JPS6361948A - Surface shape inspection instrument - Google Patents

Surface shape inspection instrument

Info

Publication number
JPS6361948A
JPS6361948A JP20733086A JP20733086A JPS6361948A JP S6361948 A JPS6361948 A JP S6361948A JP 20733086 A JP20733086 A JP 20733086A JP 20733086 A JP20733086 A JP 20733086A JP S6361948 A JPS6361948 A JP S6361948A
Authority
JP
Japan
Prior art keywords
inspected
wave
surface shape
shape inspection
receiver group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20733086A
Other languages
Japanese (ja)
Inventor
Hiroshi Teramoto
寺本 浩志
Masaki Teshigahara
勅使川原 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP20733086A priority Critical patent/JPS6361948A/en
Publication of JPS6361948A publication Critical patent/JPS6361948A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inspect the projection and recess state of the surface of a body to be inspected without any environment restrictions by irradiating the body to be inspected with a detection wave signal such as an ultrasonic wave, and receiving its reflected wave by a wave receiver group and imaging the surface shape of the body to be inspected. CONSTITUTION:This device consists of a wave transmitter 2, the receiver group 3, an oscillator 4, and a CPU9, etc. Then when the detection wave signal such as an ultrasonic wave is sent out of the transmitter 2 to the body 1 to be inspected, the signal is reflected by the surface of the body 1 to be inspected and received by respective receivers in the receiver group 3. The amplitude and phase of each received signal of the receiver group 3 are found and supplied as hologram data to an arithmetic processing part. The same operation is carried out as to detection wave signals of all frequencies to generate hologram data as to all combinations of the all frequencies and all wave reception positions. The arithmetic processing part performs specific arithmetic operation with the supplied hologram data, and consequently the surface shape of the body 1 to be inspected is imaged. Then this body image is matched with images which are registered previously and the surface shape of the body 1 to be inspected is judged from whether both images coincide with each other or not.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、被検査物を画像化した後、この画像と予め
登録してある画像とを照合して被検査物の表面形状を検
査するのに用いられる表面形状検査装置に関連し、 殊にこの発明は、被検査物の表面に超音波のような検出
波を昭射してこの被検査物からの反射波を受波子群で受
波すると共に、この受渡信号に基づき所定の演算処理を
実行して被検査物の表面形状を画像化するための表面形
状検査装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention involves imaging an object to be inspected and then comparing this image with a pre-registered image to inspect the surface shape of the object. In particular, the present invention relates to a surface shape inspection device used in The present invention relates to a surface shape inspection apparatus for performing predetermined arithmetic processing based on the transfer signal to image the surface shape of an object to be inspected.

〈従来の技術〉 従来この種表面形状検査装置として、光学的映像装置を
用いたものが存在する。この装置は被検査物を真上より
テレビカメラで過像し、その画像を予め登録してある画
像とを照合して被検査物の表面形状を検査するものであ
る。
<Prior Art> Conventionally, as this type of surface shape inspection device, there is one using an optical imaging device. This device images an object to be inspected from directly above with a television camera, and compares the image with a pre-registered image to inspect the surface shape of the object.

〈発明が解決しようとする問題点〉 ところがこの種光学的映像装置では、被検査物を真上よ
り見た平面画像しか得られず、被検査物の表面にある凹
凸の状態は全(検査できないという問題がある。また光
学的映像装置の場合、外部照明や物体色などの光学上の
制約を受は易く、しかも埃などが発生する悪環境下では
検査が困難である等の問題があった。
<Problems to be Solved by the Invention> However, with this type of optical imaging device, only a flat image of the object to be inspected viewed from directly above can be obtained; In addition, optical imaging devices are susceptible to optical constraints such as external lighting and object color, and there are also problems such as inspection being difficult in adverse environments where dust is generated. .

この発明は、上記問題を解消するため、超音波のような
検出波信号を被検査物に照射しその反射波を受波子群で
受波して被検査物の表面形状を映像化することにより、
環境による制約を殆ど受けずに、しかも被検査物表面の
凹凸状態を検査できる新規な表面形状検査装置を提供す
ることを目的とする。
In order to solve the above problem, this invention irradiates the object to be inspected with a detection wave signal such as an ultrasonic wave and receives the reflected wave by a group of receivers to visualize the surface shape of the object. ,
It is an object of the present invention to provide a novel surface shape inspection device that can inspect the uneven state of the surface of an object to be inspected with almost no restrictions from the environment.

く問題点を解決するための手段〉 上記目的を達成するため、この発明の表面形状検査装置
では、 被検査物の表面に対し周波数が異なる複数種の検出波信
号を送出するための送波子と、被検査物からの反射波を
受波するための受波子が複数個配列されて成る受波子群
と、この受波子群で得た複数種類の受波13号につきそ
の振幅と位相とにより所定の演算を実行して被検査物の
表面形状を映像化する演算処理部とを具備させることに
した。
Means for Solving the Problems> In order to achieve the above object, the surface shape inspection apparatus of the present invention includes a wave transmitter and a wave transmitter for transmitting a plurality of types of detection wave signals having different frequencies to the surface of an object to be inspected. , a wave receiver group consisting of a plurality of wave receivers arranged for receiving reflected waves from the object to be inspected, and a predetermined amplitude and phase of multiple types of received waves No. 13 obtained with this wave receiver group. It was decided to include an arithmetic processing section that executes the arithmetic operations and visualizes the surface shape of the object to be inspected.

〈作用〉 送波子より超音波のような検出波信号を被検査物に向け
て送出すると、この検出波信号は被検査物の表面で反射
せられて受波子群の各受波子にて受波される。この受波
子群での受波信号につきその振幅と位相とが求められ、
ホログラムデータとして演算処理部に与えられる。同様
の動作を全ての周波数の検出波信号につき実行すると、
全ての周波数と全ての受波位置との組み合わせについて
ホログラムデータが生成される。前記演算処理部は与え
られたホログラムデータにより所定の演算を実行し、こ
れにより被検査物の表面形状(凹凸状態)を映像化する
<Operation> When a detection wave signal such as an ultrasonic wave is sent from a wave transmitter toward an object to be inspected, this detection wave signal is reflected from the surface of the object to be inspected and is received by each receiver in the receiver group. be done. The amplitude and phase of the received signal at this receiver group are determined,
It is given to the arithmetic processing unit as hologram data. When the same operation is performed for the detected wave signals of all frequencies,
Hologram data is generated for combinations of all frequencies and all wave reception positions. The arithmetic processing section executes a predetermined arithmetic operation using the provided hologram data, thereby visualizing the surface shape (unevenness) of the object to be inspected.

しかろ後この物体像は予め登録された画像と照合され、
両画像が一敗するか否かで被検査物の表面形状の判断が
行われる。
However, this object image is then compared with the pre-registered image,
The surface shape of the object to be inspected is determined based on whether or not both images match.

〈実施例〉 第1図は、この発明の一実施例にかかる表面形状検査装
置の全体構成例を示す。この表面形状検査装置は、被検
査物1の表面形状をZ次元的に映像化して、それが所定
形状であるか否かを検査するためのものであり、送波子
2.受波子群31発振器4.電力増幅器5.増幅回路6
゜検波回路7.A/D変換器8および、コンピュータ9
等を構成として含んでいる。
<Embodiment> FIG. 1 shows an example of the overall configuration of a surface shape inspection apparatus according to an embodiment of the present invention. This surface shape inspection device is for visualizing the surface shape of an object to be inspected 1 in the Z dimension and inspecting whether it has a predetermined shape or not. Receiver group 31 oscillator 4. Power amplifier5. Amplification circuit 6
゜Detection circuit 7. A/D converter 8 and computer 9
etc. are included in the structure.

この実施例の場合、前記発振器4は周波耕差が等間隔と
なるL種類(ただしLは2以上の整数)の超音波信号を
発生する。送波子2は受波子群3の中心位置に配置され
、前記発振器4より電力増幅器5を介して超音波信号を
受け、これを被検査物1の表面に向けて真上より照射す
る。
In the case of this embodiment, the oscillator 4 generates L types of ultrasonic signals (where L is an integer of 2 or more) whose frequency differences are equally spaced. The transmitter 2 is placed at the center of the group of receivers 3, receives an ultrasonic signal from the oscillator 4 via the power amplifier 5, and irradiates the surface of the object 1 from directly above.

受波子群3は被検査物1の表面で反射された超音波信号
を真上番こて受波するためのもので、図示例の場合、−
直線上にM個(ただしMは2以上の整数)の受波子R8
,R1,・・・・+ R,−。
The wave receiver group 3 is for receiving the ultrasonic signal reflected from the surface of the object 1 to be inspected, and in the illustrated example, -
M number of receivers R8 (M is an integer of 2 or more) on a straight line
, R1,...+ R, -.

がそれぞれ等間隔に配列されている。are arranged at equal intervals.

この受波子群3で受波された超音波信号は増幅回路6で
増幅された後、検波回路7でその振幅と位相とが測定さ
れ、ホログラムデータとしてA/D変換器8でディジタ
ル信号化された上でコンピュータ9のメモリ10に格納
される。
The ultrasonic signal received by the wave receiver group 3 is amplified by an amplifier circuit 6, its amplitude and phase are measured by a detection circuit 7, and converted into a digital signal by an A/D converter 8 as hologram data. The data is then stored in the memory 10 of the computer 9.

このような、ホログラムデータは全種類の周波数と受波
子群3の全位置との組み合わせについて測定されるもの
で、前記コンピュータ9の制御主体であるCPUIIは
これらホログラムデータに基づき所定の演算を実行して
被検査物1の表面形状の画像を再生する。
Such hologram data is measured for combinations of all types of frequencies and all positions of the wave receiver group 3, and the CPU II, which is the control main body of the computer 9, executes predetermined calculations based on these hologram data. An image of the surface shape of the object to be inspected 1 is reproduced.

第2図はその再生像13を示し、受波子群3の配列方向
に沿う被検査物1の表面形状(第1図中、太線12に沿
う形状)がその凹凸どおりに再生されている。
FIG. 2 shows the reproduced image 13, in which the surface shape of the object 1 to be inspected along the arrangement direction of the wave receiver group 3 (the shape along the thick line 12 in FIG. 1) is reproduced exactly as it is uneven.

また前記のCPUI 1は、得られた被検査物1の再生
像を、予めメモリ10に登録してある登録画像と比較し
、両画像が一致するか否かにより被検査物1の表面に傷
や異物が存在しているかどうかを判断する。なお再生像
と登録画像との照合は、従来の光学式検査装置で用いら
れているパターンマツチング法のアルゴリズムを用いて
行われる。
In addition, the CPU 1 compares the obtained reproduced image of the object to be inspected 1 with a registered image registered in advance in the memory 10, and determines whether or not the two images match or not to damage the surface of the object to be inspected. Determine whether or not foreign matter is present. Note that matching between the reproduced image and the registered image is performed using a pattern matching algorithm used in conventional optical inspection devices.

ところで前記ホログラムデータは、LXMの2次元デー
タとなるが、被検査物1へ照射される前記り種類の超音
波信号の周波数差が等間隔であり、また受波子群3にお
ける受波子R0゜R1,・・・・+ RFI−1の配列
間隔も等間隔であり、しかも被検査物1がフレネル領域
にある場合には、ホログラムデータの2次元の各方向(
12゜mの方向)は被検査物1の2次元の各方向(z。
By the way, the hologram data is two-dimensional LXM data, but the frequency differences of the types of ultrasonic signals irradiated to the object 1 to be inspected are at equal intervals, and the wave receiver R0°R1 in the wave receiver group 3 ,...+ RFI-1 is arranged at equal intervals, and when the object 1 to be inspected is in the Fresnel region, each two-dimensional direction of the hologram data (
12° direction) is each two-dimensional direction (z.

Xの各方向)とそれぞれフーリエ変換対をなす。(in each direction of X) and form a Fourier transform pair, respectively.

従って得られたホログラムデータに2次元のフーリエ変
換処理を施せば、被検査物1の2次元像を得ることがで
きる。
Therefore, by performing two-dimensional Fourier transformation processing on the obtained hologram data, a two-dimensional image of the object to be inspected 1 can be obtained.

いま第3図に示すX座標を想定し、その座標中心0より
周波数がω、の超音波信号が物体領域へ照射された場合
を考えると、この超音波信号は物体領域内の反射点Q 
(xo 、  zo )で反射され、X座標の位置x、
で受波される。この場合、受波される超音波信号htf
fiは位置X1と反射点Qとの距離をR,、。、座標中
心0と反射点Qとの距離をR6゜とすると、つぎの0式
のように表される。
Now assuming the X coordinate shown in Fig. 3, and considering the case where an ultrasonic signal with a frequency of ω is irradiated from the coordinate center 0 to the object region, this ultrasonic signal will be reflected at the reflection point Q within the object region.
(xo, zo), the X coordinate position x,
The wave is received by In this case, the received ultrasonic signal htf
fi is the distance between position X1 and reflection point Q, R, . , when the distance between the coordinate center 0 and the reflection point Q is R6°, it is expressed as the following equation 0.

+R,。) l dx dy・・・・■上記の信号を全
ての周波数と全ての受波位置とにつき測定し、つぎの0
式に示す再生公式に従って2次元像の再生を実行するも
のである。
+R,. ) l dx dy...■Measure the above signals at all frequencies and all receiving positions, and then
The two-dimensional image is reproduced according to the reproduction formula shown in the following equation.

(ROT+Rnv) )  l 2−■なお上式中、R
FITは位置X7と像再生点Tとの距離を、Ro□は座
標中心0と像再生点Tとの距離を、それぞれ示す。また
Cは定数である。
(ROT+Rnv) ) l 2-■ In the above formula, R
FIT indicates the distance between the position X7 and the image reproduction point T, and Ro□ indicates the distance between the coordinate center 0 and the image reproduction point T, respectively. Further, C is a constant.

ところでこの実施例における表面形状検査装置では、被
検査物1へ照射される前記り種類の超音波信号の周波数
差は等間隔であり、また受波子群3における受波子の配
列間隔も等間隔であるから、上式のωLIXNはつぎの
00式の如(表せる。
By the way, in the surface shape inspection apparatus in this embodiment, the frequency differences of the above types of ultrasonic signals irradiated to the inspection object 1 are at equal intervals, and the arrangement intervals of the wave receivers in the wave receiver group 3 are also at equal intervals. Therefore, ωLIXN in the above equation can be expressed as the following equation 00.

x、 −p、−m・・・・■ (ただしm=o、1,2.・・・・、ト1)(ただしl
 =0.12.、−0.L−1)なお上式中、pxは各
受波点のX方向の間隔であり、またfcは基進周波数で
ある。
x, -p, -m...■ (However, m=o, 1, 2..., t1) (However, l
=0.12. , -0. L-1) In the above formula, px is the interval in the X direction between each receiving point, and fc is the fundamental frequency.

さらに物体領域はフレネル領域にあるものとして、下記
のフレネル近似を導入する。
Furthermore, assuming that the object region is in the Fresnel region, the following Fresnel approximation is introduced.

R,、=X 上記00式を前記0式へ代入すると、つぎの0式を得る
R,,=X By substituting the above equation 00 into the above equation 0, the following equation 0 is obtained.

1  (x、z) =1ΣΣFLLn’eXp  (j−Co  −x、 
” )  −exp  (j−C+  ・zfL)  
・exp  (j−Cx  ・xx、)  12exp
  (j−cz  ・xx、)R= l F (ht*
’)  12・・・・■なお上式中、Go 、C+ 、
Czは比例定数である。
1 (x, z) = 1ΣΣFLLn'eXp (j-Co -x,
” ) −exp (j−C+ ・zfL)
・exp (j-Cx ・xx,) 12exp
(j-cz ・xx,)R= l F (ht*
') 12...■In the above formula, Go, C+,
Cz is a proportionality constant.

また上式中、hい′はつぎの0式のとおりであり、これ
は受波子の位置によるホログラムデータの補正演算処理
を表している。
Furthermore, in the above equation, h′ is as shown in the following equation 0, which represents the correction calculation process of hologram data depending on the position of the receiving wave element.

h+*’ =htn・eXp(3−Go  ・Xn ”
 )・・・・■ かくして前記0式中、右辺はh LM′のフーリエ変換
を表すものであり、得られたホログラムデータに補正処
理を加え、このデータを13mに関して2次元FFTを
施せば、物体像が再生できることがわかる。
h+*'=htn・eXp(3-Go・Xn"
)...■ Thus, in the above equation 0, the right side represents the Fourier transform of h LM', and if the obtained hologram data is corrected and this data is subjected to two-dimensional FFT with respect to 13m, the object It turns out that the statue can be regenerated.

第4図は、被検査物1の表面形状を検査する手順を示す
FIG. 4 shows a procedure for inspecting the surface shape of the object 1 to be inspected.

まずステップ1 (図中、rSTIJで示す)において
、CPUI 1は発振器5を動作させである周波数の超
音波信号を発生させ、電力増幅器5を駆動して送波子2
より前記超音波信号を被検査物1に向けて送出する。こ
の超音波信号は被検査物lの表面で反射せられ、この反
射波は受波子群3の各受波子R,,R,,・・、・。
First, in step 1 (indicated by rSTIJ in the figure), the CPU 1 operates the oscillator 5 to generate an ultrasonic signal of a certain frequency, drives the power amplifier 5, and transmits the wave transmitter 2.
The ultrasonic signal is then sent toward the object 1 to be inspected. This ultrasonic signal is reflected by the surface of the object to be inspected l, and this reflected wave is transmitted to each receiver R,, R,, . . . of the receiver group 3.

RA−1にて受波される。The wave is received at RA-1.

CPUI 1は他の全ての周波数の超音波信号について
も同様の制御を行い、全ての周波数と全ての受波位置と
の徂み合わせについてホログラムデータが生成される。
The CPU 1 performs similar control for ultrasonic signals of all other frequencies, and hologram data is generated for the alignment of all frequencies and all wave reception positions.

このホログラムデータはコンピュータ9のメモリ10に
格納され、必要に応じて送受波子特性の補正や焦点位置
の補正等の補正演算が施される。なおホログラムデータ
は周波数の組み合わせ方向をl、受波子群3のX座標の
組み合わせ方向をmとして、h (m、  !2)で表
される。
This hologram data is stored in the memory 10 of the computer 9, and is subjected to correction calculations such as correction of transmitting/receiving wave element characteristics and focal position correction as necessary. Note that the hologram data is expressed as h (m, !2), where l is the frequency combination direction and m is the combination direction of the X coordinates of the wave receiver group 3.

つぎにステップ2でCPUI 1は、上記ホログラムデ
ータh (m、  jりをまず!方向に関してフーリエ
変換処理を施し、これによりホログラムデータh (m
、  IりのうちX座標を2座標に変換する。こうして
得られたホログラムデータはつぎにm方向乙こ関してフ
ーリエ変換処理が施され、これによりm座標がX座標に
変換されて、最終的に(x、  z)で表示される2次
元の物体像Iが得られる。
Next, in step 2, the CPU 1 first performs Fourier transform processing on the hologram data h (m,
, Convert the X coordinate into two coordinates. The hologram data obtained in this way is then subjected to Fourier transformation processing in the m direction, thereby converting the m coordinate to the X coordinate, and finally a two-dimensional object image displayed at (x, z). I is obtained.

つぎのステップ3においてCPUIIは、パターンマツ
チング法のアルゴリズムに基づき前記物体像をメモリ1
0に格納してある登録画像と照合し、両画像が一致する
か否かにより被検査物1の表面に傷や異物が存在してい
るかどうかを判断する。
In the next step 3, the CPU II stores the object image in the memory 1 based on the pattern matching algorithm.
0, and it is determined whether or not there are scratches or foreign matter on the surface of the inspection object 1 based on whether the two images match or not.

なお上記実施例における超音波は、その周波数を連続的
に変化するようないわゆるチ島−ブ波を用いてもよく、
さらに検出波として超音波に変えて電磁波を用いること
も可能である。
In addition, the ultrasonic waves in the above embodiments may be so-called Chi-F waves that continuously change their frequency.
Furthermore, it is also possible to use electromagnetic waves instead of ultrasonic waves as detection waves.

さらに上記実施例では、受波子群3として複数個の受波
子を1次元配列したものを用いているが、この発明はこ
れに限らず、複数個の受波子を2次元配列したものも用
いることが可能である。そしてこの場合は被検査物1の
再生像は3次元となるが、上記と同様の手111を実行
することにより被検査物1の表面形状を検査することが
できる。
Further, in the above embodiment, a one-dimensional array of a plurality of wave receivers is used as the wave receiver group 3, but the present invention is not limited to this, and a two-dimensional array of a plurality of wave receivers may also be used. is possible. In this case, the reproduced image of the object to be inspected 1 is three-dimensional, but the surface shape of the object to be inspected 1 can be inspected by performing the same operation 111 as described above.

〈発明の効果〉 この発明は上記の如く、超音波のような検出波信号を被
検査物に照射しその反射波を受波子群で受波して被検査
物の表面形状を映像化することにしたから、従来の光学
的映像装置のように環境による制約を殆ど受けることが
なく、しかもVi、検査物表面の凹凸状態までも検査す
ることができる等、発明目的を達成した顕著な効果を奏
する。
<Effects of the Invention> As described above, the present invention is capable of irradiating a detection wave signal such as an ultrasonic wave onto an object to be inspected, and receiving the reflected wave by a group of receivers to visualize the surface shape of the object to be inspected. Because of this, it is not subject to environmental constraints like conventional optical imaging devices, and it also has the remarkable effects of achieving the purpose of the invention, such as being able to inspect Vi and even the unevenness of the surface of the object to be inspected. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例番こかかる表面形状検査装
置の構成を示すブロック図、第2図は再生像の一例を示
す説明図、第3図は超音波の送受波動作を示す説明図、
第4図はこの発明の装置例による検査手順を示すフロー
チャートである。
Fig. 1 is a block diagram showing the configuration of a surface shape inspection apparatus according to an embodiment of the present invention, Fig. 2 is an explanatory drawing showing an example of a reproduced image, and Fig. 3 is an explanatory drawing showing the operation of transmitting and receiving ultrasonic waves. figure,
FIG. 4 is a flowchart showing an inspection procedure using an example of the apparatus of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)被検査物を映像化した後、この映像と予め登録し
てある映像とを照合して被検査物の表面形状を検査する
ための表面形状検査装置であって、 被検査物の表面に対し周波数の異なる複数種の検出波信
号を送出するための送波子と、 被検査物からの反射波を受波するための受波子が複数個
配列されて成る受波子群と、 この受波子群で得た複数種の受波信号につきその振幅と
位相とにより所定の演算を実行して被検査物の表面形状
を映像化する演算処理部とを具備して成る表面形状検査
装置。
(1) A surface shape inspection device for inspecting the surface shape of an object to be inspected by imaging the object to be inspected and then comparing this image with a pre-registered image, the surface of the object to be inspected. a wave receiver for transmitting multiple types of detection wave signals with different frequencies to the target object; a wave receiver group consisting of a plurality of wave receivers for receiving reflected waves from the object to be inspected; A surface shape inspection apparatus comprising: a calculation processing section that performs predetermined calculations on the amplitude and phase of multiple types of received signals obtained in groups to visualize the surface shape of an object to be inspected.
(2)前記検出波信号は、超音波信号である特許請求の
範囲第1項記載の表面形状検査装置。
(2) The surface shape inspection device according to claim 1, wherein the detected wave signal is an ultrasonic signal.
(3)前記送波子は、周波数差が等間隔である複数種の
検出波信号を送出する特許請求の範囲第1項記載の表面
形状検査装置。
(3) The surface shape inspection apparatus according to claim 1, wherein the wave transmitter transmits a plurality of types of detection wave signals having frequency differences at equal intervals.
(4)前記受波子群は、複数個の受波子を1列に等配列
して構成されている特許請求の範囲第1項記載の表面形
状検査装置。
(4) The surface shape inspection apparatus according to claim 1, wherein the wave receiving element group is constructed by arranging a plurality of wave receiving elements in a line.
(5)前記演算処理部は、CPUを制御主体とするコン
ピュータである特許請求の範囲第1項記載の表面形状検
査装置。
(5) The surface shape inspection apparatus according to claim 1, wherein the arithmetic processing section is a computer whose main control is a CPU.
JP20733086A 1986-09-02 1986-09-02 Surface shape inspection instrument Pending JPS6361948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20733086A JPS6361948A (en) 1986-09-02 1986-09-02 Surface shape inspection instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20733086A JPS6361948A (en) 1986-09-02 1986-09-02 Surface shape inspection instrument

Publications (1)

Publication Number Publication Date
JPS6361948A true JPS6361948A (en) 1988-03-18

Family

ID=16537964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20733086A Pending JPS6361948A (en) 1986-09-02 1986-09-02 Surface shape inspection instrument

Country Status (1)

Country Link
JP (1) JPS6361948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114838A (en) * 1990-08-31 1992-04-15 Osaka Sealing Insatsu Kk Label paster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838878A (en) * 1981-09-01 1983-03-07 Nippon Telegr & Teleph Corp <Ntt> Holographic object detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838878A (en) * 1981-09-01 1983-03-07 Nippon Telegr & Teleph Corp <Ntt> Holographic object detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114838A (en) * 1990-08-31 1992-04-15 Osaka Sealing Insatsu Kk Label paster
JP2525749B2 (en) * 1990-08-31 1996-08-21 大阪シーリング印刷株式会社 Label sticking device

Similar Documents

Publication Publication Date Title
Smith et al. Correction of distortion in endoscope images
US20190190599A1 (en) Distributed array for direction and frequency finding
JPH0355765B2 (en)
WO2018235757A1 (en) Position measurement device, position measurement method, and program recording medium
JP2001082940A (en) Apparatus and method for generating three-dimensional model
US5406375A (en) Angular distortion measurements by moire fringe patterns
JPS6361948A (en) Surface shape inspection instrument
US5692072A (en) Edge detecting device
CN117053716A (en) Automatic detection method for outline parameters of circular aperture interferogram
US10607360B2 (en) Image processing apparatus and non-transitory computer-readable storage medium
JPS61258182A (en) Three-dimensional video device
Yung et al. Visually encoded contact inspection system for EMATs
WO2015133691A1 (en) Vibration measurement apparatus, vibration measurement method, and optical system for vibration measurement apparatus
JPH04138133A (en) Coil position detecting method and mr device
JP3031577B2 (en) Surface measuring method and surface measuring device for device under test
JPH07174553A (en) Stereo camera apparatus and method for deriving distance
JPH11173840A (en) Device and method for measuring distance
JP2878414B2 (en) 3D object recognition method
JP2772647B2 (en) Ultrasound imaging device
JPH06235619A (en) Measuring device for wavefront aberration
JPS6219711B2 (en)
JPS58156853A (en) Ultrasonic flaw detector
Sukhanov et al. Transmission incoherent ultrasonic imaging of planar objects
JPS6375581A (en) Acoustic video simulation system
SU637703A1 (en) Deformation determining method