JPS6361969B2 - - Google Patents

Info

Publication number
JPS6361969B2
JPS6361969B2 JP56112271A JP11227181A JPS6361969B2 JP S6361969 B2 JPS6361969 B2 JP S6361969B2 JP 56112271 A JP56112271 A JP 56112271A JP 11227181 A JP11227181 A JP 11227181A JP S6361969 B2 JPS6361969 B2 JP S6361969B2
Authority
JP
Japan
Prior art keywords
rubber
adhesion
vulcanization
halogenated butyl
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56112271A
Other languages
Japanese (ja)
Other versions
JPS5813647A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56112271A priority Critical patent/JPS5813647A/en
Publication of JPS5813647A publication Critical patent/JPS5813647A/en
Publication of JPS6361969B2 publication Critical patent/JPS6361969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はハロゲン化ブチルゴムを含有するゴム
組成物に関し、詳しくは同種または異種のゴムを
含有するゴム組成物との共加硫後の接着性を、石
油樹脂を配合することによつて改善したハロゲン
化ブチルゴムを含有するゴム組成物に関する。 タイヤ、工業用ゴム製品はその製造工程、特に
成型工程を通じて多くのゴム組成物をはり合わせ
て作られる。従つて加硫後のゴム組成物同士の接
着性(以下、ゴム/ゴム接着性という)はゴム工
業にとつて最大の関心事である。特に最近のユー
ザーからの厳しい要求品質を満足させるためには
新しいポリマー、すなわち原料ゴムの導入に頼ら
ざるを得ない場合が多い。しかし、新しいポリマ
ーを用いたゴム組成物はゴム/ゴム接着性が不十
分なために、その導入が困難な場合が多い。その
例としてハロゲン化ブチルゴムを含有するゴム組
成物が挙げられる。 ハロゲン化ブチルゴムはブチルゴムの加硫性を
改良したもので、従来のブチルゴムが持つ気体不
透過性あるいは耐候性にすぐれるなどの特徴を有
しつつ、汎用ジエン系ゴムとのブレンドが可能に
なるよう、ブチルゴム側鎖にハロゲン原子を付加
して加硫速度を高めたものである。従つてその骨
格は不飽和結合が汎用ゴムと比べて少なく、いわ
ゆる低不飽和ゴムの分類に属するゴムである。そ
の為、上記の様な優れた特徴にもかかわらず、汎
用ジエン系ゴムとの共加硫性に問題があり、その
結果、ゴム製品製造において重要な要求特性であ
る、ゴム/ゴム接着性は非常に劣つたものにな
る。特にハロゲン化ブチルゴム含有ゴム組成物
と、天然ゴム、スチレン―ブタジエンゴム、イソ
プレンゴム、ブタジエンゴム含有ゴム組成物との
加硫後の接着は極めて困難であり、製品性能に多
くの問題を生じている。例えば異種ゴムとの接着
不良によるゴムはがれ等がある。 従来、この種の問題を解決する為の手段として
ゴム組成物を有機溶剤に溶かしゴム表面に塗布し
たり、あるいは異種ゴム間の加硫速度を近づける
ために適当な加硫促進剤をゴム組成物中に添加し
たり、アルキルフエノール樹脂等の接着用樹脂を
添加したりしている。しかし、この様な方法では
十分満足な結果は得られず、就中、異種ゴムを含
有したゴム組成物同士、特にハロゲン化ブチルゴ
ムの様な低不飽和系ゴム組成物と、天然ゴム、ス
チレン―ブタジエンゴム、イソプレンゴム、ブタ
ジエンゴムの様な不飽和系ゴム組成物との接着は
極めて困難であり、十分な効果は得られていな
い。この理由としては、これら被着材とゴム糊の
基材あるいは被着材同士の極性が異なり、かつ加
硫速度に差がある為と考えられる。又一般に、ハ
ロゲン化ブチルゴム含有ゴム組成物と異種ゴム含
有ゴム組成物とのゴム/ゴム接着力向上には、ア
スフアルトが適しているといわれている。確かに
アスフアルトの添加は先に示したようなゴム組成
物を有機溶剤に溶かしゴム表面に塗布したり、或
いはゴム組成物に適当な加硫促進剤または接着用
樹脂を添加する方法よりも接着力レベルの面では
すぐれた方法であるが、アスフアルトは常温で粘
稠なものが多いうえに、臭いが強く、現場作業性
がきわめて悪いことがよく知られている。 このように、従来方法ではハロゲン化ブチルゴ
ムを含有するゴム組成物とジエン系ゴム等の異種
ゴムを含有したゴム組成物との加硫後の接着性を
加工性まで含めて満足する方法がいまだ得られて
いないといつても過言ではない。 本発明は、従来ゴム製品製造の際に問題となつ
ていた他のジエン系ゴム組成物との加硫後の接着
性を向上せしめ、併せて加工性もすぐれた水準に
あるハロゲン化ブチルゴムを含有したゴム組成物
を提供することを目的とし、自動車タイヤ、ゴム
用品、ゴム履物等広く利用され、特にタイヤのサ
イドウオール、インナーライナーまたはトレツド
として好適である。 本発明者らはハロゲン化ブチルゴム含有ゴム組
成物に特定の樹脂を添加することによつて前記目
的を充足することを見出し本発明に到達した。 本発明は、ハロゲン化ブチルゴムを少くとも10
重量部以上含む原料ゴム100重量部に対し、軟化
点80〜120℃、固定炭素含有量25〜50%の石油樹
脂を10〜30重量部配合したことを特徴とするゴム
組成物である。 本発明でいうハロゲン化ブチルゴムとはブチル
ゴム側鎖に塩素、臭素等のハロゲン原子を付加さ
せたものをいう。ハロゲン化ブチルゴムは原料ゴ
ム中に10重量%以上含有することが必要である。
ハロゲン化ブチルゴムが10重量%未満では、他の
ジエン系ゴム含有ゴム組成物との加硫後の接着性
は問題とはならないが、ハロゲン化ブチルゴムが
持つ気体不透過性、あるいは耐候性にすぐれると
いう特性も得られない。 ハロゲン化ブチルゴムは単独または他の原料ゴ
ムと混合して配合される。他の原料ゴムとしては
天然ゴムおよびジエン系合成ゴムのうち少くとも
1種以上がゴム組成物の用途に応じて適宜選択さ
れるが、その配合量は原料ゴム中90%以下であ
る。 本発明で使用する石油樹脂とは、石油留分(平
均分子量200〜800)からフルフラール、フエノー
ルその他適宜の溶剤で抽出した芳香族成分に富む
留分と酸素含有気体又は酸素とオゾンを含む気体
とを200〜380℃の温度で接触反応させて得られる
樹脂化物で、軟化点80〜120℃、固定炭素25〜50
%、芳香族指数0.68以上の物性を有するものであ
り、この範囲にある石油樹脂がハロゲン化ブチル
ゴム含有ゴム組成物の他のジエン系ゴム含有ゴム
組成物に対する加硫後接着性を向上させる。本発
明における石油樹脂の添加量は原料ゴム100重量
部に対して10〜30重量部で、10重量部未満では他
のジエン系ゴムを含有するゴム組成物との接着性
に劣り、界面剥離が生じる。30重量部を超えると
加硫物性、特に引張り強さが低下するため接着力
が低下する。 本発明のゴム組成物においては、通常ゴム業界
で使用されるカーボンブラツク、酸化亜鉛、ステ
アリン酸、伸展油、加硫促進剤およびイオウ等の
配合剤がその用途に応じて適宜適量配合される。 以下、実施例および比較例に基づいて本発明を
具体的に説明する。なお、表中の配合値は重量部
である。 実施例1〜2および比較例1〜4 第1表に示す配合割合で原料ゴムとして市販の
臭素化ブチルゴムを用い、これに加硫促進剤およ
びイオウを除く配合剤並びに種々の樹脂またはペ
トロラタムを加え、B型バンバリーミキサー(容
量約1.5)で4分間混練し、これに加硫促進剤
およびイオウを加え8インチロールで5分間混練
しゴム組成物を得た。このゴム組成物と天然ゴム
を原料ゴムとするゴム組成物を貼り合せ160℃、
30分間プレス共加硫を行ない、ゴム/ゴム接着試
験を行なつた。このゴム/ゴム接着試験はJIS
K6301に準拠して行ない、寸法巾25.0±0.5mm、長
さ150mmで補強材を両面に貼り合わせた厚み6mm
の短冊状試験片を引張り速度50mm/minでオート
グラフにて180゜剥離試験を行いそのとき得られる
引張り荷重の曲線波状部の各頂点(数値の高い
値)の平均値を求めこれを剥離強度とし、比較例
3の値を100とした指数表示とした。またゴムの
破壊状態は界面破壊(%)/材料破壊(%)の割
合で示した。結果を第1表に示す。また貼り合わ
せた天然ゴムを原料ゴムとしたゴム組成物の配合
を第2表に示す。
The present invention relates to a rubber composition containing halogenated butyl rubber, and more specifically, the present invention relates to a rubber composition containing halogenated butyl rubber, and more specifically, a halogenated butyl rubber composition that has improved adhesion after co-vulcanization with a rubber composition containing the same or different type of rubber by incorporating a petroleum resin. The present invention relates to a rubber composition containing fluorinated butyl rubber. Tires and industrial rubber products are made by laminating many rubber compositions together during the manufacturing process, especially the molding process. Therefore, the adhesion between rubber compositions after vulcanization (hereinafter referred to as rubber/rubber adhesion) is of greatest concern to the rubber industry. In particular, in order to satisfy the strict quality requirements from users these days, it is often necessary to rely on the introduction of new polymers, that is, raw material rubber. However, it is often difficult to introduce rubber compositions using new polymers because of their insufficient rubber/rubber adhesion. Examples include rubber compositions containing halogenated butyl rubber. Halogenated butyl rubber is a version of butyl rubber with improved vulcanizability.It has the characteristics of conventional butyl rubber, such as excellent gas impermeability and excellent weather resistance, but has also been made possible to blend with general-purpose diene rubber. , which increases the vulcanization rate by adding halogen atoms to the butyl rubber side chains. Therefore, its skeleton has fewer unsaturated bonds than general-purpose rubbers, and it belongs to the so-called low unsaturated rubber category. Therefore, despite the excellent characteristics mentioned above, there are problems with co-vulcanization with general-purpose diene rubbers, and as a result, rubber/rubber adhesion, which is an important property required in the production of rubber products, is poor. It becomes very inferior. In particular, adhesion between rubber compositions containing halogenated butyl rubber and rubber compositions containing natural rubber, styrene-butadiene rubber, isoprene rubber, or butadiene rubber after vulcanization is extremely difficult, causing many problems in product performance. . For example, rubber may peel off due to poor adhesion with different rubbers. Conventionally, as a means to solve this kind of problem, a rubber composition was dissolved in an organic solvent and applied to the rubber surface, or an appropriate vulcanization accelerator was added to the rubber composition in order to bring the vulcanization speed of different rubbers closer together. In some cases, adhesive resins such as alkylphenol resins are added. However, such methods do not give sufficiently satisfactory results, and in particular, rubber compositions containing different rubbers, especially low unsaturated rubber compositions such as halogenated butyl rubber, natural rubber, styrene rubber, etc. Adhesion with unsaturated rubber compositions such as butadiene rubber, isoprene rubber, and butadiene rubber is extremely difficult, and sufficient effects have not been obtained. The reason for this is thought to be that these adherends and the base material of the rubber paste or the adherends have different polarities and a difference in vulcanization rate. Furthermore, it is generally said that asphalt is suitable for improving the rubber/rubber adhesion between a rubber composition containing halogenated butyl rubber and a rubber composition containing a different rubber. It is true that the addition of asphalt has better adhesive strength than the methods described above, in which a rubber composition is dissolved in an organic solvent and applied to the rubber surface, or a suitable vulcanization accelerator or adhesive resin is added to the rubber composition. Although this is an excellent method in terms of level, it is well known that asphalt is often viscous at room temperature, has a strong odor, and is extremely difficult to work on site. As described above, in the conventional methods, there is still no method that satisfies the adhesion after vulcanization between a rubber composition containing a halogenated butyl rubber and a rubber composition containing a different rubber such as a diene rubber, including processability. It is no exaggeration to say that it has not been done. The present invention improves adhesion after vulcanization with other diene rubber compositions, which has traditionally been a problem in the production of rubber products, and also contains halogenated butyl rubber, which has excellent processability. The present invention aims to provide a rubber composition that is widely used in automobile tires, rubber articles, rubber footwear, etc., and is particularly suitable for tire sidewalls, inner liners, and treads. The present inventors have discovered that the above object can be achieved by adding a specific resin to a rubber composition containing halogenated butyl rubber, and have arrived at the present invention. The present invention comprises at least 10 halogenated butyl rubbers.
This rubber composition is characterized in that 10 to 30 parts by weight of a petroleum resin having a softening point of 80 to 120°C and a fixed carbon content of 25 to 50% is blended to 100 parts by weight of raw rubber. The term "halogenated butyl rubber" as used in the present invention refers to rubber in which a halogen atom such as chlorine or bromine is added to a butyl rubber side chain. It is necessary that the halogenated butyl rubber is contained in the raw material rubber in an amount of 10% by weight or more.
If the halogenated butyl rubber is less than 10% by weight, the adhesion after vulcanization with other diene rubber-containing rubber compositions will not be a problem, but the gas impermeability or weather resistance of the halogenated butyl rubber will not be a problem. This characteristic cannot be obtained either. Halogenated butyl rubber may be blended alone or in combination with other raw material rubbers. As the other raw material rubber, at least one of natural rubber and diene-based synthetic rubber is appropriately selected depending on the use of the rubber composition, and the blending amount thereof is 90% or less in the raw material rubber. The petroleum resin used in the present invention consists of a fraction rich in aromatic components extracted from a petroleum fraction (average molecular weight 200 to 800) with furfural, phenol, and other appropriate solvents and an oxygen-containing gas or a gas containing oxygen and ozone. It is a resin compound obtained by catalytic reaction of
%, and an aromatic index of 0.68 or more, and a petroleum resin within this range improves the adhesion of the halogenated butyl rubber-containing rubber composition to other diene-based rubber-containing rubber compositions after vulcanization. The amount of petroleum resin added in the present invention is 10 to 30 parts by weight per 100 parts by weight of raw rubber. If it is less than 10 parts by weight, the adhesion with rubber compositions containing other diene rubbers will be poor and interfacial peeling will occur. arise. If it exceeds 30 parts by weight, the vulcanized physical properties, especially the tensile strength, will decrease, resulting in a decrease in adhesive strength. In the rubber composition of the present invention, compounding agents normally used in the rubber industry, such as carbon black, zinc oxide, stearic acid, extender oil, vulcanization accelerator, and sulfur, are blended in appropriate amounts depending on the intended use. The present invention will be specifically described below based on Examples and Comparative Examples. Note that the blending values in the table are parts by weight. Examples 1 to 2 and Comparative Examples 1 to 4 Commercially available brominated butyl rubber was used as a raw material rubber at the compounding ratio shown in Table 1, and a vulcanization accelerator and compounding agents other than sulfur, as well as various resins or petrolatum were added. The mixture was kneaded for 4 minutes using a B-type Banbury mixer (capacity: about 1.5), a vulcanization accelerator and sulfur were added thereto, and kneaded for 5 minutes using an 8-inch roll to obtain a rubber composition. This rubber composition and a rubber composition using natural rubber as the raw material were laminated together at 160°C.
Press co-vulcanization was performed for 30 minutes and a rubber/rubber adhesion test was performed. This rubber/rubber adhesion test is JIS
Made in accordance with K6301, width 25.0±0.5mm, length 150mm, thickness 6mm with reinforcing material laminated on both sides.
Perform a 180° peel test on a strip-shaped test piece using an autograph at a pulling speed of 50 mm/min, then calculate the average value of each peak (high value) of the wavy part of the tensile load curve, and calculate this as the peel strength. It was expressed as an index with the value of Comparative Example 3 as 100. Furthermore, the state of rubber failure was expressed as a ratio of interface failure (%)/material failure (%). The results are shown in Table 1. Further, Table 2 shows the formulation of a rubber composition using the bonded natural rubber as a raw material rubber.

【表】 第1表に示されるように石油樹脂を添加した実
施例1〜2はペトロラタム、アルキルフエノール
樹脂、C9樹脂、C5樹脂を添加した比較例1〜4
に比べ接着力が高く、また材料破壊の割合が多
い。このことから実施例1〜2は他のゴム組成物
との加硫後の接着性が良いことがわかる。
[Table] As shown in Table 1, Examples 1 to 2 in which petroleum resin was added are comparative examples 1 to 4 in which petrolatum, alkylphenol resin, C 9 resin, and C 5 resin were added.
It has a higher adhesive strength and a higher rate of material destruction than . This shows that Examples 1 and 2 have good adhesion with other rubber compositions after vulcanization.

【表】【table】

【表】 実施例3〜4および比較例5〜8 第3表に示す配合で塩素化ブチルゴムを用い実
施例1と同一条件でゴム組成物を得、第2表に示
すゴム組成物と共加硫を行い、得られた加硫ゴム
のゴム/ゴム接着試験を行い、結果を第3表に示
した。なお、接着力は比較例7を100とした指数
で表示した。
[Table] Examples 3 to 4 and Comparative Examples 5 to 8 Rubber compositions were obtained under the same conditions as Example 1 using chlorinated butyl rubber with the formulation shown in Table 3, and co-added with the rubber composition shown in Table 2. The resulting vulcanized rubber was subjected to a rubber/rubber adhesion test, and the results are shown in Table 3. Note that the adhesive strength was expressed as an index with Comparative Example 7 set as 100.

【表】 第3表のごとく塩素化ブチルゴムを原料ゴムと
して用いても、石油樹脂を添加した実施例3〜4
は他の樹脂またはペトロラタムを添加した比較例
5〜8に比べ接着力が高く、材料破壊の割合が多
い。 実施例5〜6および比較例9〜10 第4表に示す配合で実施例1と同一条件でゴム
組成物を得、第2表に示すゴム組成物と貼り合せ
共加硫を行い、得られた加硫ゴムのゴム/ゴム接
着試験を行い、結果を第3表に示した。なお接着
力は比較例9を100とした指数で表示した。
[Table] Examples 3 to 4 in which petroleum resin was added even though chlorinated butyl rubber was used as the raw material rubber as shown in Table 3.
Compared to Comparative Examples 5 to 8 in which other resins or petrolatum were added, the adhesive force was higher and the rate of material destruction was higher. Examples 5 to 6 and Comparative Examples 9 to 10 Rubber compositions were obtained under the same conditions as Example 1 with the formulations shown in Table 4, and laminated and co-vulcanized with the rubber compositions shown in Table 2. A rubber/rubber adhesion test was conducted on the vulcanized rubber, and the results are shown in Table 3. Note that the adhesive strength was expressed as an index with Comparative Example 9 set as 100.

【表】【table】

【表】 第4表から明らかなごとく、石油樹脂を添加し
た実施例5〜6はストレートアスフアルトまたは
ブローンアスフアルトを添加した比較例9〜10よ
りも接着力にすぐれ、材料破壊の割合が多い。ま
た、加工性にもすぐれている。 実施例7〜11および比較例11 第5表に示す配合で実施例1と同様の条件で混
練してゴム組成物を得、このゴム組成物を148℃、
45分プレス加硫して得られた加硫ゴムの物性評価
を行つた。加硫物性評価はJIS K6301に準拠して
行い、引張り強さ、伸び、硬度(JIS)および引
裂力(試験片Bを使用)を測定した。結果を第5
表に示す。 また、第5表に示す配合のゴム組成物を第2表
に示すゴム組成物と貼り合せ、実施例1と同様に
共加硫を行い、得られた加硫ゴムのゴム/ゴム接
着試験を行い、結果を第5表に示す。さらに、こ
の加硫ゴムをオーブン中、100℃、48時間放置後
の耐熱老化ゴム/ゴム接着試験を行い熱老化性を
評価した。この結果も併せて第5表に示す。
[Table] As is clear from Table 4, Examples 5 to 6 in which petroleum resin was added had superior adhesive strength and a higher rate of material failure than Comparative Examples 9 to 10 in which straight asphalt or blown asphalt was added. It also has excellent workability. Examples 7 to 11 and Comparative Example 11 Rubber compositions were obtained by kneading the formulations shown in Table 5 under the same conditions as in Example 1.
The physical properties of the vulcanized rubber obtained by press vulcanization for 45 minutes were evaluated. Vulcanized physical properties were evaluated in accordance with JIS K6301, and tensile strength, elongation, hardness (JIS) and tear force (using test piece B) were measured. 5th result
Shown in the table. In addition, the rubber composition having the formulation shown in Table 5 was laminated with the rubber composition shown in Table 2, co-vulcanization was performed in the same manner as in Example 1, and the rubber/rubber adhesion test of the obtained vulcanized rubber was conducted. The results are shown in Table 5. Further, this vulcanized rubber was left in an oven at 100°C for 48 hours, and then a heat aging rubber/rubber adhesion test was conducted to evaluate heat aging properties. The results are also shown in Table 5.

【表】【table】

【表】 第5表から石油樹脂を増量するに従つて接着力
は向上し、破壊状態も界面剥離が減少し材料剥離
が増加する。しかし、石油樹脂が30重量部近傍で
は接着力が低下する。これは石油樹脂の増量に従
い加硫物性、特に引張り強さが低下することに起
因するものと考えられる。また、耐熱老化性接着
試験においても同様な結果が得られた。このこと
から石油樹脂の添加量は原料ゴム100重量部に対
し10〜30重量部が好ましいことがわかる。 実施例 12〜15 第6表に示す配合で実施例1と同様の条件でゴ
ム組成物を得、このゴム組成物と第2表のゴム組
成物とを貼り合せ共加硫して加硫ゴムを得た。得
られた加硫ゴムの接着試験を行い、結果を第6表
に示す。
[Table] From Table 5, as the amount of petroleum resin is increased, the adhesive strength improves, and in the fracture state, interfacial peeling decreases and material peeling increases. However, when the petroleum resin is around 30 parts by weight, the adhesive strength decreases. This is considered to be due to the fact that the physical properties of the vulcanizate, especially the tensile strength, decrease as the amount of petroleum resin increases. Similar results were also obtained in the heat aging resistant adhesion test. This shows that the amount of petroleum resin added is preferably 10 to 30 parts by weight per 100 parts by weight of raw rubber. Examples 12 to 15 Rubber compositions were obtained under the same conditions as in Example 1 with the formulations shown in Table 6, and this rubber composition and the rubber compositions in Table 2 were laminated together and co-vulcanized to produce vulcanized rubber. I got it. The obtained vulcanized rubber was subjected to an adhesion test, and the results are shown in Table 6.

【表】 第6表より臭素化ブチルゴム/天然ゴムを原料
ゴムとして、石油樹脂を含有するゴム組成物は第
2表の天然ゴムを原料ゴムとするゴム組成物と共
加硫した場合には天然ゴムに対する接着性にすぐ
れ、接着破壊状態も材料破壊が主となつている。
天然ゴムの含有率が高い程、接着性が良いのは同
種ゴムの親和性によるものと考えられる。 以上説明したように、ハロゲン化ブチルゴムを
単独もしくは他のゴムと混合してなるゴム組成物
に石油樹脂を一定量範囲添加することによつて、
異種ゴムを含有するゴム組成物との加硫後の接着
性を今までの方法では達成できなかつたレベルま
で向上させることができる。そのうえ、本発明で
使用する石油樹脂は常温で塊状の固体であるの
で、取り扱い非常に簡単でアスフアルトの様な加
工上の問題が生じない。 従つて、本発明のゴム組成物をハロゲン化ブチ
ルゴム含有ゴム組成物を使用し、かつ異種ゴム含
有ゴム組成物との接着が必要な部所、例えばタイ
ヤのインナーライナー、トレツド、サイドウオー
ル等に使用すれば、加硫後の接着が良いことから
今までの様にタイヤ走行中にゴム剥離を起す恐れ
がなく、ひいてはタイヤの品種向上に寄与するこ
とができる。
[Table] From Table 6, rubber compositions containing petroleum resin using brominated butyl rubber/natural rubber as the raw material rubber are natural when co-vulcanized with rubber compositions using natural rubber in Table 2 as the raw material rubber It has excellent adhesion to rubber, and the main cause of adhesive failure is material failure.
The reason why the higher the content of natural rubber is, the better the adhesion is is thought to be due to the affinity with similar rubbers. As explained above, by adding a certain amount of petroleum resin to a rubber composition made of halogenated butyl rubber alone or mixed with other rubbers,
Adhesion after vulcanization with rubber compositions containing different rubbers can be improved to a level that could not be achieved by conventional methods. Moreover, since the petroleum resin used in the present invention is a lumpy solid at room temperature, it is very easy to handle and does not cause processing problems like asphalt. Therefore, the rubber composition of the present invention can be used in areas where a rubber composition containing halogenated butyl rubber is used and where adhesion with a rubber composition containing a different type of rubber is required, such as tire inner liners, treads, sidewalls, etc. If this is done, since the adhesion after vulcanization is good, there is no risk of rubber peeling while the tire is running, unlike in the past, and this can contribute to improving the variety of tires.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化ブチルゴムを少くとも10重量部以
上含む原料ゴム100重量部に対し、軟化点80〜120
℃、固定炭素含有量25〜50%の石油樹脂を10〜30
重量部配合したことを特徴とするゴム組成物。
1 Softening point 80-120 for 100 parts by weight of raw rubber containing at least 10 parts by weight of halogenated butyl rubber
10-30℃, petroleum resin with fixed carbon content 25-50%
A rubber composition characterized in that it contains parts by weight.
JP56112271A 1981-07-20 1981-07-20 Rubber composition Granted JPS5813647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112271A JPS5813647A (en) 1981-07-20 1981-07-20 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112271A JPS5813647A (en) 1981-07-20 1981-07-20 Rubber composition

Publications (2)

Publication Number Publication Date
JPS5813647A JPS5813647A (en) 1983-01-26
JPS6361969B2 true JPS6361969B2 (en) 1988-11-30

Family

ID=14582520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112271A Granted JPS5813647A (en) 1981-07-20 1981-07-20 Rubber composition

Country Status (1)

Country Link
JP (1) JPS5813647A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231818A (en) * 1984-04-27 1985-11-18 Kuraray Co Ltd Modified cross-section polybutylene terephthalate fiber and its manufacture
JP2582755B2 (en) * 1986-08-19 1997-02-19 三菱化学株式会社 Rubber composition for tire tread
JP5205714B2 (en) * 2006-05-30 2013-06-05 横浜ゴム株式会社 Rubber composition for tire inner liner
JP2019006846A (en) * 2017-06-20 2019-01-17 株式会社ブリヂストン Rubber composition and tire using the same

Also Published As

Publication number Publication date
JPS5813647A (en) 1983-01-26

Similar Documents

Publication Publication Date Title
EP0527396B1 (en) Tire tread rubber composition
JP5198746B2 (en) Rubber composition and pneumatic tire using the same
EP1690895B1 (en) Rubber composition and tire having tread comprising thereof
JP5443539B2 (en) Elastomer compounds with improved wet slip resistance and methods for improving wet slip resistance
JPH0336850B2 (en)
JPS61176642A (en) Natural rubber-containing composition having enhanced tear strength
JPS6335668B2 (en)
JP4996800B2 (en) Rubber composition
JPS586738B2 (en) High hardness rubber composition
US4166083A (en) Rubber composition and process for preparation thereof
JP2001151940A (en) Rubber composition
US4284535A (en) Rubber composites suitable for tire sidewalls from hexadiene polymer
JPS6361969B2 (en)
US4551392A (en) Composite materials and composite building elements based on EP(D)M
JPH11335488A (en) Rubber composition for tire
JPS60197749A (en) Rubber composition
JP2001247722A (en) Rubber composition
JP4117987B2 (en) Pneumatic tire
JPS586737B2 (en) Rubber composition that adheres well to zinc or zinc-plated metal
JPH10182881A (en) Rubber composition
KR100738655B1 (en) The apex rubber compound with improved tack
KR100911613B1 (en) Rubber composition of tire having polybutene
US4240487A (en) Pneumatic rubber tire having improved sidewalls
JP6852985B2 (en) Rubber composition
JPS6160738A (en) Rubber composition having excellent abrasion resistance and processability