JPH06235619A - Measuring device for wavefront aberration - Google Patents

Measuring device for wavefront aberration

Info

Publication number
JPH06235619A
JPH06235619A JP2263593A JP2263593A JPH06235619A JP H06235619 A JPH06235619 A JP H06235619A JP 2263593 A JP2263593 A JP 2263593A JP 2263593 A JP2263593 A JP 2263593A JP H06235619 A JPH06235619 A JP H06235619A
Authority
JP
Japan
Prior art keywords
wavefront
interference fringes
neuron
layer
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2263593A
Other languages
Japanese (ja)
Inventor
Ikutoshi Fukushima
福島郁俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2263593A priority Critical patent/JPH06235619A/en
Publication of JPH06235619A publication Critical patent/JPH06235619A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To instantaneously measure a wavefront by converting interference fringes to coordinates by a coordinate converting hologram element and inputting an image input signal to a neural network which has finished learning with the use of known data of the kind and the amount of aberrations. CONSTITUTION:An interferometer 1 obtains a wave surface 2 including interference fringes generated by a wave surface of a to-be-detected object and a reference wave surface. The interference fringes are converted to polar coordinates by a coordinate converting hologram 3 and detected by a CCD camera 4. The data taken into the camera 4 is divided into pixels of a predetermined size on a computer 5. Each pixel is input to a neuron of an input layer of a neural network constructed by software on the computer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、球面形状等の測定にお
いて、参照波面と被検物体からの物体波面とにより生じ
る干渉縞から収差の種類、量を判断する波面収差測定器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavefront aberration measuring device for determining the type and amount of aberration from interference fringes generated by a reference wavefront and an object wavefront from an object to be measured when measuring a spherical shape or the like. .

【0002】[0002]

【従来の技術】レンズ加工、あるいは、加工されたレン
ズの検査等においては、被検物を干渉計内に設置し、被
検物から生じた干渉縞の縞解析を行い、収差の量及び種
類を求め、レンズの再加工部分を決定したり、良否を決
定することがよく行われている。その縞解析の方法とし
ては、ツェルニケ係数を用いる方法が一般的である。波
面収差W(ρ,θ)をツェルニケ多項式Ri (ρ,θ)
で表すと、以下のような式になる。
2. Description of the Related Art In processing a lens or inspecting a processed lens, an object to be inspected is set in an interferometer, and fringe analysis of interference fringes generated from the object to be inspected is performed to determine the amount and type of aberration. Is often performed to determine the reprocessed portion of the lens and to determine the quality. As a method for the fringe analysis, a method using Zernike coefficients is generally used. The wavefront aberration W (ρ, θ) is calculated by Zernike polynomial R i (ρ, θ)
When expressed by, it becomes the following formula.

【0003】 (1)式のZi がツェルニケ係数である。ツェルニケ係
数は、次の表1に一部を示した各収差の種類に対応する
ツェルニケ多項式Ri に応じた収差量を示している。
[0003] Z i in equation (1) is the Zernike coefficient. The Zernike coefficient indicates the amount of aberration according to the Zernike polynomial R i corresponding to each type of aberration, some of which are shown in Table 1 below.

【0004】 このようなツェルニケ多項式は、半径1の単位円内で
直交する、単位円の円周上での値は1である、該当
する収差のRMS(平均自乗)値を最小にする収差の組
み合せである、等の特徴を持ち、これを用いる方法は、
他の次数や他の収差に影響されずに、所望の収差の収差
係数を求めることができる非常に優れた方法である。
[0004] Such a Zernike polynomial is a combination of aberrations that are orthogonal within a unit circle having a radius of 1, the value on the circumference of the unit circle is 1, and the RMS (mean square) value of the corresponding aberration is minimized. It has features such as
This is a very excellent method that can obtain the aberration coefficient of a desired aberration without being affected by other orders and other aberrations.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の従来例
のツェルニケ多項式を用いる方法においては、所望の収
差の収差係数は、実際には、以下のような複雑な手順で
コンピュータを用いて計算されている。
However, in the above-mentioned method using the Zernike polynomial of the conventional example, the aberration coefficient of the desired aberration is actually calculated by a computer in the following complicated procedure. ing.

【0006】まず、得られた干渉縞から計算量を減らし
処理スピードを向上させるために、複数点をサンプリン
グする。サンプリングのために、直交関数として直接ツ
ェルニケ多項式よりツェルニケ係数を求めるのは、誤差
や連続性の問題点がありうまくいかないので、直交関数
としてグランシュミットの直交化多項式を用いてフィッ
テイングを行い、得られた係数をさらに変換マトリスク
を用いてツェルニケ係数に変換する方法をとっており、
かなりの処理時間を要する。特に、大量の被検物を検査
する必要がある加工品検査等では、その処理時間が致命
的となる。
First, in order to reduce the amount of calculation from the obtained interference fringes and improve the processing speed, a plurality of points are sampled. For sampling, it is not possible to directly obtain Zernike coefficients from a Zernike polynomial as an orthogonal function due to errors and continuity problems. The converted coefficient is further converted to Zernike coefficient using the conversion matrisk,
It takes a considerable amount of processing time. In particular, the processing time is fatal for a processed product inspection or the like that needs to inspect a large amount of inspection objects.

【0007】本発明は以上のような従来の問題点を解決
するためになされたものであり、その目的は、参照波面
と被検物体からの物体波面とにより生じる干渉縞から収
差の種類、量を瞬時に出力できる波面収差測定器を提供
することである。
The present invention has been made in order to solve the above-mentioned conventional problems, and its purpose is to identify the type and amount of aberration from the interference fringes generated by the reference wavefront and the object wavefront from the object to be measured. The object is to provide a wavefront aberration measuring device capable of instantaneously outputting.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた本
発明の波面収差測定器は、参照波面と被検物体からの物
体波面とにより生じる干渉縞に対して座標変換を施すホ
ログラム素子、及び、前記ホログラム素子により変換さ
れた画像を入力信号とし、その信号を受容する複数のニ
ューロン群よりなる入力層と、前段の層のニューロン群
の興奮パターンを受容してパターン変換を行った後、次
の段へ興奮パターンを出力するニューロン群よりなる1
層又は複数層の中間層と、最終の中間層のニューロンの
興奮パターンを受容して変換して出力を出す出力層とか
らなるニューラルネットワークを有するものである。
Means for Solving the Problems A wavefront aberration measuring instrument of the present invention that achieves the above object is a hologram element for performing coordinate conversion on interference fringes generated by a reference wavefront and an object wavefront from an object to be inspected, and , The image converted by the hologram element is used as an input signal, the excitation layer of a neuron group in the input layer, which is composed of a plurality of neuron groups receiving the signal, and the excitation pattern of the neuron group in the preceding layer are received, and the pattern conversion is performed. 1 consisting of a group of neurons that output excitation patterns to the stage
The neural network has a layer or a plurality of intermediate layers and an output layer that receives and converts the excitation pattern of the final neurons of the intermediate layer and outputs the output.

【0009】この場合、前記ニューラルネットワーク
は、収差の種類とその量が既知である干渉縞情報を複数
入力して誤差逆伝播学習により各層間のニューロンの結
合の大きさを決定するものである。
In this case, the neural network inputs a plurality of pieces of interference fringe information whose types and amounts of aberrations are known, and determines the size of the coupling of neurons between each layer by error backpropagation learning.

【0010】[0010]

【作用】本発明においては、上述のような構成により、
ツェルニケ多項式に展開する場合に必要な参照波面と物
体波面とより生じる干渉縞の情報の座標変換を、ホログ
ラム素子を用いて瞬時に処理することができる。
In the present invention, with the above-mentioned structure,
The coordinate conversion of the information of the interference fringes generated by the reference wavefront and the object wavefront, which is necessary when expanding to the Zernike polynomial, can be instantaneously processed by using the hologram element.

【0011】さらに、前述のニューラルネットワーク
は、対応するツェルニケ多項式の係数が分かっている代
表的な収差を持つ干渉縞を用いて予め学習を完了させて
おり、上述の座標変換後の情報からツェルニケ係数を求
める計算方法がニューロン間の結合の大きさとしてすで
に決定され、さらに、その結合の大きさにはツェルニケ
係数の直交性も表現されているので、収差の種類と量を
測定したい一般の干渉縞を入力すれば、瞬時にしかも正
確にツェルニケ係数を求めることができる。
Further, the above-mentioned neural network completes learning in advance by using interference fringes having typical aberrations whose coefficients of the corresponding Zernike polynomials are known. Since the calculation method to obtain is already determined as the magnitude of the coupling between neurons, and the magnitude of the coupling also expresses the orthogonality of the Zernike coefficients, the general interference fringes for which the type and amount of aberration are to be measured. By inputting, the Zernike coefficient can be obtained instantaneously and accurately.

【0012】以上から、本発明の波面収差測定器は、コ
ンピュータを用いた従来の手法と比較すると、大幅な処
理時間の短縮が可能になることが分かる。
From the above, it can be seen that the wavefront aberration measuring device of the present invention can significantly reduce the processing time as compared with the conventional method using a computer.

【0013】[0013]

【実施例】以下、本発明の波面収差測定器の実施例につ
いて、図面を参照しながら説明する。図1は一つの実施
例の波面収差測定器の概略の構成を示す図であり、図
中、1は被検物体を系内に配置して、その被検物体によ
る物体波面と参照波面とにより生ずる干渉縞を含む波面
2を得るための干渉計であり、本実施例の場合は、フィ
ゾーの干渉計を用いている。3は計算機ホログラムの一
種で、コンピュータを用いてホログラム素子を多くのサ
ブホログラムに分割し、写真乾板に記録することにより
得られる座標変換ホログラム素子である(H.Bartelt an
d S.K.Case, " Coordinate transformations via multi
facet holographic optical elements".OPTICAL ENGINE
RING,vol.22, No.4,pp.497-500(1983)参照)。干渉計1
により得られた干渉縞は、座標変換ホログラム3で極座
標変換され、検出手段4、本実施例の場合はCCDカメ
ラ、により検出される。このCCDカメラ4に取り込ま
れたデータは、コンピュータ5上で20×20の画素に
分けられ、それぞれがこのコンピュータ5上においてソ
フトウェアにより構築されているニューラルネットワー
クの入力層のニューロンに入力される。
Embodiments of the wavefront aberration measuring device of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a wavefront aberration measuring device according to one embodiment. In the figure, reference numeral 1 denotes an object to be inspected arranged in a system and an object wavefront and a reference wavefront by the object to be inspected. This is an interferometer for obtaining the wavefront 2 including the generated interference fringes. In the case of this embodiment, a Fizeau interferometer is used. Reference numeral 3 is a kind of computer generated hologram, which is a coordinate conversion hologram element obtained by dividing a hologram element into many sub-holograms using a computer and recording them on a photographic plate (H. Bartelt an.
d SKCase, " Coordinate transformations via multi
facet holographic optical elements ".OPTICAL ENGINE
RING, vol.22, No.4, pp.497-500 (1983)). Interferometer 1
The interference fringes obtained by the above are subjected to polar coordinate conversion by the coordinate conversion hologram 3 and detected by the detecting means 4, in the case of this embodiment, the CCD camera. The data captured by the CCD camera 4 is divided into 20 × 20 pixels on the computer 5, and each pixel is input to the neurons in the input layer of the neural network constructed by software on the computer 5.

【0014】このニューラルネットワークは、図2に示
すように入力層A、中間層B、出力層Cからなる階層構
成で逆伝播学習則を用いるタイプのものからなり、その
入力層Aでは、前述の20×20の画素がニューロンへ
の入力となるために、400個の入力ニューロンがあ
る。中間層Bはある程度多い方がよいが、学習時間の短
縮も考慮して4つとし、出力層Cのニューロンは、ツェ
ルニケ多項式の3次の係数までに対応させるために、Z
0 〜Z8 が決定できる9つとしてある。
As shown in FIG. 2, this neural network is of a type that uses a back-propagation learning rule in a hierarchical structure consisting of an input layer A, an intermediate layer B, and an output layer C. There are 400 input neurons because the 20 × 20 pixels are the inputs to the neuron. The number of intermediate layers B should be large to some extent, but in consideration of shortening the learning time, the number of intermediate layers B is set to four, and the neurons of the output layer C have a Z coefficient of Zernike polynomials up to the third order.
There are nine values from 0 to Z 8 that can be determined.

【0015】このニューラルネットワークにおいては、
ツェルニケ多項式の係数がすでに分かっている干渉縞を
いくつか入力し、その多項式に対応する出力層Cのニュ
ーロンがその係数の値で発火するように、誤差逆伝播法
を用いて学習させるが、実験的にツェルニケ係数から発
生する干渉縞をシミュレーションにより求め、それを使
用して学習を行わせた。学習のためのシミュレーション
データとして、ツェルニケ多項式Z0 〜Z8 が単独で現
れ、その係数が0.2、0.5、0.8の各場合につい
て逆伝播学習を行わせた。ここでは、Z0 は定数項であ
るために、学習対象から外した。なお、一例としてツェ
ルニケ係数Z8 が0.2、0.5、0.8で他の係数は
0の場合の干渉縞を、図3(a)、(b)、(c)に示
す。
In this neural network,
By inputting some interference fringes whose coefficients of the Zernike polynomial are already known, and learning is performed using the error backpropagation method so that the neuron of the output layer C corresponding to the polynomial fires at the value of the coefficient. The interference fringes generated from the Zernike coefficient were obtained by simulation, and the learning was performed using the obtained interference fringes. As simulation data for learning, Zernike polynomials Z 0 to Z 8 appeared independently, and back propagation learning was performed for each case where the coefficients were 0.2, 0.5, and 0.8. Here, since Z 0 is a constant term, it was excluded from the learning target. As an example, interference fringes when the Zernike coefficients Z 8 are 0.2, 0.5 and 0.8 and the other coefficients are 0 are shown in FIGS. 3 (a), 3 (b) and 3 (c).

【0016】具体的に一例として、図4に示すZ1
1.0、Z8 が0.5の場合の干渉縞を本波面収差測定
器に入力したところ、Z1 に約1.0、Z8 に約0.5
の出力が得られた。
As a specific example, when the interference fringes shown in FIG. 4 when Z 1 is 1.0 and Z 8 is 0.5 are input to the wavefront aberration measuring device, Z 1 is about 1.0. About 0.5 for Z 8
Output was obtained.

【0017】なお、本実施例では出力層Cのニューロン
をZ0 〜Z8 の9個としたが、さらに高次の(Z9
上)の係数を求めるには、この出力層Cのニューロンの
数を増やし、学習パターンもそれに対応させて増やせば
よいことは明らかである。
In the present embodiment, the number of neurons in the output layer C is set to nine from Z 0 to Z 8 , but in order to obtain higher-order (Z 9 or more) coefficients, the neurons in the output layer C are It is clear that the number should be increased and the learning patterns should be increased accordingly.

【0018】また、もし必要があり、ツェルニケ係数を
ザイデル係数になおす場合でも、次の表2に示すような
簡単な計算で変換が行えるので、処理時間にはほとんど
影響はないことは明らかである。
Further, if it is necessary, even if the Zernike coefficient is converted into the Seidel coefficient, the conversion can be performed by a simple calculation as shown in the following Table 2, so that it is obvious that the processing time is hardly affected. .

【0019】 また、直交化等の点であまり感心できる方法ではない
が、極座標変換等せずに、直交座標のままニューラルネ
ットワークを用いることにより、ツェルニケ係数やザイ
デル係数を求めることももちろんできる。
[0019] Further, although it is not a method that is very impressive in terms of orthogonalization, it is of course possible to obtain Zernike coefficients or Seidel coefficients by using a neural network as it is in orthogonal coordinates without performing polar coordinate conversion or the like.

【0020】さらに、上記実施例では、座標変換として
極座標変換を用いたが、他の極座標変換、例えば(x,
y)→(log(x2 +y21/2 ,−tan(y/
x))なる極座標変換と対数変換を組み合わせたもので
もよい。なお、この場合の極座標変換ホログラムは、前
述のサブホログラムを用いる方法で作ってもよいが、sa
ddle point法(M.Born and E.Wolf,"Principle of Opti
cs"(Pergamon,New York,1965),p.753 参照)を用いて作
ってもよい。
Further, in the above embodiment, the polar coordinate transformation is used as the coordinate transformation, but other polar coordinate transformations such as (x,
y) → (log (x 2 + y 2 ) 1/2 , -tan (y /
x)) which is a combination of polar coordinate transformation and logarithmic transformation. The polar coordinate conversion hologram in this case may be created by the method using the sub-hologram described above.
ddle point method (M. Born and E. Wolf, "Principle of Opti
cs "(Pergamon, New York, 1965), p.753).

【0021】以上、本発明の波面収差測定器を実施例に
基づいて説明してきたが、本発明はこれら実施例に限定
されず、種々の変形が可能である。
The wavefront aberration measuring device of the present invention has been described above based on the embodiments, but the present invention is not limited to these embodiments and various modifications can be made.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
の波面収差測定器によると、測定で得られた干渉縞を座
標変換ホログラム素子で瞬時に座標変換をし、その変換
された画像を入力信号として、この入力信号を収差の種
類と量が既知のデータを用いて学習を完了しているニュ
ーラルネットワークに入力することで、入力する干渉縞
情報に対し、これまでのように繁雑な計算をその度に行
わなくともよいため、干渉縞中の収差の種類、量を瞬時
に求めることができる。
As is apparent from the above description, according to the wavefront aberration measuring device of the present invention, the interference fringes obtained by the measurement are instantaneously coordinate-converted by the coordinate conversion hologram element, and the converted image is displayed. By inputting this input signal as an input signal to a neural network that has completed learning using data of known types and amounts of aberration, it is possible to perform complicated calculations as before for the input interference fringe information. Since it is not necessary to perform each time, the type and amount of aberration in the interference fringe can be instantly obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の波面収差測定器の一つの実施例の波面
収差測定器の概略の構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a wavefront aberration measuring instrument of one embodiment of a wavefront aberration measuring instrument of the present invention.

【図2】ニューラルネットワークの構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a neural network.

【図3】ニューラルネットワークの学習に用いる干渉縞
の例を示す図である。
FIG. 3 is a diagram showing an example of interference fringes used for learning of a neural network.

【図4】測定対象の干渉縞の一例を示す図である。FIG. 4 is a diagram showing an example of interference fringes of a measurement target.

【符号の説明】[Explanation of symbols]

1…干渉計 3…座標変換ホログラム素子 2…干渉縞を含む波面 4…検出手段 5…コンピュータ A…入力層 B…中間層 C…出力層 DESCRIPTION OF SYMBOLS 1 ... Interferometer 3 ... Coordinate conversion hologram element 2 ... Wavefront including interference fringes 4 ... Detection means 5 ... Computer A ... Input layer B ... Intermediate layer C ... Output layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 参照波面と被検物体からの物体波面とに
より生じる干渉縞に対して座標変換を施すホログラム素
子、及び、前記ホログラム素子により変換された画像を
入力信号とし、その信号を受容する複数のニューロン群
よりなる入力層と、前段の層のニューロン群の興奮パタ
ーンを受容してパターン変換を行った後、次の段へ興奮
パターンを出力するニューロン群よりなる1層又は複数
層の中間層と、最終の中間層のニューロンの興奮パター
ンを受容して変換して出力を出す出力層とからなるニュ
ーラルネットワークを有する波面収差測定器。
1. A hologram element that performs coordinate conversion on interference fringes generated by a reference wavefront and an object wavefront from an object to be inspected, and an image converted by the hologram element as an input signal, and receives the signal. Intermediate of one or more layers consisting of an input layer consisting of multiple neuron groups and a neuron group that receives the excitation patterns of the neuron groups in the previous layer and performs pattern conversion and then outputs the excitation pattern to the next stage A wavefront aberration measuring instrument having a neural network including a layer and an output layer that receives and converts the excitation pattern of a final neuron in the intermediate layer and outputs the transformed pattern.
【請求項2】 前記ニューラルネットワークは、収差の
種類とその量が既知である干渉縞情報を複数入力して誤
差逆伝播学習により各層間のニューロンの結合の大きさ
を決定するものであることを特徴とする請求項1記載の
波面収差測定器。
2. The neural network is adapted to input a plurality of pieces of interference fringe information of which types and amounts of aberrations are known, and to determine the size of neuron coupling between layers by error backpropagation learning. The wavefront aberration measuring device according to claim 1, which is characterized in that.
JP2263593A 1993-02-10 1993-02-10 Measuring device for wavefront aberration Withdrawn JPH06235619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263593A JPH06235619A (en) 1993-02-10 1993-02-10 Measuring device for wavefront aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263593A JPH06235619A (en) 1993-02-10 1993-02-10 Measuring device for wavefront aberration

Publications (1)

Publication Number Publication Date
JPH06235619A true JPH06235619A (en) 1994-08-23

Family

ID=12088298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263593A Withdrawn JPH06235619A (en) 1993-02-10 1993-02-10 Measuring device for wavefront aberration

Country Status (1)

Country Link
JP (1) JPH06235619A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054036A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Imaging characteristics measuring method, imaging characteriatics adjusting method, exposure method and system, program and recording medium, and device producing method
US6961115B2 (en) 2001-02-13 2005-11-01 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
US7088426B2 (en) 2002-03-01 2006-08-08 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US7230682B2 (en) 2002-01-29 2007-06-12 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
WO2020033979A1 (en) * 2018-08-08 2020-02-13 Rensselaer Polytechnic Institute Enhancing contrast sensitivity and resolution in a grating interferometer by machine learning

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054036A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Imaging characteristics measuring method, imaging characteriatics adjusting method, exposure method and system, program and recording medium, and device producing method
US7075651B2 (en) 2000-12-28 2006-07-11 Nikon Corporation Image forming characteristics measuring method, image forming characteristics adjusting method, exposure method and apparatus, program and storage medium, and device manufacturing method
US6961115B2 (en) 2001-02-13 2005-11-01 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
US7215408B2 (en) 2001-02-13 2007-05-08 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
US7230682B2 (en) 2002-01-29 2007-06-12 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7391497B2 (en) 2002-01-29 2008-06-24 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7405803B2 (en) 2002-01-29 2008-07-29 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7088426B2 (en) 2002-03-01 2006-08-08 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US7102731B2 (en) 2002-03-01 2006-09-05 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
WO2020033979A1 (en) * 2018-08-08 2020-02-13 Rensselaer Polytechnic Institute Enhancing contrast sensitivity and resolution in a grating interferometer by machine learning

Similar Documents

Publication Publication Date Title
AU2002362137B2 (en) Systems and methods for wavefront measurement
CN112116616B (en) Phase information extraction method based on convolutional neural network, storage medium and equipment
TW201702587A (en) Optical die to database inspection
CN106092158B (en) Physical parameter method of estimation, device and electronic equipment
JP3065374B2 (en) Optical inspection method for an object, optical inspection apparatus for an object, and interferometer for optical inspection of an object
CN111561877B (en) Variable resolution phase unwrapping method based on point diffraction interferometer
JP2006234389A (en) Optical phase distribution measuring method
US20170370780A1 (en) Optical system phase acquisition method and optical system evaluation method
CN112525097B (en) Method for measuring three-dimensional deformation of object based on multiple sensors
Hoffmann et al. Deep neural networks for computational optical form measurements
Vithin et al. Deep learning based single shot multiple phase derivative retrieval method in multi-wave digital holographic interferometry
JPH06235619A (en) Measuring device for wavefront aberration
CN116147531B (en) Optical self-interference digital holographic reconstruction method and system based on deep learning
CN113238076B (en) Complex flow field measuring method based on deep learning
CN113432731B (en) Compensation method in grating transverse shearing interference wavefront reconstruction process
JP2000205822A (en) Image measurement system and its image correcting method
Ganotra et al. Object reconstruction in multilayer neural network based profilometry using grating structure comprising two regions with different spatial periods
KR20110089973A (en) Wavefront aberration retrieval method by 3d beam measurement
JP2022184816A (en) Method for determining imaging quality of optical system when illuminated by illumination light within entrance pupil to be measured
CN109781153B (en) Physical parameter estimation method and device and electronic equipment
Kerr et al. The application of phase stepping to the analysis of ESPI fringe patterns
JP2018004621A (en) Method for acquiring phase of optical system and method for evaluating optical system
JP6395582B2 (en) Phase singularity evaluation method and phase singularity evaluation apparatus
KR102424811B1 (en) Method and apparatus for processing hologram pattern image
JP2018021891A (en) Method of acquiring phase of optical system and method of evaluating optical system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509