JPH0216993Y2 - - Google Patents

Info

Publication number
JPH0216993Y2
JPH0216993Y2 JP5356985U JP5356985U JPH0216993Y2 JP H0216993 Y2 JPH0216993 Y2 JP H0216993Y2 JP 5356985 U JP5356985 U JP 5356985U JP 5356985 U JP5356985 U JP 5356985U JP H0216993 Y2 JPH0216993 Y2 JP H0216993Y2
Authority
JP
Japan
Prior art keywords
wire
cooling
chain
nozzle
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5356985U
Other languages
Japanese (ja)
Other versions
JPS61172161U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5356985U priority Critical patent/JPH0216993Y2/ja
Publication of JPS61172161U publication Critical patent/JPS61172161U/ja
Application granted granted Critical
Publication of JPH0216993Y2 publication Critical patent/JPH0216993Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は熱間圧延した直後の線材を捲取機によ
つて連続したスパイラルリング状に形成し、これ
を順次搬送装置上に載置してリング状の中心をあ
るピツチずらした状態で連続的に移送しながら冷
却する装置に関する。 (従来の技術) 熱間圧延後の線材は鋼のA3変態点以上の温度
であるから、その顕熱を利用して熱間圧延後の線
材を連続したスパイラルリング状に形成し、該リ
ング状に形成された線材を搬送装置(例えばコン
ベア)上で、リングの中心をあるピツチでずらし
た状態で移送しながら、気体、液体、気液混合体
等の流体を用いて調整冷却する方法、所謂直接パ
テンテイング方式は、昭和39年頃から当業者間で
採用され出した技術として既知であり、なかでも
ステルモアプロセスは当業者間で多く採用されて
おり、例えば特公昭42−15463号で著名である。 上記ステルモアプロセスで代表される直接パテ
ンテイング法は、例えば仕上圧延機で熱間圧延さ
れた線材を水冷装置によつて800℃程度に冷却し
つつ、捲取機で連続したリング状に形成し、冷却
装置をかねた搬送装置に順次載置して、中心をあ
るピツチずらした状態で連続的に移送しながら、
衝風を吹付けて調整冷却するものである。このた
め該方式は、冷却装置(コンベア)を平面から見
ると、中心をあるピツチずらした状態のリング群
から成る線材が発生する。而して、該リング群
は、コンベアの幅方向の断面で見ても平面で見て
も、リングの重なり程度による密度の大小箇所が
発生する。この状態は第7図に平面図を示す如
く、コンベアの両端部では、リングの重なりが多
く、コンベアの単位面積当りの密度も大である。
[本考案ではこれを線密部3Aと言う]。一方、コ
ンベアの中央付近は第7図に示す如くリングの重
なりが少なく、コンベアの単位面積当りの密度も
小である。[本考案ではこれを線粗部3Cと言
う]。又、線密部と線粗部の間を中間部3Bと言
う。従つて、線密部は線粗部に比較して冷却速度
が遅くなり、線材リングの断面方向、長手方向に
冷却速度の差異を発生する。 又、リング状の線材は第2図の如く、冷却床に
設けたレールに保持され且つ移動するチエーン5
によつて搬送されるので、該レール4及びチエー
ン5に接した部分の線材リング3群は冷却床2に
設けたノズルから、流体の冷却作用を直接受けな
い部分が発生するため、線材リングの断面方向、
長手方向に冷却速度の差異が発生する。このよう
な冷却速度の差異は、線材リングの各部で変態開
始温度、変態終了温度、変態に要する時間を異な
らせるので、線材各部で組織差が生じ、機械的性
質例えば、引張強さや絞り値に差異が生じ、又、
スケールの厚さ、組成等の性状にも差異が生じ、
所謂線材の品質管理において問題を残すものであ
る。 従来では上述のような背景から、線密部、中間
部、線粗部の冷却を均一化して線材の品質を良好
ならしめる目的で多くの提案をしているが、その
うち本発明に最も近い技術は特開昭51−83043号
公報に記載されるものと考えられる。 (考案が解決しようとする問題点) 線材リングは冷却装置の幅方向に密度が違つて
かつ線の重なり具合がちがうので、線材リングの
中央部は粗密部で外側は線密部となつている。こ
のため特に外側部は風の通りが悪いので、線材の
均一冷却がなされていない。このため線材リング
内の引張強さ(T・S)のバラツキがあつた。 これらを解決する方法は前述した如く、特開昭
51−83043号公報に開示されているが、この技術
では冷却ノズルの冷風吹付の方向はチエーン、レ
ール部である。この為にチエーン部に死風帯(線
材リングと搬送手段との接触部分に冷却用流体が
直接作用し難くなる箇所)ができて冷却むらが生
じ効果が少い。 以上の事から本考案の目的とするところは、従
来技術より更に線材の均一冷却を図りかつ線材リ
ング内の引張強さのバラツキを改善し、線材の品
質向上を図る熱間圧延線材の冷却装置を提供する
ものである。 (問題点を解決するための手段及び作用) この考案の上記目的を達成する手段は以下に説
明するように、線粗部、中間部線密部に応じて冷
却流体の噴出量あるいは噴出速度を大きくするこ
とが有効であること、線材リングをレールと直接
接触させて搬送しないこと、及びチエーンと接す
る線材リングの接触部分に冷却流体を吹付けるこ
と、又、線密部は線材リングの外周の吹付け部に
対して45゜〜90゜の吹付角度で外周と内周を交互に
吹付けること、さらに線粗部、中間部は線材リン
グ群の搬送方向と同方向上向きて平行に冷却用流
体を吹付けることにある。 すなわち、本考案の構成は次の通りである。 熱間圧延後の線材を連続したスパイラルリング
状に形成し、該リング状に形成した線材を冷却床
に配設されたレール部、チエーン部を有するコン
ベア上に載置して、上記リングの中心をあるピツ
チでずらした状態で移送しながら、前記冷却床面
より噴出する流体によつて上記線材を冷却する装
置において、 前記チエーン用レール部を長さ方向に分割し、
その分割した間隔に、チエーンの直下より上方へ
冷却用流体を吹付けるようにしたチエーン部ノズ
ル8を設け、前記中心をあるピツチずらして搬送
される線材リング群に生ずる線密部3Aに対応す
る冷却床装置に、リングの外周方向から冷却流体
を吹付ける線密部用ノズル群10Aと、リングの
内周方向から流体を吹付ける線密部用ノズル群1
0Bとを交互に配置し、前記搬送される線材リン
グ群に生ずる中間部3Bに対応する冷却位置に、
チエーン部の搬送方向と同方向にかつ上向きに中
間部用ノズル9を設けると共に、前記搬送される
線材リング群に生ずる線粗部3Cに対応する冷却
床位置に、チエーン部の搬送方向と同方向で上向
きのかつ平行な線粗部用ノズル7を設置したこと
を特徴とする熱間圧延線材の冷却装置である。 以下本考案の具体例を図面に基づいて説明す
る。 第1図において、1はレイングヘツド、2は冷
却床であり通常鋳鉄製である。冷却床2はその長
手方向側に複数に分割して取外し自在になつてお
り、該冷却床2の上に線材リング群3を搬送する
チエーンコンベア5を案内レール6の直上に接し
て設けている。該レール6は第2図に示すとおり
長手方向の定めた部位で分割して間隔を設けてい
る。 チエーン部用ノズル8は上記案内レール6の間
に位置してチエーンコンベア5の直下にあり、冷
却用流体を上方向へ吹付けるようになつている。
従つてチエーン部用ノズル8は、図には示さない
がプレナムチヤンバーからの冷却用流体を第3図
に示すとおり、チエーンコンベア5の直下より矢
印で示す上方向へ吹付けるため、チエンコンベア
5の隙間を通過してその直上に載置している線材
リング群3へ吹付けることにより、死風帯(冷却
用流体がチエーンや案内レール等に遮られて冷却
作用が劣る箇所を差す)の発生を抑制できる作用
がある。これは、線材リング群3の均一冷却の促
進に大きく寄与する。又、該ノズル8から吹付け
る冷却用流体は、チエンコンベア5を線材リング
群の顕熱から保護して熱歪による変形、破損を抑
制する作用もあるので、設備寿命を向上させる。 線密部用ノズル10A,10Bは第2図に示す
とおり冷却床2の両側に設けている。冷却床2は
線材リング群3の搬送方向で複数に分割されてお
り、線密部ノズル10A,10Bは、この冷却床
2の分割単位に合わせて第2図に示す如く、線材
リング群3の外周方向から冷却流体を吹付けるノ
ズル群10Aと、線材リング群3の内周方向から
冷却流体を吹付けるノズル群10Bを交互に設け
ている。線密部ノズルは上述の如く、交互にノズ
ル群10A,10Bを設けているから、線材リン
グ群3を形成する線材リングに対しては、第4図
に示す如く、外周及び内周の吹付部に対して45゜
〜90゜の吹付角度で交互に吹付ける。斯様な構成
は線密部の各位置における線材の冷却を効果的に
行ない、線密部の冷却を均一にする作用を発揮す
る。 線粗部用ノズル7は、第5図に示す如く、線材
リング群3の搬送方向と同方向で且つ上向きに構
成している。この搬送方向と同方向上向きの態様
は、冷却用流体の吹付方向角度θは約15゜〜45゜で
あり、中間部用ノズル9を構成する該ノズル9も
同じ態様を示す。 (実施例) 次に、本考案の実施例を説明する。冷却用流体
として衝風を供給する装置は図面に示していない
が、該装置からの衝風(例えば湿度50%、温度40
℃)の空気は、プレナムチヤンバーを経由して、
上記ノズルよりNm3/H/送風ブロワ1基の冷風
を送風しかつその時の噴出速度40m/sで吹付け
られる。 例えば、第1図に示す冷却床2の全体に亘つて
マクロ的に見ると、衝風の大河が形成されて冷却
に必要な環境を形成し、この中をチエーンコンベ
アのみで線材リング群は図示してはいないが、集
束タブの方向へ0.3m/s〜0.7m/sの速さで搬
送されつつ、意図する冷却を行なう。チエーンに
よる線材リング群の搬送中にチエーン部ノズル8
によつて衝風を吹付けられるので、死風帯はほと
んど発生することなく冷却される。又、線材リン
グ群3の線密部の冷却は、線密部ノズル10Aお
よび10Bから線材リングの外周と内周に対して
交互に行なうので、その冷却は本考案に係る線密
部ノズルを使用しない方式よりも均一冷却が可能
であり、線材リング群3の機械的性質のバラツキ
を改善できる。 供試材として、第1表に示す組成の硬鋼線材
(5.5mmφ)を線密部で流速40m/secの衝風を吹
付け、本考案装置と本考案の線密部ノズルを使用
しない比較例とを試験した。
(Industrial Application Field) The present invention involves forming a wire rod immediately after hot rolling into a continuous spiral ring shape using a winding machine, and sequentially placing the wire rod on a conveying device so that the center of the ring shape is It relates to a device that cools while continuously transferring the pitch in a shifted state. (Prior art) Since the hot-rolled wire rod has a temperature higher than the A3 transformation point of steel, the hot-rolled wire rod is formed into a continuous spiral ring shape using the sensible heat. A method of controlling and cooling a wire rod formed in a shape using a fluid such as a gas, a liquid, or a gas-liquid mixture while transporting the wire rod on a conveying device (e.g., a conveyor) with the center of the ring shifted by a certain pitch; The so-called direct patenting method is known as a technology that has been adopted by those skilled in the art since around 1960, and the Stelmore process has been widely adopted among those skilled in the art, for example, as famous in Japanese Patent Publication No. 15463/1973. be. The direct patenting method, typified by the above-mentioned Stelmor process, involves, for example, forming a wire rod hot rolled in a finishing mill into a continuous ring shape in a winding machine while cooling it to about 800°C in a water cooling device. They are placed one after another on a conveying device that also serves as a cooling device, and are continuously transferred with their centers shifted by a certain pitch.
It blows a blast of air to provide controlled cooling. For this reason, in this system, when the cooling device (conveyor) is viewed from above, a wire consisting of a group of rings whose centers are shifted by a certain pitch is generated. Therefore, in the ring group, whether viewed in cross section in the width direction of the conveyor or viewed in plan, there are areas where the density is large or small depending on the degree of overlapping of the rings. In this state, as shown in a plan view in FIG. 7, there are many overlapping rings at both ends of the conveyor, and the density per unit area of the conveyor is also large.
[In the present invention, this is referred to as the dense line portion 3A]. On the other hand, near the center of the conveyor, as shown in FIG. 7, there is little ring overlap, and the density per unit area of the conveyor is low. [In the present invention, this is referred to as the coarse wire portion 3C]. Further, the area between the dense line part and the coarse line part is called an intermediate part 3B. Therefore, the cooling rate of the dense wire portion is slower than that of the coarse wire portion, and a difference in cooling rate occurs in the cross-sectional direction and the longitudinal direction of the wire ring. In addition, as shown in Fig. 2, the ring-shaped wire rod is held in a chain 5 that moves and is held on rails provided on the cooling bed.
Since the wire rings 3 are transported by the rail 4 and the chain 5, there are parts of the wire rings that are not directly affected by the cooling action of the fluid from the nozzles provided on the cooling bed 2. cross-sectional direction,
A difference in cooling rate occurs in the longitudinal direction. These differences in cooling rate cause the transformation start temperature, transformation end temperature, and time required for transformation to differ in each part of the wire ring, resulting in structural differences in each part of the wire, resulting in changes in mechanical properties such as tensile strength and reduction of area. Differences arise, and
Differences occur in properties such as scale thickness and composition,
This leaves problems in so-called quality control of wire rods. Due to the above-mentioned background, many proposals have been made in the past for the purpose of improving the quality of the wire by uniformly cooling the dense wire part, intermediate part, and coarse wire part, but among these, the technology closest to the present invention is is considered to be described in Japanese Patent Application Laid-Open No. 51-83043. (Problem that the invention aims to solve) The wire ring has different densities in the width direction of the cooling device and the degree of overlapping of the wires is different, so the center part of the wire ring is a dense part and the outer part is a dense part. . For this reason, the wind does not pass through particularly well on the outside, so the wire is not cooled uniformly. For this reason, there were variations in the tensile strength (T·S) within the wire ring. As mentioned above, the method to solve these problems is
As disclosed in Japanese Patent No. 51-83043, in this technique, the cooling nozzle blows cold air in the direction of the chain and rail portions. For this reason, a dead air zone (a location where the cooling fluid is difficult to directly act on the contact area between the wire ring and the conveying means) is formed in the chain portion, resulting in uneven cooling and less effectiveness. Based on the above, the purpose of the present invention is to provide a cooling device for hot rolled wire rods that achieves more uniform cooling of the wire rod than the conventional technology, improves the variation in tensile strength within the wire rod ring, and improves the quality of the wire rod. It provides: (Means and effects for solving the problem) The means for achieving the above object of this invention is to control the ejection amount or ejection speed of the cooling fluid according to the coarse line part and the intermediate line dense part, as explained below. It is effective to make the wire ring larger, the wire ring should not be conveyed in direct contact with the rail, and cooling fluid should be sprayed on the contact area of the wire ring that contacts the chain. The outer and inner circumferences are sprayed alternately at a spraying angle of 45° to 90°, and the cooling fluid is sprayed upward and parallel to the wire ring group conveying direction on the coarse wire portions and intermediate portions. It consists in spraying. That is, the configuration of the present invention is as follows. The wire rod after hot rolling is formed into a continuous spiral ring shape, and the wire rod formed into the ring shape is placed on a conveyor having a rail section and a chain section arranged on a cooling bed, and the center of the ring is In the apparatus for cooling the wire rod by fluid ejected from the cooling bed surface while transferring the wire rods while shifting the wire rods at a certain pitch, the chain rail section is divided in the length direction,
A chain part nozzle 8 that sprays cooling fluid upward from directly below the chain is provided at the divided interval to correspond to the wire dense part 3A that occurs in the group of wire rings that are transported by shifting the center by a certain pitch. A cooling bed device includes a line dense part nozzle group 10A that sprays cooling fluid from the outer circumferential direction of the ring, and a line dense part nozzle group 1 that sprays fluid from the inner circumferential direction of the ring.
0B are arranged alternately, and at a cooling position corresponding to the intermediate part 3B that occurs in the group of wire rod rings to be transported,
An intermediate nozzle 9 is provided upward in the same direction as the conveying direction of the chain section, and a nozzle 9 for the intermediate section is provided in the same direction as the conveying direction of the chain section at a cooling bed position corresponding to the wire rough portion 3C that occurs in the wire rod ring group to be conveyed. This cooling device for hot rolled wire is characterized in that a nozzle 7 for the rough portion of the wire is installed upward and parallel to each other. A specific example of the present invention will be described below based on the drawings. In FIG. 1, 1 is a raining head and 2 is a cooling bed, which are usually made of cast iron. The cooling bed 2 is divided into a plurality of parts in the longitudinal direction and is removable, and a chain conveyor 5 for conveying a group of wire rings 3 is provided on the cooling bed 2 directly above and in contact with a guide rail 6. . As shown in FIG. 2, the rail 6 is divided at predetermined locations in the longitudinal direction to provide intervals. The chain nozzle 8 is located between the guide rails 6 and directly below the chain conveyor 5, and is configured to spray cooling fluid upward.
Therefore, although not shown in the figure, the chain part nozzle 8 sprays the cooling fluid from the plenum chamber from directly below the chain conveyor 5 in the upward direction indicated by the arrow as shown in FIG. By passing through the gap and spraying it onto the wire ring group 3 placed directly above it, the dead wind zone (point where the cooling effect is poor because the cooling fluid is obstructed by chains, guide rails, etc.) is removed. It has the effect of suppressing the occurrence. This greatly contributes to promoting uniform cooling of the wire ring group 3. Moreover, the cooling fluid sprayed from the nozzle 8 has the effect of protecting the chain conveyor 5 from the sensible heat of the wire ring group and suppressing deformation and damage due to thermal strain, thereby improving the life of the equipment. The line dense area nozzles 10A and 10B are provided on both sides of the cooling bed 2, as shown in FIG. The cooling bed 2 is divided into a plurality of parts in the conveying direction of the wire ring group 3, and the wire dense part nozzles 10A, 10B are used to divide the wire rod ring group 3 into parts as shown in FIG. A nozzle group 10A that sprays cooling fluid from the outer circumferential direction and a nozzle group 10B that sprays cooling fluid from the inner circumferential direction of the wire ring group 3 are alternately provided. As described above, the wire dense part nozzles are provided with the nozzle groups 10A and 10B alternately, so for the wire rings forming the wire ring group 3, as shown in FIG. Spray alternately at a spray angle of 45° to 90°. Such a configuration effectively cools the wire at each position in the wire-dense portion, and exhibits the effect of uniformly cooling the wire-dense portion. As shown in FIG. 5, the wire rough portion nozzle 7 is configured to face upward and in the same direction as the conveying direction of the wire ring group 3. In this embodiment, the spraying direction angle θ of the cooling fluid is approximately 15° to 45°, and the nozzle 9 constituting the intermediate nozzle 9 also exhibits the same embodiment. (Example) Next, an example of the present invention will be described. A device for supplying blast air as a cooling fluid is not shown in the drawings;
°C) air via the plenum chamber,
Cold air of Nm 3 /H/one blower was blown from the nozzle at a jetting speed of 40 m/s. For example, if we look at the entire cooling bed 2 shown in Fig. 1 from a macroscopic perspective, a large river of blast winds is formed, creating an environment necessary for cooling, and in this environment only chain conveyors are used to transport wire rod rings. Although not shown, the intended cooling is performed while being conveyed toward the focusing tab at a speed of 0.3 m/s to 0.7 m/s. Chain part nozzle 8 is conveyed by the chain while conveying the wire ring group.
Since the wind is blown by the wind turbine, the dead wind zone is hardly generated and the area is cooled down. In addition, since the wire dense portion of the wire ring group 3 is cooled alternately from the wire dense portion nozzles 10A and 10B to the outer circumference and inner circumference of the wire ring, the dense wire portion nozzle according to the present invention is used for cooling. It is possible to achieve more uniform cooling than in the case of a method in which no wire rings are used, and variations in the mechanical properties of the wire ring group 3 can be improved. As a test material, a hard steel wire rod (5.5 mmφ) with the composition shown in Table 1 was blown with blast air at a flow rate of 40 m/sec in the dense wire area, and a comparison was made between the device of the present invention and the device of the present invention without using the dense wire nozzle. Examples were tested.

【表】 又、第2表に本考案と比較例(A〜E)の引張
強さ(Kg/mm2)及びバラツキを示す。
Table 2 also shows the tensile strength (Kg/mm 2 ) and variation of the present invention and comparative examples (A to E).

【表】 これらの結果を第8図〜第13図の引張強さの
レーダーチヤートに示す。矢印方向は線材リング
群3の進行方向を示す。又正八角形の半径方向の
距離は引張強さを示し、線材リングのバラツキに
よつては引張強さが線粗部、中間部、線粗部とも
バラツキが見られる。は線粗部、は
中間部、は線密部をそれぞれ示している。 第8図は本考案装置で線密部ノズルを形成する
ノズル10Aとノズル10Bを交互に設けた結果
を示す。この図で判るように本考案装置で実施す
れば引張強さのバラツキが最も少なく改善されて
いる事が判る。 これに対し比較例Aは線密部ノズルを形成する
ノズルをノズル10Aのみとした例であり、これ
により線材リング群3のリングは内周方向のみか
ら衝風を吹きつけるため第9図のとおり引張強さ
の低い部分があり、バラツキを生じ品質が劣る。
これは同図で示す通り、は引張強さが高い
が、は低い事を示している。 比較例Bは、線密部ノズルを形成するノズルを
ノズル10Bのみにした例であり、これにより製
剤リング群のリングは外周方向のみから衝風を吹
きつけるため、第10図のとおり引張強さの低い
部分があり、バラツキを生じ品質を害している。
これは図のは引張強さが高いが、は
低い事で明らかである。 比較例Cは線密部に対して進行方向及び進行方
向と直角方向でかつ外周方向から衝風を吹付ける
ようにした例であるが、第11図のとおり、引張
強さのバラツキが大きく、品質を害している。 比較例Dは線密部に対して進行方向および進行
方向と直角でかつ内周方向から衝風を吹付けるよ
うにした例であるが、第12図に示すように引張
強さのバラツキを生じ、品質を害している。これ
はのバラツキが大きい事でも判る。 比較例Eは線密部に対して進行方向と同方向か
ら衝風を吹付けるようにした例であるが、第13
図に示すように引張強さのバラツキを生じ品質を
害している。 このように本考案装置では、在来考えられてい
なかつた線密部ノズルを形成するノズル10Aと
ノズル10Bを交互に設けることにより、線密部
の均一冷却を図れる顕著な効果がある。結果をま
とめて第2表に示す。 尚、死風帯の発生程度を試験した結果を第14
図A,B,Cに示す。この図はチエーンコンベア
を案内する連続したレールの死風帯を改善する目
的で試験のために用いた例を示す。第14図Aの
場合、案内レール10、案内チエーン11に載置
される線材リング群3との当接面へ傾斜する方向
より衝風が吹付けられるようにしたものである。
又、同図Bは死風帯防止ノズルが一部分、チエー
ン案内用レール10の下方にも延長されている外
は同図Aと同じ構成である。さらに同図Cは死風
帯防止ノズルの構成に加えてチエーン11と案内
レール10に対して平行で且つ搬送方向へも吹付
けることができるようにしたものである。 しかるにこれらは第14図に示す×印の箇所は
死風帯となり、ノズルの吹付け方向の変更程度で
はあまり効果的でないことがわかる。これに対し
第3図に拡大して示す本考案に係るチエーン部同
案内レール部用ノズル8では、チエーンを案内す
るレール6は長手方向で分割して間隔を設け、そ
の間隔にノズル8を設けてチエンコンベア5の隙
間を通過して載置する線材リング群2へ衝風が吹
付けられるように構成しているから、冷却速度が
略均一化され死風帯がほとんど発生していないこ
とがわかつた。 以上のとおり本考案は所期の目的とする、線材
リング群の線密部、中間部、線粗部、チエーン部
の冷却速度を略均一化することができるので、機
械的性質にバラツキが少なくなり線材の品質向上
に極めて有益な効果を発揮する。特に線材リング
群の線密部の冷却速度を改善できることはこれま
で見当らなかつただけに技術的価値は高い。
[Table] These results are shown in the radar charts of tensile strength in FIGS. 8 to 13. The direction of the arrow indicates the direction in which the wire ring group 3 moves. Further, the distance in the radial direction of the regular octagon indicates the tensile strength, and depending on the variation in the wire ring, the tensile strength varies in the coarse wire part, the middle part, and the coarse wire part. indicates a coarse line part, a middle part, and a dense line part, respectively. FIG. 8 shows the result of alternately providing nozzles 10A and 10B, which form line-dense nozzles, in the apparatus of the present invention. As can be seen from this figure, when the device of the present invention is used, the variation in tensile strength is minimized and improved. On the other hand, Comparative Example A is an example in which only nozzle 10A is used to form the wire-dense nozzle, and as a result, the ring of wire ring group 3 blows blast air only from the inner circumferential direction, as shown in Fig. 9. There are parts with low tensile strength, which causes variations and poor quality.
As shown in the figure, this shows that the tensile strength is high, but the tensile strength is low. Comparative example B is an example in which only nozzle 10B is used to form the line-dense nozzle, and as a result, the rings of the preparation ring group are blown with blast air only from the outer circumferential direction, so the tensile strength is reduced as shown in Figure 10. There are some areas with low levels, which causes variations and impairs quality.
This is clear from the fact that the tensile strength in the figure is high, but the tensile strength is low. Comparative example C is an example in which a blast is blown onto the wire-dense part in the direction of movement and in the direction perpendicular to the direction of movement and from the outer circumferential direction, but as shown in Fig. 11, there is a large variation in tensile strength. quality is impaired. Comparative example D is an example in which a blast is blown against the wire dense portion in the traveling direction and from the inner circumferential direction at right angles to the traveling direction, but as shown in FIG. 12, variations in tensile strength occur. , harming the quality. This can also be seen from the large variation in . Comparative example E is an example in which a blast is blown onto the dense line part from the same direction as the traveling direction.
As shown in the figure, variations in tensile strength occur, impairing quality. As described above, in the device of the present invention, by alternately providing the nozzles 10A and nozzles 10B, which form the line-dense area nozzles, which has not been considered conventionally, there is a remarkable effect of uniformly cooling the line-dense area. The results are summarized in Table 2. In addition, the results of testing the degree of occurrence of dead wind zone are shown in the 14th
Shown in Figures A, B, and C. This figure shows an example used for testing to improve the dead wind zone of continuous rails guiding a chain conveyor. In the case of FIG. 14A, the wind is blown from an inclined direction toward the contact surface with the wire ring group 3 placed on the guide rail 10 and the guide chain 11.
Also, Figure B has the same configuration as Figure A, except that a part of the dead wind belt prevention nozzle is extended below the chain guide rail 10. Furthermore, in addition to the configuration of the dead wind zone prevention nozzle, C in the same figure is configured to be able to spray in parallel to the chain 11 and guide rail 10 and also in the conveying direction. However, in these cases, the area marked with an x in FIG. 14 becomes a dead wind zone, and it can be seen that changing the spray direction of the nozzle is not very effective. On the other hand, in the nozzle 8 for the chain guide rail section according to the present invention, which is shown enlarged in FIG. Since the configuration is such that blast air passes through the gap between the chain conveyor 5 and blows onto the wire ring group 2 placed thereon, the cooling rate is approximately uniform and there are almost no dead wind zones. I understand. As described above, the present invention can substantially uniformize the cooling rate of the dense wire part, intermediate part, coarse wire part, and chain part of the wire ring group, which is the intended purpose, so there is less variation in mechanical properties. This has an extremely beneficial effect on improving the quality of wire rods. In particular, it has not been found that it is possible to improve the cooling rate of the wire-dense part of the wire ring group, and therefore the technical value is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の平面図、第2図は第1
図の要部を拡大する平面図、第3図は第2図に示
すレール部、チエーン部の拡大斜視図、第4図は
第2図に示す線密部用ノズルの拡大説明図、第5
図は第2図に示す線粗部及び中間部用ノズルの搬
送方向に切断した断面図、第6図はサイドガイド
を示す。第7図は線材リング群の線材重合状態を
示す平面図、第8図は本考案に係る線密部ノズル
による冷却試験結果を説明する図、第9図〜第1
3図は比較例の冷却試験結果を説明する図、第1
4図A,B,Cは死風帯の発生程度を示す説明
図。 1……レイングヘツド、2……冷却床、3……
線材リング群、4……レール、5……チエーン、
6……分割したチエーン用レール、7……線粗部
用ノズル、8……チエーン用ノズル、9……中間
部用ノズル、10A,10B……線密部用ノズ
ル、3A……線密部、3B……中間部、3C……
線粗部、10……案内レール、11……案内チエ
ーン、12……サイドガイド、13……送風用ブ
ロワー。
Fig. 1 is a plan view of an embodiment of the present invention, and Fig. 2 is a plan view of an embodiment of the present invention.
3 is an enlarged perspective view of the rail section and chain section shown in FIG. 2; FIG. 4 is an enlarged explanatory view of the nozzle for the dense line part shown in FIG. 2;
The figure is a sectional view taken in the conveying direction of the nozzle for the rough line part and the intermediate part shown in FIG. 2, and FIG. 6 shows the side guide. FIG. 7 is a plan view showing the wire rod polymerization state of the wire ring group, FIG.
Figure 3 is a diagram explaining the cooling test results of the comparative example.
Figures A, B, and C are explanatory diagrams showing the degree of occurrence of dead wind zones. 1... Laying head, 2... Cooling bed, 3...
Wire ring group, 4...Rail, 5...Chain,
6... Divided rail for chain, 7... Nozzle for coarse line part, 8... Nozzle for chain, 9... Nozzle for intermediate part, 10A, 10B... Nozzle for dense line part, 3A... Nozzle for dense line part. , 3B...middle part, 3C...
Rough wire portion, 10... Guide rail, 11... Guide chain, 12... Side guide, 13... Air blower.

Claims (1)

【実用新案登録請求の範囲】 熱間圧延後の線材を連続したスパイラルリング
状に形成し、該リング状に形成した線材を冷却床
に配設されたレール部、チエーン部を有するコン
ベア上に載置して、上記リングの中心をあるピツ
チでずらした状態で移送しながら、前記冷却床面
より噴出する流体によつて上記線材を冷却する装
置において、 前記チエーン用レール部を長さ方向に分割し、
その分割した間隔に、チエーンの直下より上方へ
冷却用流体を吹付けるようにしたチエーン部ノズ
ル8を設け、 前記中心をあるピツチずらして搬送される線材
リング群に生ずる線密部3Aに対応する冷却床装
置に、リングの外周方向から冷却流体を吹付ける
線密部用ノズル群10Aと、リングの内周方向か
ら流体を吹付ける線密部用ノズル群10Bとを交
互に配置し、 前記搬送される線材リング群に生ずる中間部3
Bに対応する冷却位置に、チエーン部の搬送方向
と同方向にかつ上向きに中間部用ノズル9を設け
ると共に、 前記搬送される線材リング群に生ずる線粗部3
Cに対応する冷却床位置に、チエーン部の搬送方
向と同方向で上向きのかつ平行な線粗部用ノズル
7を設置したことを特徴とする熱間圧延線材の冷
却装置。
[Scope of Claim for Utility Model Registration] A wire rod after hot rolling is formed into a continuous spiral ring shape, and the wire rod formed into a ring shape is placed on a conveyor having a rail section and a chain section disposed on a cooling bed. In the apparatus for cooling the wire rod by fluid ejected from the cooling bed surface while transferring the ring with the center thereof shifted by a certain pitch, the chain rail section is divided in the length direction. death,
A chain part nozzle 8 is provided at the divided interval to spray cooling fluid upward from directly below the chain, and corresponds to the wire dense part 3A that occurs in the group of wire rings that are transported with the center shifted by a certain pitch. In the cooling bed apparatus, a group of line dense part nozzles 10A that sprays cooling fluid from the outer circumferential direction of the ring and a line dense part nozzle group 10B that sprays fluid from the inner circumferential direction of the ring are arranged alternately; Intermediate portion 3 generated in the wire ring group
At the cooling position corresponding to B, an intermediate nozzle 9 is provided in the same direction as the conveyance direction of the chain section and upward, and the wire roughness portion 3 generated in the group of wire rings to be conveyed is
A cooling device for hot-rolled wire rods, characterized in that a nozzle 7 for a rough wire portion is installed at a cooling bed position corresponding to C in a direction parallel to and upward in the same direction as the conveyance direction of the chain portion.
JP5356985U 1985-04-12 1985-04-12 Expired JPH0216993Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5356985U JPH0216993Y2 (en) 1985-04-12 1985-04-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5356985U JPH0216993Y2 (en) 1985-04-12 1985-04-12

Publications (2)

Publication Number Publication Date
JPS61172161U JPS61172161U (en) 1986-10-25
JPH0216993Y2 true JPH0216993Y2 (en) 1990-05-11

Family

ID=30574559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5356985U Expired JPH0216993Y2 (en) 1985-04-12 1985-04-12

Country Status (1)

Country Link
JP (1) JPH0216993Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512326B2 (en) * 2010-02-19 2014-06-04 株式会社神戸製鋼所 Metal cooling device and metal cooling method

Also Published As

Publication number Publication date
JPS61172161U (en) 1986-10-25

Similar Documents

Publication Publication Date Title
JP3531939B2 (en) Cooling device for uniform width direction of steel strip in continuous steel strip heat treatment process
JP2721861B2 (en) Direct quenching method for hot rolled steel wire
US4991276A (en) Flexible conveyance and guidance roller for use in metalworking furnace structures
KR100231617B1 (en) Hot rolling facility
US5082047A (en) Method of continuously casting and rolling metallic strip
JPH0216993Y2 (en)
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
JPH0811358B2 (en) Mechanical descaling equipment for hot steel
EP0181101B1 (en) Apparatus and method for air cooling hot rolled steel rod
US3989093A (en) Continuous casting plant for slabs
KR102205154B1 (en) Cooling method and cooling device of hot rolled steel sheet
CA1078710A (en) Method and apparatus for cooling hot rolled rod
JP3101980B2 (en) Direct quenching method for hot rolled steel wire
JPS62174326A (en) Flange cooler for shape material
JPH01313108A (en) Method for uniform and rapid cooling of hot rolled wire stock
US5299783A (en) Rod cooling apparatus
JP2693976B2 (en) Air-cooling device for hot-rolled wire
JP3327223B2 (en) Method and apparatus for cooling U-shaped sheet pile
JP3424157B2 (en) Method and apparatus for cooling section steel
JP7381840B2 (en) Cooling device for H-beam steel
JP3353713B2 (en) Hot run table having hot rolled steel strip and method for manufacturing hot rolled steel strip
JP6021649B2 (en) Wire production line and wire cooling device
JPH028563Y2 (en)
JP2021037542A (en) Strip steel wire coil manufacturing method
JPH0576609U (en) Steel plate cooling system