately the center in the width direction of the wire rod coil. A method for cooling a hot-rolled wire rod, characterized in that the wire rod is cooled uniformly by spraying a cooling fluid onto the coil so as to substantially form an edge in the width direction of the coil. 2. In a wire cooling device equipped with a conveyor that carries and transports wire rods that have been wound into a coil shape by a winding machine through a hot rolling mill and are overlapped with each other at regular intervals, the wire rods are placed on both sides of the transfer conveyor. A plurality of cooling fluid spray nozzles are arranged in parallel at an angle to the wire coil transfer direction, and the spray nozzles are arranged so that the main discharge line of the nozzle is located at approximately the center portion and approximately the edge portion in the width direction of the wire rod coil. 1. A cooling device for a hot rolled wire rod, characterized in that the cooling device has at least two types of directionality aiming at the above, and is arranged alternately in the transfer direction of the wire rod coil so that opposite sides also have different combinations.
JP15422379A 1979-11-30 1979-11-30 Method and apparatus of cooling hot-rolled wire material Granted JPS5677336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15422379A JPS5677336A (en) 1979-11-30 1979-11-30 Method and apparatus of cooling hot-rolled wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15422379A JPS5677336A (en) 1979-11-30 1979-11-30 Method and apparatus of cooling hot-rolled wire material

Publications (2)

Publication Number Publication Date
JPS5677336A JPS5677336A (en) 1981-06-25
JPS636289B2 true JPS636289B2 (en) 1988-02-09

Family

ID=15579533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15422379A Granted JPS5677336A (en) 1979-11-30 1979-11-30 Method and apparatus of cooling hot-rolled wire material

Country Status (1)

Country Link
JP (1) JPS5677336A (en)

Also Published As

Publication number Publication date
JPS5677336A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
US11072834B2 (en) Continuous-flow cooling apparatus and method of cooling strip therewith
US3940967A (en) Apparatus for controlled cooling hot rolled steel rod in direct sequence with rod mill
JPS6192719A (en) Cooling system for rolling mill
KR100580357B1 (en) Method and device for cooling steel sheet
US4468262A (en) Method of cooling hot-rolled wire rods
JPS5932209B2 (en) Cooling bed for cooling wire rods that are heated by rolling process
JPS636289B2 (en)
KR20120058257A (en) Apparatus and Method for Cooling Wire-rod Coil
JP5640648B2 (en) Method and apparatus for cooling bottom surface of hot steel sheet
US4397449A (en) Apparatus for cooling hot-rolled wire rods
KR100418988B1 (en) Transversal homogeneous cooling method of hot rolled wire
KR100325094B1 (en) Apparatus for equally cooling wire rod
JP4256885B2 (en) Spray cooling nozzle arrangement setting method and hot steel sheet cooling device
KR101242898B1 (en) Apparatus for Cooling Wire-rod Coil
US5299783A (en) Rod cooling apparatus
KR100939247B1 (en) Scattered water control method in rapid cooling system of hot rolled wire
KR100344381B1 (en) Apparatus and method for cooling hot rolled steel rod
JP6558344B2 (en) Steel plate lower surface cooling device and lower surface cooling method
KR101289181B1 (en) Apparatus Cooling Wire-rod Coil
JP6021649B2 (en) Wire production line and wire cooling device
JPH0216993Y2 (en)
KR200295763Y1 (en) Air cooling device of high temperature wire
KR20030053097A (en) Device for cooling of hot rolled wire rode
KR101259289B1 (en) Apparatus and Method for Cooling Wire-rod Coil
JPH1076308A (en) Device for cooling wide flange shape