JPS6362867B2 - - Google Patents

Info

Publication number
JPS6362867B2
JPS6362867B2 JP55159775A JP15977580A JPS6362867B2 JP S6362867 B2 JPS6362867 B2 JP S6362867B2 JP 55159775 A JP55159775 A JP 55159775A JP 15977580 A JP15977580 A JP 15977580A JP S6362867 B2 JPS6362867 B2 JP S6362867B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
sulfide
positive electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159775A
Other languages
Japanese (ja)
Other versions
JPS5782967A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP55159775A priority Critical patent/JPS5782967A/en
Publication of JPS5782967A publication Critical patent/JPS5782967A/en
Publication of JPS6362867B2 publication Critical patent/JPS6362867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明はリチウム、ナトリウム等の軽金属を負
極活物質とし、プロピレンカーボネイト、ジメト
キシエタン、γ―ブチロラクトン等の単独又は混
合した溶媒中に溶質として過塩素酸リチウム、ホ
ウフツ化リチウム等を溶解した有機電解質を用い
る有機電解質電池に関するものであつて、特に正
極の製造法に係り、二酸化マンガンと金属の硫化
物とを混合熱処理したる化合物を正極活物質とし
て用いることにより放電容量の増大を計るもので
ある。
Detailed Description of the Invention The present invention uses a light metal such as lithium or sodium as a negative electrode active material, and uses lithium perchlorate or lithium borofluoride as a solute in a solvent such as propylene carbonate, dimethoxyethane, or γ-butyrolactone, alone or in combination. This relates to an organic electrolyte battery that uses an organic electrolyte in which a manganese dioxide and a metal sulfide are dissolved, and is particularly concerned with a method for manufacturing a positive electrode. It measures growth.

この種電池の正極活物質としては金属の酸化
物、金属の硫化物、金属のハロゲン化物等が提案
されており且フツ化炭素、二酸化マンガンについ
ては実用化に至つている。
Metal oxides, metal sulfides, metal halides, and the like have been proposed as positive electrode active materials for this type of battery, and carbon fluoride and manganese dioxide have been put into practical use.

本発明はこの種電池の放電容量の増大を目的と
し、二酸化マンガンと金属の硫化物とを混合熱処
理した化合物を正極活物質とすることを特徴とす
る。
The present invention aims to increase the discharge capacity of this type of battery, and is characterized by using a compound obtained by heat-treating a mixture of manganese dioxide and a metal sulfide as a positive electrode active material.

以下本発明の一実施例を詳述する。 An embodiment of the present invention will be described in detail below.

正極の作成: 二酸化マンガン87gと硫化第2銅96gを乳鉢で
2時間十分に混合し、250〜400℃で熱処理しての
ち粉砕し200メツシユパスを行なつたものを正極
活物質とする。
Preparation of positive electrode: 87 g of manganese dioxide and 96 g of cupric sulfide were thoroughly mixed in a mortar for 2 hours, heat treated at 250 to 400°C, and then crushed and subjected to 200 mesh passes to obtain a positive electrode active material.

この正極活物質粉末90重量部に導電剤6重量
部、結着剤4重量部を加え混合して正極合剤と
し、この合剤を成型圧3トン/cm2で直径20mmφの
導電リング内に加圧成型したのち、更に300℃で
真空乾燥して正極とする。
6 parts by weight of a conductive agent and 4 parts by weight of a binder are added to 90 parts by weight of this positive electrode active material powder, mixed to form a positive electrode mixture, and this mixture is placed into a conductive ring with a diameter of 20 mmφ at a molding pressure of 3 tons/cm 2 . After pressure molding, it is further vacuum dried at 300°C to form a positive electrode.

負極はリチウム圧延板を直径20mmφに打抜いた
ものを用い、又電解質はプロピレンカーボネイト
とジメトキシエタンとの混合溶媒に1モル濃度の
過塩素酸リチウムを溶解したものであり、セパレ
ータはポリプロピレン不織布を用いて外径25mm
φ、厚み2.8mmの電池を作成した。
The negative electrode was a lithium rolled plate punched out to a diameter of 20 mm, the electrolyte was a solution of 1 molar lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane, and the separator was a polypropylene nonwoven fabric. outer diameter 25mm
A battery with a diameter of 2.8 mm and a thickness of 2.8 mm was created.

図は本発明電池と比較電池との室温下における
5.6kΩ定負荷放電特性比較図であり、図中Aは本
発明電池、B及びCは夫々正極活物質として二酸
化マンガン単独及び硫化第2銅単独を用いた比較
電池、又Dは二酸化マンガンと硫化第2銅を混合
し熱処理を施さないものを正極活物質として用い
た比較電池である。
The figure shows the difference between the inventive battery and the comparative battery at room temperature.
This is a comparison diagram of 5.6 kΩ constant load discharge characteristics, in which A is a battery of the present invention, B and C are comparative batteries using manganese dioxide alone and cupric sulfide alone as positive electrode active materials, and D is manganese dioxide and sulfide. This is a comparative battery using a positive electrode active material mixed with cupric cupric and not subjected to heat treatment.

図より明白なるように本発明電池Aに依れば二
酸化マンガン単独の場合Bよりも若干放電電圧が
低いものの放電容量が増大している。又、比較電
池Dのように例え二酸化マンガンと硫化第2銅と
の混合系であつても熱処理を施さなかつたもので
は、先づ二酸化マンガンが放電し、放電終了後硫
化第2銅が放電する如く2段の放電特性を示す。
As is clear from the figure, the battery A of the present invention has a slightly lower discharge voltage than the battery B using only manganese dioxide, but has an increased discharge capacity. In addition, even if the battery is a mixture of manganese dioxide and cupric sulfide, such as Comparative Battery D, without heat treatment, the manganese dioxide discharges first, and after the discharge ends, the cupric sulfide discharges. It shows two stages of discharge characteristics.

これに対して本発明電池においては二酸化マン
ガンと硫化第2銅とを混合熱処理したので、化合
物が生成され、且相互作用により結晶構造がゆが
められることによつて正極内でのリチウムイオン
の拡散が円滑に進行することになり、放電電圧の
平坦化及び放電容量の増大が計れるものである。
On the other hand, in the battery of the present invention, manganese dioxide and cupric sulfide are mixed and heat-treated, so a compound is generated and the crystal structure is distorted by interaction, which prevents lithium ion diffusion within the positive electrode. This will proceed smoothly, flattening the discharge voltage and increasing the discharge capacity.

尚、実施例においては金属の硫化物として硫化
第2銅の場合を例示したが、その他同様の効果が
例えば硫化ニツケル、硫化銀、二硫化チタン等の
金属硫化物でも認められた。
In the examples, cupric sulfide was used as the metal sulfide, but similar effects were also observed with other metal sulfides such as nickel sulfide, silver sulfide, and titanium disulfide.

又、これら金属硫化物と二酸化マンガンとを混
合熱処理して得られる化合物としては、金属硫化
物が硫化第2銅の場合はCuMnO2、Cu2Mn3O8
CuMn2O4等、硫化ニツケルの場合はNiMnO3
NiMn2O4等、硫化銀の場合はAg2Mn8O16
Ag2MnO2、AgMn2O4、AgMnO4等、二硫化チタ
ンの場合はMnTiO3、Mn2TiO4等である。
Compounds obtained by heat-treating these metal sulfides and manganese dioxide include, when the metal sulfide is cupric sulfide, CuMnO 2 , Cu 2 Mn 3 O 8 , Cu 2 Mn 3 O 8 ,
CuMn 2 O 4 etc., NiMnO 3 for nickel sulfide,
NiMn 2 O 4 etc., Ag 2 Mn 8 O 16 for silver sulfide,
Ag2MnO2 , AgMn2O4 , AgMnO4 , etc. , and in the case of titanium disulfide, MnTiO3 , Mn2TiO4 , etc.

更に、金属の硫化物はその分解温度が二酸化マ
ンガンのそれより低いため、二酸化マンガンと混
合し熱処理した場合、化合物を生成し易すいとい
う利点がある。
Furthermore, since the decomposition temperature of metal sulfide is lower than that of manganese dioxide, it has the advantage of easily forming a compound when mixed with manganese dioxide and heat treated.

以上詳述したように、有機電解質電池におい
て、正極活物質として二酸化マンガンと金属の硫
化物とを混合熱処理した化合物を用いることによ
り放電容量を増大しうるものであり、その工業的
価値は極めて大である。
As detailed above, in organic electrolyte batteries, the discharge capacity can be increased by using a heat-treated compound of manganese dioxide and metal sulfide as the positive electrode active material, and its industrial value is extremely large. It is.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明電池と比較電池との放電特性比較図
である。 A……本発明電池、B,C,D……比較電池。
The figure is a comparison diagram of discharge characteristics between a battery of the present invention and a comparative battery. A: Batteries of the present invention, B, C, D: Comparative batteries.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化マンガンと金属の硫化物とを混合熱処
理して得た化合物を活物質として用いることを特
徴とする有機電解質電池用正極の製造法。
1. A method for producing a positive electrode for an organic electrolyte battery, characterized in that a compound obtained by heat-treating a mixture of manganese dioxide and a metal sulfide is used as an active material.
JP55159775A 1980-11-12 1980-11-12 Organic electrolyte battery Granted JPS5782967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55159775A JPS5782967A (en) 1980-11-12 1980-11-12 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55159775A JPS5782967A (en) 1980-11-12 1980-11-12 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5782967A JPS5782967A (en) 1982-05-24
JPS6362867B2 true JPS6362867B2 (en) 1988-12-05

Family

ID=15700984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55159775A Granted JPS5782967A (en) 1980-11-12 1980-11-12 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5782967A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165372A (en) * 1983-03-09 1984-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475531A (en) * 1977-11-30 1979-06-16 Hitachi Ltd Cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475531A (en) * 1977-11-30 1979-06-16 Hitachi Ltd Cell

Also Published As

Publication number Publication date
JPS5782967A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
JPH0368507B2 (en)
JPS6362867B2 (en)
JPH1064592A (en) Lithium secondary battery
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JPS62216171A (en) Nonaqueous electrolytic battery
JPS63257183A (en) Nonaqueous electrolytic solution battery
JPH04162356A (en) Positive electrode activated material and manufacture thereof for lithium secondary battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPS6089070A (en) Nonaqueous electrolyte battery
JPS638585B2 (en)
JPH01234331A (en) Manganic oxide and its production
JPS63307662A (en) Organic electrolyte battery
JPH0213424B2 (en)
JPS59151762A (en) Nonaqueous electrolyte battery
JPH0552027B2 (en)
JPS62168344A (en) Nonaqueous electrolyte battery
JPH01161668A (en) Manufacture of nonaquous electrolyte battery
JPH0345862B2 (en)
JPH0335250B2 (en)
JPS59151761A (en) Nonaqueous electrolyte battery
JPS6027146B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte batteries
JPS61218069A (en) Nonaqueous electrolyte battery
JPS59151765A (en) Organic electrolyte battery
JPH0750604B2 (en) Manufacturing method of positive electrode for non-aqueous battery
JPS6331900B2 (en)