JPS6362858A - Formation of thermally sprayed ceramic layer - Google Patents

Formation of thermally sprayed ceramic layer

Info

Publication number
JPS6362858A
JPS6362858A JP61205593A JP20559386A JPS6362858A JP S6362858 A JPS6362858 A JP S6362858A JP 61205593 A JP61205593 A JP 61205593A JP 20559386 A JP20559386 A JP 20559386A JP S6362858 A JPS6362858 A JP S6362858A
Authority
JP
Japan
Prior art keywords
layer
sprayed
ceramic
base
sprayed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61205593A
Other languages
Japanese (ja)
Other versions
JPH0570707B2 (en
Inventor
Noritaka Miyamoto
典孝 宮本
Takashi Tomota
隆司 友田
Joji Miyake
譲治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61205593A priority Critical patent/JPS6362858A/en
Publication of JPS6362858A publication Critical patent/JPS6362858A/en
Publication of JPH0570707B2 publication Critical patent/JPH0570707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To surely prevent the exfoliation and dislodgment of a thermally sprayed ceramic layer by uniformly forming a 1st underlying thermally sprayed layer to the required section of a base metal, then forming the 2nd underlying thermally sprayed layer having ruggedness of specific roughness thereon, and thermally spraying ceramics onto said layer. CONSTITUTION:The 1st underlying material (Ni-Ci-Al alloy, etc.) is thermally sprayed perpendicularly from a thermally spraying gun 3 to the surface of the required part of the base material 1 (Al alloy, etc.) where a heat insulating characteristic and heat resistance are required to form the 1st underlying sprayed layer 2 uniformly to about 0.05-0.1mm thickness. The gun 3 is then inclined by an angle theta within 40-70 deg. from the perpendicular O and the thermally spraying material equiv. to the 1st thermally spraying material is sprayed onto the 1st underlying layer 2 to form the 2nd underlying sprayed layer 4 having the ruggedness of >=0.1mm ten-point average roughness Rz. Ceramics (ZrO2, Si3N4, etc.) are then thermally sprayed perpendicularly from the gun 3 onto the 2nd layer 4 to form the thermally sprayed ceramic layer 5 to about 0.1-1.0mm thickness. The exfoliation and dislodgment of the ceramic layer 5 by a difference in thermal expansion are thereby effectively and surely prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアルミニウム合金等からなる母材の表面に耐
熱性、断熱性が優れたセラミック溶射層を形成する方法
に関し、特に自動車エンジン用ピストン頂部やシリンダ
のボア面の如く、優れた断熱性および/または耐熱性が
要求される部位の表面にセラミック溶射層を形成する方
法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for forming a ceramic sprayed layer with excellent heat resistance and heat insulation properties on the surface of a base material made of aluminum alloy, etc. The present invention relates to a method for forming a ceramic sprayed layer on the surface of a portion where excellent heat insulation and/or heat resistance is required, such as the bore surface of a motor.

従来の技術 従来から、自動車エンジン用ビスl〜ンの如く、高温加
熱される部位を有する部材、特にアルミニウム合金を母
材とする部材においては、母材表面に熱伝導率が低くか
つ耐熱性が優れたセラミックを溶射してセラミック溶射
層を形成することにより、断熱性や耐熱性を改善したセ
ラミック溶射部材が適用されている。
2. Description of the Related Art Conventionally, parts such as automobile engine screws that have parts that are heated to high temperatures, especially parts whose base material is aluminum alloy, have a surface that has low thermal conductivity and low heat resistance. Ceramic sprayed members with improved heat insulation and heat resistance are being used by spraying a superior ceramic to form a ceramic sprayed layer.

このような従来のセラミック溶射部材について、自動車
エンジン用ピストンを例に採って以下ざらに詳細に説明
する。
Such a conventional ceramic sprayed member will be described in detail below using a piston for an automobile engine as an example.

近年、エンジンに使用されるピストンとしては、エンジ
ンにあける往復運動部の慣性力を低減させるための軽量
化を主眼として、アルミニウム合金により鋳造成形され
たピストンを使用することが多くなっている。しかしな
がらアルミニウム合金は熱伝導率が大きい材料であるか
ら、アルミニウム合金製ピストンを用いたエンジンでは
、燃焼室における燃料の燃焼によって発生した燃焼熱が
ピストンを介して燃焼室外へ伝達され、その分だけエン
ジンの熱効率を悪化させてエンジンの出力、燃費を低下
させる傾向があった。そこでアルミニウム合金製ピスト
ンを介して燃焼室外へ伝達される熱損失を低減するため
に、ピストンの頂面(ピストンヘッド)等にジルコニア
やアルミナ等の熱伝導率の小ざいセラミック材料を溶射
して、断熱性を改善したセラミック溶射ピストンの適用
が試みられている(例えば[Cumm1ns/TACO
HAdvandedAdiabatic Engin、
 J R,Kamo et al、 SAE Pape
rNα840428等)。
In recent years, as pistons used in engines, pistons cast from aluminum alloy have been increasingly used, with a focus on weight reduction in order to reduce the inertia of reciprocating parts in the engine. However, since aluminum alloy is a material with high thermal conductivity, in engines using aluminum alloy pistons, the combustion heat generated by combustion of fuel in the combustion chamber is transferred to the outside of the combustion chamber through the piston, and the engine There was a tendency to deteriorate the thermal efficiency of the engine, lowering the engine's output and fuel efficiency. Therefore, in order to reduce the heat loss transferred to the outside of the combustion chamber via the aluminum alloy piston, a ceramic material with low thermal conductivity such as zirconia or alumina is sprayed on the top surface (piston head) of the piston. Attempts have been made to apply ceramic sprayed pistons with improved thermal insulation properties (e.g. [Cumm1ns/TACO
HA Advanced Adiabatic Engine,
JR, Kamo et al, SAE Pape
rNα840428 etc.).

しかしながら、このようにアルミニウム合金を母材とし
てセラミック溶射層を形成したセラミック溶射ピストン
においては、母材であるアルミニウム合金の熱膨張係数
とセラミック材料の熱膨張係数との間に大きな差があり
、そのためエンジンの作動に伴なう加熱・冷却を繰返し
ている間にアルミニウム合金製母材表面とセラミック溶
射層との熱膨張差に起因してその界面に亀裂が発生し、
遂には母材表面からセラミック溶射層が剥離・脱落して
しまうことがあり、そのため耐久性が未だ充分とは言え
なかったのである。
However, in ceramic sprayed pistons in which a ceramic sprayed layer is formed using an aluminum alloy as a base material, there is a large difference between the coefficient of thermal expansion of the aluminum alloy that is the base material and the thermal expansion coefficient of the ceramic material. During repeated heating and cooling associated with engine operation, cracks occur at the interface due to the difference in thermal expansion between the surface of the aluminum alloy base material and the ceramic sprayed layer.
In the end, the ceramic sprayed layer sometimes peeled off or fell off from the base material surface, and as a result, the durability was still not sufficient.

そこで従来からアルミニウム合金母材とセラミック溶射
層との熱膨張係数の差によるセラミック溶射層の剥離を
防止するための方法として、予め母材表面に熱膨張係数
が母材とセラミックとの間の中間でしかもセラミックと
の密着性が良好な金属、例えばNi−Cr−A1合金、
Ni−0r−Al−Y合金、N i −Co−Cr−A
l−Y合金などを薄く溶射して、ポンド層あるいは中間
層と称される下地溶射層を形成しておき、その下地溶射
層の上にセラミックを溶射する方法が知られている(例
えば前掲刊行物)。
Therefore, as a conventional method to prevent the peeling of the ceramic sprayed layer due to the difference in thermal expansion coefficient between the aluminum alloy base material and the ceramic sprayed layer, the thermal expansion coefficient is set on the surface of the base material in advance so that the thermal expansion coefficient is intermediate between that of the base material and the ceramic. Moreover, metals that have good adhesion to ceramics, such as Ni-Cr-A1 alloy,
Ni-0r-Al-Y alloy, Ni-Co-Cr-A
A method is known in which a base sprayed layer called a pond layer or an intermediate layer is formed by spraying a thin layer of l-Y alloy, and then a ceramic is sprayed on top of the base sprayed layer (for example, as described in the above publication). thing).

発明が解決すべき問題点 前述のように、アルミニウム合金製母材とセラミック溶
射層との熱膨張係数の差に起因するセラミック溶射層の
亀裂もしくは剥離の問題に対する従来の対策として、熱
膨張率が母材とセラミックとの中間の金属からなる下地
溶射層を予め母材表面に形成しておく方法が知られてい
るが、このように下地溶tJA層を形成した場合でも、
熱膨張差に起因するセラミック溶射層の亀裂もしくは剥
離を防止するには未だ充分ではなかった。
Problems to be Solved by the Invention As mentioned above, as a conventional solution to the problem of cracking or peeling of the ceramic sprayed layer due to the difference in the thermal expansion coefficient between the aluminum alloy base material and the ceramic sprayed layer, A method is known in which a base thermal sprayed layer made of a metal intermediate between the base material and ceramic is previously formed on the surface of the base material, but even when the base melted tJA layer is formed in this way,
It has not yet been sufficient to prevent cracking or peeling of the ceramic sprayed layer due to differences in thermal expansion.

この発明は以上の事情を背景としてなされたもので、ピ
ストンの如く加熱・冷却が繰返されるセラミック溶射部
材において、アルミニウム合金等からなる母材とセラミ
ック溶射層との熱膨張差に起因してセラミック溶射層の
剥離・脱落に至るような事態の発生を有効かつ確実に防
止し得るセラミック溶射層の形成方法を提供することを
目的とするものでおる。
This invention was made against the background of the above-mentioned circumstances, and in ceramic sprayed parts such as pistons that are repeatedly heated and cooled, ceramic spraying occurs due to the difference in thermal expansion between the base material made of aluminum alloy etc. and the ceramic sprayed layer. The object of the present invention is to provide a method for forming a ceramic sprayed layer that can effectively and reliably prevent the occurrence of situations that lead to peeling or falling off of the layer.

問題点を解決するための手段 この発明は、母材表面の断熱性および/または耐熱性が
要求される部位に、母材よりも熱伝導率が低くかつ熱膨
張係数が小さいセラミック材料からなるセラミック溶!
11@を形成する方法において、母材における前記部位
の表面に第1の下地溶射層を均一に形成した後、その第
1の下地溶射層の上に、溶射ガンを垂線に対し40°〜
70’の範囲内で傾斜させた状態で下地溶射材を溶射し
て、十点平均あらさRzが0.1M以上の凹凸を有する
第2の下地溶射層を形成し、その第2の下地溶射層の土
にセラミックを溶射することを特徴とするものでおる。
Means for Solving the Problems This invention provides a ceramic material made of a ceramic material having a lower thermal conductivity and a smaller coefficient of thermal expansion than the base material in a region where heat insulation and/or heat resistance is required on the surface of the base material. Melt!
In the method of forming 11@, after uniformly forming a first base sprayed layer on the surface of the portion of the base material, a spray gun is placed on the first base sprayed layer at an angle of 40° to a perpendicular line.
A second base sprayed layer having an unevenness with a ten-point average roughness Rz of 0.1M or more is formed by thermally spraying the base thermal sprayed material in an inclined state within a range of 70', and the second base sprayed layer is This method is characterized by spraying ceramic onto the soil.

作  用 この発明の方法では、アルミニウム合金等からなる母材
の断熱性、耐熱性が要求される部位の表面に、先ず第1
の下地溶射層を均一に形成してから、溶射ガンを垂線に
対し40°〜70’の範囲内で傾斜させて下地溶射材を
溶射して第2の下地溶射層を形成する。上述のように溶
射ガンを傾斜させて溶射すれば、溶射粒子の遮蔽現象、
すなわち溶射方向から見て被溶射面の微小な凸部の影に
なる部分に対し゛では溶射粒子が付着されない現象が生
じる。そのため溶射方向から見て被溶射面の微小凸部の
表側となる部分では溶射粒子が次々に付着してその凸部
が成長する一方、影の部分では溶射粒子がほとんど付着
されないため凹部として残り、その結果溶射が進むにつ
れて溶射面の凹凸が次第に大きくなり、最終的に十点平
均あらさR2にして0.1.以上の大きな凹凸を有する
第2の下地溶射層を形成することができる。
Function: In the method of the present invention, the first step is applied to the surface of the base material made of aluminum alloy, etc., at a portion where heat insulation and heat resistance are required.
After uniformly forming the base sprayed layer, the base spray material is sprayed by tilting the spray gun within the range of 40° to 70' relative to the perpendicular line to form a second base sprayed layer. As mentioned above, if you spray with the spray gun tilted, the shielding phenomenon of spray particles,
That is, a phenomenon occurs in which the sprayed particles are not attached to the shadowed portion of the minute convex portion of the surface to be sprayed when viewed from the spraying direction. Therefore, when viewed from the spraying direction, the sprayed particles adhere one after another to the front side of the minute convexities on the surface to be thermally sprayed, and the convexities grow, while in the shadowed areas, almost no sprayed particles adhere, so they remain as concavities. As a result, as the spraying progresses, the unevenness of the sprayed surface gradually becomes larger, and the final ten-point average roughness R2 becomes 0.1. It is possible to form a second base sprayed layer having large irregularities as described above.

上述のようにRzo、1m以上の凹凸を有する第2の下
地溶射層上に、目的とする断熱性、耐熱性を得るための
セラミックを溶射し、セラミック溶射層を形成する。こ
のセラミック溶射層は、第2の下地溶射層の粗大な凹凸
に食い込んで形成され、そのためセラミック溶射層は機
械的投錨効果によって下地溶射層に強固に保持されるこ
とになる。
As described above, a ceramic sprayed layer is formed by spraying a ceramic to obtain the desired heat insulation and heat resistance on the second base sprayed layer having irregularities of Rzo of 1 m or more. This ceramic sprayed layer is formed by biting into the coarse irregularities of the second base sprayed layer, so that the ceramic sprayed layer is firmly held to the base sprayed layer by a mechanical anchoring effect.

したがって使用時の加熱・冷却の繰返しによる熱応力に
対しては前2機械的投錨効果が有効に対応してセラミッ
ク溶tJJ層の剥離を防止することができる。また前述
のように第2の下地溶射層に凹凸が形成されているため
、セラミック層の単位表面積当りのセラミック層と下地
溶射層との接触面積が極めて大きく、このこともセラミ
ック層を強固に保持するに有効に作用している。
Therefore, the above-mentioned mechanical anchoring effect can effectively cope with the thermal stress caused by repeated heating and cooling during use, and can prevent the ceramic molten tJJ layer from peeling off. In addition, as mentioned above, since the second base sprayed layer has irregularities, the contact area between the ceramic layer and the base sprayed layer per unit surface area of the ceramic layer is extremely large, which also helps to firmly hold the ceramic layer. It is working effectively.

なお母材表面に形成されている第1の下地溶射層とその
上の第2の下地溶射層とは、同じ溶射材もしくは類似の
溶射材を使用することによって一体化することができ、
したがって第1の溶射層と第2の下地溶射層のと間の密
着強度は充分に確保することができ、またこれらの下地
溶射層と母材との間の密着強度も、下地溶射材として後
述するようなNi系合金などを適切に選択し、また必要
に応じて母材表面にショツトブラスト等により凹凸を形
成しておくことによって充分に確保することかできる。
Note that the first base sprayed layer formed on the surface of the base material and the second base sprayed layer thereon can be integrated by using the same thermal spraying material or a similar thermal spraying material,
Therefore, the adhesion strength between the first thermal sprayed layer and the second base sprayed layer can be ensured sufficiently, and the adhesion strength between these base sprayed layers and the base material will also be described later as the base sprayed material. A sufficient amount can be obtained by appropriately selecting a Ni-based alloy or the like, and forming irregularities on the surface of the base material by shot blasting or the like, if necessary.

したがって前述のように第2の下地溶射層にRZo、1
m以上の凹凸を形成してセラミック溶射層を下地溶射層
に強固に保持させておくことによって、全溶射層のいず
れの部分でも剥離を有効に防止することが可能となる。
Therefore, as mentioned above, RZo, 1
By forming irregularities of m or more and firmly holding the ceramic sprayed layer to the base sprayed layer, it becomes possible to effectively prevent peeling in any part of the entire sprayed layer.

発明の実施のための具体的説明 この発明の方法で対象となる母材としては、代表的には
アルミニム合金がおるが、それに限られないことは勿論
である。
Detailed Description for Carrying Out the Invention The base material to be used in the method of the present invention is typically an aluminum alloy, but it is needless to say that the base material is not limited thereto.

この発明の方法においては、先ず第1図(A)に示すよ
うに母材1の断熱性および/または耐熱性が要求される
部位の表面に、第1の下地溶射層2を均一に形成する。
In the method of the present invention, first, as shown in FIG. 1(A), a first base sprayed layer 2 is uniformly formed on the surface of a portion of the base material 1 where heat insulation and/or heat resistance is required. .

この第1の下地溶射B2の形成にあたっては、通常の)
8射方法にしたがって溶射ガン3を被溶射面に対しほぼ
垂直に保持して下地溶射材を溶射すれば良い。また第1
の下地溶射層2の溶射材としては、熱膨張係数が母材と
最終的に溶射すべきセラミック材料との中間でしかも母
材およびセラミック材料との密着性が良好な金属、例え
ばN1−Cr−Affi合金、N1−Cr−Al−Y合
金、N i −Go−Cr−Al−Y合金などのNi基
合金が最適である。なお第1の下地溶射層2の厚みは特
に限定しないが、通常は0.05〜o、is程度とする
。またこの第1の下地溶射層2を形成するにあたっては
、母材1との密着性を良好にするため、母材表面に予め
ショツトブラストを施しておくことが望ましい。
In forming this first base thermal spray B2, the usual)
The base thermal spray material may be thermally sprayed by holding the thermal spray gun 3 substantially perpendicular to the surface to be thermally sprayed according to the 8-spraying method. Also the first
The thermal spraying material for the base thermal sprayed layer 2 is a metal whose coefficient of thermal expansion is intermediate between that of the base material and the ceramic material to be finally sprayed, and which has good adhesion to the base material and the ceramic material, such as N1-Cr- Ni-based alloys such as Affi alloy, N1-Cr-Al-Y alloy, and Ni-Go-Cr-Al-Y alloy are optimal. Note that the thickness of the first base sprayed layer 2 is not particularly limited, but is usually about 0.05 - o.is. Furthermore, in forming the first base thermal spray layer 2, it is desirable to subject the surface of the base material to shot blasting in advance in order to improve the adhesion to the base material 1.

次いで第1図(B)に示すように、溶射ガン3を被溶射
面に対する垂線Oを基準としてそれに対し40゛〜70
°の範囲内の角度θだけ傾斜させた状態に設置し、その
状態で第1の下地溶射層2に用いた溶射材と同じ下地溶
射材、もしくは類似の下地溶射材を第1の下地溶射層2
の上に溶射して、RZo、1M以上の凹凸のある第2の
下地溶射層4を形成する。このように溶射ガンを傾けて
溶射することによって凹凸のある溶射層が形成される過
程を第2図(A)〜(D>に模式的に示す。すなわち第
1の下地溶射層2は、均一に形成するといえども、微視
的に見ればその表面には第2図(A>に示すように微小
な凹凸がある。そのため40’以上の角度θでその微小
な凹凸のある第1の下地溶射層2の上に溶射すれば、第
2図(B)に示すように溶射ガンから見て凸部6の背面
側(影になる側)にあたる部分6bにはその凸部6によ
り遮られて溶射粒子7が付着しにくく、これに対し溶射
方向に向いている側の部分6aでは溶射粒子7が容易に
付着される。したがって第1の下地溶射層表面のわずか
な凹凸を助長するようにその上に溶射粒子が付着するこ
とになる。そしてざらに溶射が進むにつれて第2図(C
)に示すように一層凹凸が大きくなり、最終的に第2図
(D)に示すようにRZo、1m以上の大きな凹凸を有
する第2の下地溶IJA層4が形成されるのでおる。
Next, as shown in FIG. 1(B), the thermal spray gun 3 is moved at an angle of 40° to 70° with respect to the perpendicular O to the surface to be thermally sprayed.
It is installed in a state where it is tilted by an angle θ within the range of 2
A second base thermal sprayed layer 4 having RZo and irregularities of 1M or more is formed by thermal spraying on top. The process of forming an uneven thermal sprayed layer by tilting the thermal spraying gun in this way is schematically shown in FIGS. However, when viewed microscopically, there are minute irregularities on the surface as shown in Figure 2 (A>).Therefore, at an angle θ of 40' or more, the first substrate with the minute irregularities is When thermal spraying is performed on the thermal spray layer 2, as shown in FIG. Thermal spray particles 7 are difficult to adhere to, whereas the spray particles 7 easily adhere to the portion 6a facing the thermal spray direction. Thermal spray particles will adhere to the top.Then, as the thermal spraying progresses, it will appear as shown in Figure 2 (C).
), the irregularities become even larger, and finally, as shown in FIG. 2(D), a second base melt IJA layer 4 having large irregularities of 1 m or more is formed.

なお第2の下地溶射層4は第1の下地溶射層2と同一の
下地溶射材もしくは類似の下地溶射材を用いることによ
って、第1の下地溶射層2と一体的に結合された状態と
なる。
The second base sprayed layer 4 is integrally combined with the first base sprayed layer 2 by using the same base sprayed material as the first base sprayed layer 2 or a similar base sprayed material. .

上述のようにしてRlo、1mm以上の第2の溶射層4
を形成した後、第1図(C)に示すように溶射ガン3を
垂直にセットしてセラミックを溶射し、セラミック溶射
層5を形成する。この溶射時においては、セラミック溶
射材は第2の下地溶射層4の凹部内の底部まで侵入して
溶射され、したがってセラミック溶射@5は第2の下地
溶射層4の凹部に大きく食い込んだ状態で形成されて、
既に述べたような投錨効果等により下地溶射層4に強固
に保持される。
As described above, Rlo, the second thermal sprayed layer 4 with a thickness of 1 mm or more
After forming, as shown in FIG. 1(C), the thermal spraying gun 3 is set vertically and ceramic is thermally sprayed to form a ceramic thermal sprayed layer 5. During this thermal spraying, the ceramic spraying material penetrates to the bottom of the recess of the second base thermal spray layer 4 and is sprayed, so that the ceramic spray @ 5 has largely penetrated into the recess of the second base thermal spray layer 4. formed,
It is firmly held by the base sprayed layer 4 due to the anchoring effect as described above.

なおこのセラミック溶射層5に使用されるセラミックと
しては、用途や耐熱温度等に応じて、酸化物系セラミッ
ク例えばZrO2(Y2O2、Cab、Mに10等によ
り安定化したものを含む)、Af’203 、M(70
,あるいは5t3N4、BN、AINなどの窒化物系セ
ラミック、SiC等の炭化物系セラミックT i B2
 、Cr’82などのホウ化物系セラミック、ざらには
それらの混合物などを任意に用いることができる。また
セラミック溶射層5は、下地溶射層に食い込んでいる部
分を含み、全厚みで0.1〜1.O#程度となるまで溶
射することが望ましい。
The ceramic used for this ceramic sprayed layer 5 may be selected from oxide-based ceramics such as ZrO2 (including Y2O2, Cab, and M stabilized with 10, etc.), Af'203, etc., depending on the application and heat resistance temperature. , M (70
, or nitride ceramics such as 5t3N4, BN, and AIN, carbide ceramics such as SiC T i B2
, a boride ceramic such as Cr'82, or a mixture thereof can be used as desired. Further, the ceramic sprayed layer 5 has a total thickness of 0.1 to 1.0 mm, including a portion that bites into the base sprayed layer. It is desirable to spray until it reaches about O#.

上述のようにしてセラミック溶射層5を形成した後には
、必要に応じて第1図(D>に示すように研摩等の表面
加工を行なってセラミック溶射層5の表面を平滑な面に
仕上げる。
After the ceramic sprayed layer 5 is formed as described above, the surface of the ceramic sprayed layer 5 is finished into a smooth surface by performing surface processing such as polishing as shown in FIG. 1 (D>), if necessary.

なお、場合によっては第3図に示すように、セラミック
溶射後に下地溶射層4の凸部が表面に露呈するまでセラ
ミック溶射層5を表面加工しても良い。このようにした
場合、セラミック溶射層5が下地溶射層4の凸部によっ
て分断されて、小領域ごとに独立したセラミック溶射層
セル5aが形成される。このようにすれば、各セラミッ
ク溶射層セル5aがそれぞれ独立に周囲の下地溶射層凸
部に取囲まれることになるから、加熱・冷却の繰返しを
受けても熱膨張差に起因するセラミック溶射層の2次元
方向への移動が各セルごとに阻止され、かつ熱応力が2
次元方向に累積されることが防止されるため、セラミッ
ク溶射層の剥離を一層確実に防止することが可能となる
In some cases, as shown in FIG. 3, the surface of the ceramic sprayed layer 5 may be processed until the convex portions of the base sprayed layer 4 are exposed on the surface after the ceramic spraying. In this case, the ceramic sprayed layer 5 is divided by the convex portions of the base sprayed layer 4, and independent ceramic sprayed layer cells 5a are formed for each small region. In this way, each ceramic sprayed layer cell 5a is independently surrounded by the surrounding base sprayed layer convex portions, so that even if the ceramic sprayed layer is repeatedly heated and cooled, the ceramic sprayed layer due to the difference in thermal expansion movement in the two-dimensional direction is prevented for each cell, and the thermal stress is
Since accumulation in the dimensional direction is prevented, peeling of the ceramic sprayed layer can be more reliably prevented.

以上の説明において、第2の下地溶射層4の凹凸は十点
平均必らざRzにしてO,ts以上であることが必要で
必る。O11νMRZ未満ではセラミック溶射層5に対
する機械的投錨効果を充分に発揮させることができず、
そのためセラミック溶射層5の剥離も充分に防止できな
い。
In the above description, it is necessary that the unevenness of the second base sprayed layer 4 has a ten-point average Rz of not less than O,ts. If it is less than O11νMRZ, the mechanical anchoring effect on the ceramic sprayed layer 5 cannot be sufficiently exerted,
Therefore, peeling of the ceramic sprayed layer 5 cannot be sufficiently prevented.

また第2の下地溶射層4を形成する際の溶射ガン3の角
度θは、40°以上70’以下とすることが必要でおり
、その理由は次の通りでおる。すなわち、溶射時の溶射
粒子の遮蔽現象による凹凸の形成は、角度θが大きいほ
ど顕著となる。本発明者等の実験によれば、溶射角度θ
と溶射層の表面あらざRZとの関係は、第4図の実線で
示すように、角度θが40°以上でRZo、1#程度以
上の表面あらさが得られることが判明している。角度θ
が40’未満では0.1sRz以上の市らざを確保する
ことができず、そのためセラミック溶gA層の機械的投
錨効果が充分に得られないから、角度θは40’以上に
限定した。一方角度θが大き過ぎれば、第2の下地溶g
)1層中の気孔率が高くなり、高温での使用時において
腐食するおそれが生じ、また機械的強度も低下する。本
発明者等の実験によれば、第4図の破線で示すように角
度θが70’を越えれば急激に気孔率が高くなることが
判明している。
Further, the angle θ of the thermal spray gun 3 when forming the second base thermal spray layer 4 needs to be 40° or more and 70' or less, and the reason is as follows. That is, the formation of unevenness due to the shielding phenomenon of sprayed particles during thermal spraying becomes more pronounced as the angle θ becomes larger. According to experiments conducted by the inventors, the spraying angle θ
Regarding the relationship between RZo and the surface roughness RZ of the sprayed layer, as shown by the solid line in FIG. 4, it has been found that when the angle θ is 40° or more, a surface roughness of about RZo, 1# or more can be obtained. Angle θ
If the angle θ is less than 40', it is not possible to ensure a roughness of 0.1 sRz or more, and therefore the mechanical anchoring effect of the ceramic molten gA layer cannot be sufficiently obtained. Therefore, the angle θ was limited to 40' or more. On the other hand, if the angle θ is too large, the second base melt
) The porosity in one layer increases, leading to a risk of corrosion when used at high temperatures, and also decreasing mechanical strength. According to experiments conducted by the present inventors, it has been found that, as shown by the broken line in FIG. 4, when the angle θ exceeds 70', the porosity increases rapidly.

また角度θが大き過ぎれば、第5図(A>に示すように
第2の溶射層4の凸部の上端において溶射材が溶射方向
に対し反対側に庇状に張出し、この庇状部分4aの存在
により次のセラミック溶射工程において第5図(B)に
示すようにセラミック溶射材が下地溶射層4の凹部の底
まで侵入せず、凹部の底に隙間Gが生じてしまい、セラ
ミック溶射@5の密着力が著しく低下してしまう。角度
θが70°以下であれば上述のような庇状部分の発生を
防止することができる。これらの理由から角度θの上限
は70°とした。
Furthermore, if the angle θ is too large, the sprayed material at the upper end of the convex portion of the second sprayed layer 4 will protrude like an eaves in the opposite direction to the spraying direction, as shown in FIG. Due to the presence of the ceramic spraying material in the next ceramic spraying step, the ceramic spraying material does not penetrate to the bottom of the recess in the base thermal spray layer 4 as shown in FIG. 5(B), and a gap G is created at the bottom of the recess. If the angle θ is 70° or less, the above-mentioned eaves-like portion can be prevented from occurring.For these reasons, the upper limit of the angle θ was set to 70°.

実施例 へz−sr合金からなる母材の表面にショツトブラスト
処理を施した後、第1図(A)に示すように母材1の表
面にN 1−17−Or−Y合金を浴射し、第1の下地
溶射層を203.fil+の厚さで形成した。なおこの
時は溶射ガン3は垂直に保持しておいた。次いで第1図
(B)に示すように溶射ガン3をθ=60°の角度で傾
斜させて前記と同じNi −Ai’  Cr−Y合金を
溶射し、RZo、2mMの凹凸を有する第2の下地溶射
層4を形成した。
Example After subjecting the surface of a base material made of Z-SR alloy to shot blasting, N1-17-Or-Y alloy was sprayed onto the surface of base material 1 as shown in FIG. 1(A). 203. It was formed with a thickness of fil+. At this time, the thermal spray gun 3 was held vertically. Next, as shown in FIG. 1(B), the thermal spray gun 3 was tilted at an angle of θ = 60°, and the same Ni-Ai' Cr-Y alloy as described above was sprayed, and a second layer having irregularities of RZo and 2 mm was formed. A base sprayed layer 4 was formed.

続いて第2図(C)に示すように溶射ガン3を垂直に保
持した状態でセラミックとしてZrO2・8Y203を
全厚み0.5mとなるように溶射し、セラミック溶射層
5を形成した。その後セラミック溶射層5の表面を研摩
仕上げし、第1図(D>に示すようなセラミック溶射部
材を1qだ。このようにして得られたセラミック溶射部
材の溶射層断面状況を第6図に示す。
Subsequently, as shown in FIG. 2(C), with the thermal spraying gun 3 held vertically, ZrO2.8Y203 was thermally sprayed as a ceramic to a total thickness of 0.5 m to form a ceramic thermal sprayed layer 5. Thereafter, the surface of the ceramic sprayed layer 5 is polished and finished, resulting in a ceramic sprayed member 1q as shown in Fig. 1 (D>).The cross-sectional state of the sprayed layer of the ceramic sprayed member thus obtained is shown in Fig. 6. .

また一部については、前述のように形成したセラミック
溶射層5の表面を、第3図に示すように下地溶射層の凸
部が必られれるまで研摩除去した。
In addition, a portion of the surface of the ceramic sprayed layer 5 formed as described above was removed by polishing until the convex portions of the base sprayed layer were formed as shown in FIG.

一方比較のため、第8図に示すように、前記と同じ母材
1の表面に、従来の通常の方法にしたがって溶射ガンを
垂直に保持したまま前記同様な材質の下地溶射材を0.
1mm溶射して、はぼ均一な厚みの凹凸が少ない下地溶
射層1Qを形成し、その下地溶射層10上に前記同様な
材質のセラミック溶射層5を全厚み0.5#どなるよう
に形成した。
On the other hand, for comparison, as shown in FIG. 8, a base thermal spraying material made of the same material as described above is applied to the surface of the same base material 1 at a zero rate while the thermal spraying gun is held vertically according to the conventional conventional method.
A base sprayed layer 1Q with a uniform thickness and few irregularities was formed by thermal spraying to a thickness of 1 mm, and a ceramic sprayed layer 5 made of the same material as described above was formed on the base sprayed layer 10 to a total thickness of 0.5mm. .

このようにして1昇られたセラミック溶射部材の溶射層
断面状況を第7図に示す。
FIG. 7 shows the cross-sectional state of the sprayed layer of the ceramic sprayed member that has been lifted up in this way.

以上のような3種のセラミック溶射部材、すなわち第1
図(D)(第6図)に示すこの発明の方法により得られ
た部材、第3図に示す同じくこの発明の方法により得ら
れた部材、および第8図(第7図)に示す従来の方法に
より得られた部材について、加熱・冷却サイクル試験を
行ない、セラミック層の剥離状況を調べた。なおこの加
熱・冷却サイクル試験では、50’Cから15℃/ S
aCの加熱速度で500°Cまでバーナ炎により加熱し
、続いて10°C/ SeCの冷却速度で再び50℃ま
で冷却するサイクルを繰返し、セラミック層の剥離に至
るまでのサイクル数を調べた。その結果を第9図に示す
The above three types of ceramic sprayed members, namely the first
The member obtained by the method of the present invention shown in Figure (D) (Fig. 6), the member obtained by the method of the present invention shown in Fig. 3, and the conventional member shown in Fig. 8 (Fig. 7). The members obtained by this method were subjected to a heating/cooling cycle test to examine the peeling status of the ceramic layer. In addition, in this heating/cooling cycle test, from 50'C to 15°C/S
A cycle of heating with a burner flame to 500°C at a heating rate of aC, then cooling again to 50°C at a cooling rate of 10°C/SeC was repeated, and the number of cycles until the ceramic layer peeled off was investigated. The results are shown in FIG.

第9図から明らかなように、従来法によるセラミック溶
射部材では加熱・冷却が4000サイクルに満たずにセ
ラミック層の剥離・脱落が生じたのに対し、この発明の
方法により得られたセラミック溶射部材では、1ooo
oサイクル経過時にもセラミック層の剥離・脱落は全く
認められなかった。
As is clear from FIG. 9, in the ceramic sprayed member obtained by the conventional method, the ceramic layer peeled off and fell off after less than 4000 cycles of heating and cooling, whereas the ceramic sprayed member obtained by the method of the present invention So, 1ooo
Even after o cycles, no peeling or falling off of the ceramic layer was observed.

発明の効果 以上の説明で明らかなように、この発明の方法によれば
、第1の下地溶射層上に第2の下地溶射層を形成するに
めたって溶剤ガンを40°〜70’の角度で傾け、これ
により十点平均あらざRZにて0.1m以上の凹凸を有
する第2の下地溶射層を形成し、その上にセラミック溶
鋼を施すことによってセラミック)容射層は下地溶射層
の凹凸に食い込んで形成され、そのためセラミック溶射
層が下地溶射層に強固に保持されるから、加熱・冷却の
繰返しを受けても熱膨張差による熱応力に起因してセラ
ミック溶射層の剥離・脱落に至るような事態を有効に防
止でき、したがってセラミック溶射層を形成した部材を
特に加熱・冷却の繰返しが加わるような用途に使用して
その耐久性を従来よりも格段に延長することができる。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention, the solvent gun is tilted at an angle of 40° to 70' to form the second base sprayed layer on the first base sprayed layer. This forms a second base thermal sprayed layer having an unevenness of 0.1 m or more in ten-point average roughness RZ, and by applying ceramic molten steel on top of it, the ceramic) sprayed layer is formed on the base thermal sprayed layer. It is formed by biting into the irregularities, and as a result, the ceramic sprayed layer is firmly held to the base sprayed layer, so even after repeated heating and cooling, the ceramic sprayed layer will not peel or fall off due to thermal stress due to the difference in thermal expansion. Such a situation can be effectively prevented, and therefore, the durability of a member coated with a ceramic sprayed layer can be significantly extended compared to the conventional method when the member is used particularly in applications where repeated heating and cooling are required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(D>はこの発明の方法によって溶射層
を形成する過程の一例を段階的に示す略解的な断面図、
第2図(A)〜(D>は溶射カンを傾けて第2の下地溶
射層を形成する際の作用を段階的に説明するための模式
図、第3図はこの発明の方法により得られるセラミック
溶射部材の他の例を示す断面図、第4図は第2の下地溶
射層を形成する際の溶射ガンの角度(溶射角度)θと、
生成される溶射層の十点平均あらざRzおよび気孔率と
の関係゛を示すグラフ、第5図(A>、(B)は溶射ガ
ンの角度θが大き過ぎた場合の溶射状況を示す模式的な
断面図、第6図はこの発明の実施例により得られた溶射
部材の溶射層の断面組織顕微鏡写真(倍率50倍)、第
7図は従来法(比較例)により得られた溶射部材の溶射
層の断面組織顕微鏡写真(倍率50倍)、第8図は従来
法(比較例)により得られた溶射部材の溶射層を模式的
に示す断面図、第9図はこの発明の実施例および従来法
による比較例により得られた溶射部材の加熱・冷却サイ
クル試験結果を示すグラフである。 1・・・母材、 2・・・第1の下地溶射層、 3・・
・溶射ガン、 4・・・第2の下地溶射層、 5・・・
セラミック溶射層。
FIGS. 1A to 1D are schematic cross-sectional views showing step-by-step an example of the process of forming a sprayed layer by the method of the present invention;
Figures 2 (A) to (D> are schematic diagrams for step-by-step explanation of the action of forming a second base spray layer by tilting the spray can, and Figure 3 is a diagram showing the process obtained by the method of the present invention. A sectional view showing another example of a ceramic sprayed member, FIG. 4 shows the angle (spraying angle) θ of the spray gun when forming the second base sprayed layer,
A graph showing the relationship between the 10-point average roughness Rz and the porosity of the thermal sprayed layer that is generated. Figures 5 (A> and (B)) are schematic diagrams showing the thermal spraying situation when the angle θ of the thermal spray gun is too large. 6 is a cross-sectional structure micrograph (magnification: 50x) of a sprayed layer of a sprayed member obtained by an example of the present invention, and FIG. 7 is a sprayed member obtained by a conventional method (comparative example). Figure 8 is a cross-sectional view schematically showing the sprayed layer of a sprayed member obtained by the conventional method (comparative example), and Figure 9 is an example of the present invention. It is a graph showing the heating/cooling cycle test results of the thermal sprayed members obtained in Comparative Examples using the conventional method. 1... Base material, 2... First base sprayed layer, 3...
- Thermal spray gun, 4... Second base thermal spray layer, 5...
Ceramic sprayed layer.

Claims (1)

【特許請求の範囲】 母材表面の断熱性および/または耐熱性が要求される部
位に、母材よりも熱伝導率が低くかつ熱膨張係数が小さ
いセラミック材料からなるセラミック溶射層を形成する
方法において、 母材における前記部位の表面に第1の下地溶射層を均一
に形成した後、その第1の下地溶射層の上に、溶射ガン
を垂線に対し40°〜70°の範囲内で傾斜させた状態
で下地溶射材を溶射して、十点平均あらさRzが0.1
mm以上の凹凸を有する第2の下地溶射層を形成し、そ
の第2の下地溶射層の上にセラミックを溶射することを
特徴とするセラミック溶射層の形成方法。
[Claims] A method of forming a ceramic sprayed layer made of a ceramic material having a lower thermal conductivity and a smaller coefficient of thermal expansion than the base material at a location on the surface of the base material that requires heat insulation and/or heat resistance. After uniformly forming a first base sprayed layer on the surface of the portion of the base material, a thermal spray gun is tilted within a range of 40° to 70° with respect to the perpendicular on the first base sprayed layer. The base thermal spraying material was sprayed in this state, and the ten-point average roughness Rz was 0.1.
A method for forming a ceramic sprayed layer, comprising forming a second base sprayed layer having irregularities of mm or more, and spraying a ceramic onto the second base sprayed layer.
JP61205593A 1986-09-01 1986-09-01 Formation of thermally sprayed ceramic layer Granted JPS6362858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205593A JPS6362858A (en) 1986-09-01 1986-09-01 Formation of thermally sprayed ceramic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205593A JPS6362858A (en) 1986-09-01 1986-09-01 Formation of thermally sprayed ceramic layer

Publications (2)

Publication Number Publication Date
JPS6362858A true JPS6362858A (en) 1988-03-19
JPH0570707B2 JPH0570707B2 (en) 1993-10-05

Family

ID=16509450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205593A Granted JPS6362858A (en) 1986-09-01 1986-09-01 Formation of thermally sprayed ceramic layer

Country Status (1)

Country Link
JP (1) JPS6362858A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523649A (en) * 2000-12-29 2004-08-05 ラム リサーチ コーポレーション Components of boron nitride or yttria composite material for semiconductor processing equipment and method of manufacturing the same
JP2005272971A (en) * 2004-03-26 2005-10-06 Okasugi Kosakusho:Kk Thermal spraying method
JP2005350715A (en) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd Component for thin film deposition system and its production method
JP2007284758A (en) * 2006-04-18 2007-11-01 Tosoh Corp Vacuum device member, its manufacturing method, and vacuum device
JP2009523939A (en) * 2006-01-17 2009-06-25 シーメンス アクチエンゲゼルシヤフト Part to be placed in the flow path of a fluid machine and spray method for coating generation
JP2011179058A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Method for producing member having thermal barrier coating thereon
WO2017046942A1 (en) * 2015-09-18 2017-03-23 株式会社 東芝 Thermal barrier coating and power generation system
WO2018015985A1 (en) * 2016-07-22 2018-01-25 株式会社 東芝 Thermal insulation coated member, axial flow turbine, and method for producing thermal insulation coated member
JP2020132908A (en) * 2019-02-14 2020-08-31 日本製鉄株式会社 Blast furnace tuyere

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523649A (en) * 2000-12-29 2004-08-05 ラム リサーチ コーポレーション Components of boron nitride or yttria composite material for semiconductor processing equipment and method of manufacturing the same
JP2005272971A (en) * 2004-03-26 2005-10-06 Okasugi Kosakusho:Kk Thermal spraying method
JP2005350715A (en) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd Component for thin film deposition system and its production method
JP4647249B2 (en) * 2004-06-09 2011-03-09 ルネサスエレクトロニクス株式会社 Thin film forming apparatus component and method of manufacturing the same
US8277194B2 (en) 2006-01-17 2012-10-02 Siemens Aktiengesellschaft Component to be arranged in the flow channel of a turbomachine and spraying method for producing the coating
JP2009523939A (en) * 2006-01-17 2009-06-25 シーメンス アクチエンゲゼルシヤフト Part to be placed in the flow path of a fluid machine and spray method for coating generation
JP2007284758A (en) * 2006-04-18 2007-11-01 Tosoh Corp Vacuum device member, its manufacturing method, and vacuum device
JP2011179058A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Method for producing member having thermal barrier coating thereon
WO2017046942A1 (en) * 2015-09-18 2017-03-23 株式会社 東芝 Thermal barrier coating and power generation system
WO2018015985A1 (en) * 2016-07-22 2018-01-25 株式会社 東芝 Thermal insulation coated member, axial flow turbine, and method for producing thermal insulation coated member
JPWO2018015985A1 (en) * 2016-07-22 2019-06-13 東芝エネルギーシステムズ株式会社 Thermal barrier coating member, axial flow turbine, and method of manufacturing thermal barrier coating member
US11021993B2 (en) 2016-07-22 2021-06-01 Toshiba Energy Systems & Solutions Corporation Thermal insulation coating member, axial flow turbine, and method for producing thermal insulation coating member
JP2020132908A (en) * 2019-02-14 2020-08-31 日本製鉄株式会社 Blast furnace tuyere

Also Published As

Publication number Publication date
JPH0570707B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
EP1904250B1 (en) Cylinder liner, cylinder block, and method for manufacturing cylinder liner
US8209831B2 (en) Surface conditioning for thermal spray layers
CA2188614C (en) Process for applying a metallic adhesion layer for ceramic thermal barrier coatings to metallic components
US7998601B2 (en) Sandwich thermal insulation layer system and method for production
JP2009541201A (en) Refractory metal oxide ceramic component having platinum group metal or platinum group metal alloy coating
US8349468B2 (en) Metal material for parts of casting machine, molten aluminum alloy-contact member
JPS6362858A (en) Formation of thermally sprayed ceramic layer
JPS5887273A (en) Parts having ceramic coated layer and their production
EP0211579B1 (en) Method of making a silicon nitride sintered member
CN113444996A (en) Preparation method of thermal barrier coating, thermal barrier coating and engine piston
JPH0527706B2 (en)
Chang et al. Oxidation behavior of thermal barrier coatings modified by laser remelting
EP1780308A2 (en) Methods and apparatus for manufacturing a component
EP0670190B1 (en) Foundry mould and process for making it
JP3069462B2 (en) Ceramic coating member and method of manufacturing the same
JPH07116583B2 (en) Thermal cycle thermal spray coating
JP2934911B2 (en) Thermal spray coating manufacturing method
JPH0465143B2 (en)
JP2006151720A (en) Heat resistant material and method of manufacturing the same
JPS6213236A (en) Metallic mold for casting and its production
JPS63157741A (en) Mold for continuous casting
JPS6289563A (en) Production of heat insulating piston
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof
EP0191008A1 (en) Shell or tubular object and method to manufacture the same
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same