JPS6361934B2 - - Google Patents

Info

Publication number
JPS6361934B2
JPS6361934B2 JP56081935A JP8193581A JPS6361934B2 JP S6361934 B2 JPS6361934 B2 JP S6361934B2 JP 56081935 A JP56081935 A JP 56081935A JP 8193581 A JP8193581 A JP 8193581A JP S6361934 B2 JPS6361934 B2 JP S6361934B2
Authority
JP
Japan
Prior art keywords
cis
trans
acid
chrysanthemum
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56081935A
Other languages
Japanese (ja)
Other versions
JPS57197242A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56081935A priority Critical patent/JPS57197242A/en
Publication of JPS57197242A publication Critical patent/JPS57197242A/en
Publication of JPS6361934B2 publication Critical patent/JPS6361934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光学活性トランス第一菊酸の製造方法
に関し、さらに詳しくは一般式() で示される(+)−シス第一菊酸を、ハロゲン化
パラジウム化合物にニトリル化合物を添加した触
媒系で処理して、一般式() で示される(+)−トランス第一菊酸に変換させ
ることを特徴とする(+)−トランス第一菊酸の
製造方法に関する。 第一菊酸はピレトリン、アレスリン、フタルス
リンなどのいわゆるピレスロイドと称される低毒
速効性の殺虫性エステルの酸成分を構成する重要
な化合物である。 当該カルボン酸には、シス、トランスの幾何異
性体およびその各々に(+)、(−)の光学異性体
があり、合計4コの異性体が存在する。これら4
コの異性体の中でもトランス体からなるピレスロ
イド系エステル類はシス体からなるエステル類よ
り強い効力を示し、さらに(+)体の方が対応す
る(−)体よりも遥かに高い活性を示すことが知
られている。ちなみに天然に産する除虫菊に含ま
れる第一菊酸エステルは(+)トランス体であ
る。また(+)トランス第一菊酸は光学活性アミ
ンの分割剤としても有用である。 上述したように第一菊酸にはそのC1位および
C3位に2ケの不斎炭素があり、合計4ケの異性
体が存在する。即ち、(+)−シス体、(−)−シス
体、(+)−トランス体、(−)−トランス体の4種
の異性体であり、これらはそれぞれ、(1R,3S)、
(1S,3R)(1R,3R)、(1S,3S)の絶体配置を
有する。 従来、シス第一菊酸類からトランス第一菊酸類
の製造法としては次のような方法が知られてい
る。例えば、シス第一菊酸のアルキルエステルに
対してある種の塩基性触媒で処理する方法(特公
昭53−18495号公報、特公昭53−18496号公報な
ど)、またシス第一菊酸クロリドを高温に加熱す
る方法(特公昭47−26778号公報)あるいは、シ
ス第一菊酸エチルエステルの熱異性化法
(Chemistry & Industry,1970,1050)、シス
第一菊酸あるいはそのエチルエステルに二塩化パ
ラジウムのニトリル錯体触媒を反応させる方法
(Tetrahedron,Letters,22,385(1981))等が
挙げられる。しかしながらこれらの方法はシス、
トランスの異性化方法、換言すれば、ラセミシス
第一菊酸類からラセミトランス体へ変換する方法
であり、4つの異性体の中のある異性体からより
有用な他の異性体へ選択的に立体変換させるとい
う技術内容をも含むものではない。例えば上記の
シス第一菊酸アルキルエステルを塩基触媒で処理
する方法あるいはシス第一菊酸クロリドを高温に
加熱する方法によるトランス体への変換はC1
の立体配置の変換であると言われ、C3位の立体
配置を変換する方法としては僅かに、C3位に結
合しているアルケニル基を酸化してケトアルコー
ル基またはアルデヒド基に変換させた後、これに
塩基性試剤を作用させる方法が知られているに過
ぎない(特公昭39−15977号公報、特公昭46−
24694号公報)。 また第一菊酸を含むアルケニルシクロプロパン
カルボン酸の4種の異性体の酸ハライドにルイス
酸を作用させることによりラセミ体、即ち(±)
一体を得る方法も知られている(特公昭53−
37858号公報、特開昭52−144651号公報)この方
法は4つの異性体の何れから出発してもラセミ化
でき、特に(−)−トランス体をラセミ化できる
点で優れた方法であるが、(+)−シス体を原料と
した場合には(±)−トランス体が得られること
になる。 このように、第一菊酸類のシス、トランス異性
化およびラセミ化については既にいくつかの方法
が知られているが、これまでC3位の不斎炭素に
関し、結合している官能基を化学変化させること
なく選択的に立体変換させることにより(+)−
シス体から(+)−トランス体を効率よく製造す
ることに関しては全く知られておらず、その概念
すらなかつたに等しい。 しかるに、本発明者らはC3位の立体配置を変
換(C3エピ化)させることにより(+)−シス体
から(+)−トランス体を得る方法について鋭意
検討した結果、意外にも(+)−シスもしくは
(+)−シス(+)−トランス混合第一菊酸をハロ
ゲン化パラジウム化合物にニトリル化合物を添加
した触媒系で処理することにより緩和な条件下効
率よく目的を達成できることを見い出し、さらに
種々の検討を加え本発明を完成するに至つた。 本発明に関する立体変換を図示すれば以下のよ
うである。 本発明の出発物質である(+)−シス第一菊酸
もしくは(+)−シス、(+)−トランス混合第一
菊酸は(±)−シス第一菊酸の光学分割法(特開
昭49−125432号公報)、(±)−シス、トランス混
合第一菊酸の光学分割法(特開昭48−48449号公
報)もしくは光学活性ジヒドロクリサンセモラク
トンから誘導する方法(特開昭47−30669号公報、
特開昭47−25155号公報)によつて容易に得られ
る。従つて、本発明の方法はこれらの技術と組み
合わせることにより、殺虫効力の最も高い成分で
ある(+)−トランス体が極めて効率よく得られ
ることになる。 次に本発明方法についてさらに詳しく説明する
と、原料として用いる(+)−シス第一菊酸はシ
ス−体単独または(+)トランス体との任意の割
合の混合物でもよく、さらにその光学純度はどの
程度のものであつても差し支えない。 この場合、C3エピ体の本質から言つてトラン
ス化したときの(+)−体の光学純度は原料のそ
れとはほとんど変らない。 これらの光学活性シス第一菊酸をハロゲン化パ
ラジウム化合物にニトリル化合物を添加したもの
を触媒として作用させることにより、C3エピ化
が外圧に関係なく容易に進行し、目的とする
(+)−トランス−第一菊酸またはそれに富むトラ
ンス第一菊酸に変換することができる。 本発明において用いるハロゲン化パラジウム化
合物は、ニトリル化合物を配位子とし得るハロゲ
ン化パラジウム化合物であればいずれでもよく、
例えば塩化パラジウム、臭化パラジウム等が用い
られ、なかでも塩化パラジウムが好ましい。その
使用量は被処理エステル1モルに対して1/100
乃至当モル、好ましくは1/20乃至1/2モル程
度が適当である。 まだ本発明に使用するニトリル化合物として
は、用いるハロゲン化パラジウム化合物に配位す
る能力を有するものであればよい。このようなニ
トリル化合物としてはアセトニトリル、プロピオ
ニトリル、ブチロニトリル、ベンゾニトリル、ベ
ンジルシアニド等のニトリル基で置換されたアル
キル、アラルキル、アリルシアニド化合物を挙げ
ることができる。使用する量は用いるハロゲン化
パラジウム化合物に対して2モル程度が適当であ
るが、それ以上用いてもよい。 本発明に使用される触媒は上記のようなハロゲ
ン化パラジウム()とニトリル化合物との錯体
であり、この錯体の製造も容易である。例えばジ
クロロビス(ベンゾニトリル)パラジウムは、ベ
ンゾニトリル中、パラジウムクロリドを加熱下溶
解し、冷却もしくは石油エーテル、ヘキサン等に
加えて沈澱させることにより高収率で得ることが
できる(M.S.Kharasch et al.,J.Amer Chem.
Soc.,60,882(1938))。 また、反応を行なうに際しては、本質的に反応
を阻害しない溶媒で任意に希釈させることが好ま
しく、このような溶媒としてはジオキサン、エチ
レングリコールジメチルエーテル等のエーテル
類、クロロホルム、ジクロロエタン等のハロゲン
化炭化水素、酢酸エチルエステルなどのエステル
類、ベンゼン、トルエン等の芳香族炭化水素ある
いは酢酸等を例示することができる。中でも酢酸
エステル、ジオキサン、クロロホルム等が好まし
い。 反応温度は通常−30℃〜110℃、好ましくは−
10℃から100℃の温度範囲で行なうことが有利で
ある。反応に要する時間は反応条件によつて異な
るが、通常1分乃至20時間で充分である。尚、反
応の進行度は旋光度の測定あるいは光学活性アル
コールとのジアステレオアイソマーとしてガスク
ロマトグラフイーによる分析などにより知ること
ができる。 また本発明方法は減圧下または加圧下でも実施
することができるが、常圧下で容易に目的を達す
ることができる。 なお、本発明方法を実施するに際してはバツチ
形式あるいは連続形式の何れの形式でも行なうこ
とができ、また仕込方法も、原料のエステルを触
媒と共に反応容器に一括して入れる方式あるいは
反応の進行に応じて連続的に、または断続的に入
れる方式の何れの方法をも採用することができ
る。 以上のようにして反応を終了した反応液から触
媒を分離、回収の後、反応液を分留すれば、C3
位がエピ化されて生成した(+)−トランス第一
菊酸、またはそれに富むトランス第一菊酸が得ら
れる。さらには必要に応じこれを蒸留、クロマト
グラフイーなどにより精製することもできる。 このようにして得られた(+)−トランス第一
菊酸はそれぞれの用途に供することができ、例え
ば(+)−トランス第一菊酸はピレスロロン、ア
レスロロンに代表されるピレスロイドアルコール
と称される一群のアルコールを反応させることに
より、効力の高い殺虫性化合物に導くことができ
る。 次に実施例によつて本発明の方法を説明する。 実施例 1 (+)−シス体:98.4%、(−)−シス体:1.6%
よりなる光学活性シス−第一菊酸2.0gを酢酸エ
チル38.0gに溶解し、これに塩化パラジウムとベ
ンゾニトリルから調製したジクロロビス(ベンゾ
ニトリル)パラジウム()1.4gを加え20℃で
3時間撹拌した。反応液から触媒を除いたのち、
10%苛性ソーダ水溶液を加えて中性物を抽出除去
し、水層に10%塩酸を加えて酸析、トルエン抽出
したのち、水洗、濃縮、蒸留すると沸点110〜116
℃/2mmHgで1.42gの第一菊酸を得た。このも
ののガスクロマトグラフイーによる組成分析の結
果、(+)−シス体、:7.6%、(−)−シス体:0.1
%、(+)−トランス体:90.7%、(−)−トランス
体:1.6%であつた。 (+)−体の含有率 出 発 物 98.4% 生 成 物 98.3% 実施例 2 実施例1で用いた光学活性シス−第一菊酸2.0
gをジオキサン38.0gに溶解し、実施例1で用い
たジクロロビス(ベンゾニトリル)パラジウム
()0.68gを加え50℃で3時間撹拌した。 反応後実施例1と同様に操作して第一菊酸1.50
gを得た。このもののガスクロマトグラフイーに
よる組成分析の結果、(+)−シス体:20.1%、
(−)−シス体:1.2%、(+)−トランス体:74.3
%、(−)−トランス体:4.4%であつた。 (+)−体の含有率 出 発 物 98.4% 反 応 物 94.4% 実施例 3 実施例1で用いた光学活性シス第一菊酸2.0g
を酢酸イソブチル38.0gに溶解し、実施例1で用
いたジクロロビス(ベンゾニトリル)パラジウム
()0.46gを加え、100℃で3時間撹拌した。 反応後実施例1と同様に操作して第一菊酸1.63
gを得た。このもののガスクロマトグラフイーに
よる組成分析の結果、(+)−シス体:37.0%、
(−)−シス体:0%、(+)−トランス体:60.6
%、(−)−トランス体:2.4%であつた。 (+)体の含有率 出 発 物 98.4% 反 応 物 97.6% 実施例 4 実施例1で用いた光学活性シス第一菊酸2.0g
を酢酸エチル38.0gに溶解し、0℃で実施例1で
用いたジクロロビス(ベンゾニトリル)パラジウ
ム()1.40gを加え3時間撹拌した。同温度で
触媒を失活化したのち反応液から除去し、実施例
1と同様に操作して第一菊酸1.73gを得た。この
もののガスクロマトグラフイーによる組成分析の
結果、(+)−シス体:78・0%、(−)−シス体:
1.4%、(+)−トランス体:20.3%、(−)−トラ
ンス体0.3%であつた。 (+)−体含有率 出 発 物 98.4% 反 応 物 98.3% 実施例 5 実施例1で用いた光学活性シス第一菊酸2.0g
を酢酸エチル38.0gに溶解し、20℃で塩化パラジ
ウムとアセトニトリルから調製したジクロロビス
(アセトニトリル)パラジウム()0.9gを加え
3時間撹拌した。反応後実施例1と同様に操作し
て第一菊酸1.78gを得た。このもののガスクロマ
トグラフイーによる組成分析の結果、(+)−シス
体:68.2%、(−)−シス体:1.0%、(+)−トラ
ンス体:30.1%、(−)−トランス体:0.7%であ
つた。 (+)−体の含有率 出 発 物 98.4% 反 応 物 98.3% 実施例 6,7 実施例1に準じて触媒量を変えて行つた場合の
実施例を次表に示した。
The present invention relates to a method for producing optically active trans-dairy chrysanthemum acid, and more specifically, to By treating (+)-cis primary chrysanthemum acid represented by the general formula () with a catalyst system in which a nitrile compound is added to a halogenated palladium compound, The present invention relates to a method for producing (+)-trans primary chrysanthemum acid, which comprises converting it to (+)-trans primary chrysanthemum acid represented by (+)-trans primary chrysanthemum acid. Chrysanthemum acid is an important compound that constitutes the acid component of low-toxicity, fast-acting insecticidal esters called pyrethroids, such as pyrethrin, allethrin, and phthalthrin. The carboxylic acid has cis and trans geometric isomers and each of them has (+) and (-) optical isomers, for a total of four isomers. these 4
Among the isomers, pyrethroid esters consisting of the trans isomer exhibit stronger potency than esters consisting of the cis isomer, and furthermore, the (+) isomer exhibits much higher activity than the corresponding (−) isomer. It has been known. By the way, the primary chrysanthemum acid ester contained in naturally occurring pyrethrum is the (+) trans form. (+) Trans-synthetic acid is also useful as a resolving agent for optically active amines. As mentioned above, Daichic acid has its C1 position and
There are two non-satile carbons at the C3 position, and a total of four isomers exist. That is, there are four types of isomers: (+)-cis form, (-)-cis form, (+)-trans form, and (-)-trans form, and these are (1R, 3S), respectively.
(1S, 3R) (1R, 3R), (1S, 3S). Conventionally, the following method is known as a method for producing trans primary chrysanthemum acids from cis primary chrysanthemum acids. For example, there are methods in which alkyl esters of cis-dairy chrysanthemum acid are treated with certain basic catalysts (Japanese Patent Publication No. 18495/1983, Japanese Patent Publication No. 18496/1983, etc.), and a method of treating alkyl esters of cis-dairy chrysanthemum acid with A method of heating to a high temperature (Japanese Patent Publication No. 47-26778), a method of thermal isomerization of ethyl cis-dairy chrysanthemum acid (Chemistry & Industry, 1970, 1050), a method of dichlorination into cis-dairy chrysanthemum acid or its ethyl ester Examples include a method in which a palladium nitrile complex catalyst is reacted (Tetrahedron, Letters, 22 , 385 (1981)). However, these methods
Trans isomerization method, in other words, it is a method of converting racemic cis primary chrysanthemum acids to racemic trans isomer, and is a selective stereoconversion from one of the four isomers to another more useful isomer. It does not even include the technical content of For example, the above-mentioned conversion of the cis-synthetic acid alkyl ester to the trans form by the method of treating the cis-synthetic acid alkyl ester with a base catalyst or the method of heating the cis-sulfuric acid chloride to a high temperature is said to be a change in the configuration of the C1 position. , a method for slightly changing the configuration of the C3 position is to oxidize the alkenyl group bonded to the C3 position to convert it into a ketoalcohol group or an aldehyde group, and then to react with a basic reagent. There are only known methods (Special Publications No. 15977, No. 15977, No. 15977, No. 46).
Publication No. 24694). In addition, by reacting a Lewis acid with the acid halide of four isomers of alkenylcyclopropanecarboxylic acid, including daisies chrysanthemum acid, a racemic form, that is, (±)
A method of obtaining unity is also known (Special Publication Act 1973-
(No. 37858, Japanese Unexamined Patent Publication No. 144651/1983) This method is an excellent method in that it can racemize starting from any of the four isomers, and in particular it can racemize the (-)-trans isomer. , (+)-trans isomer is obtained when the (+)-cis isomer is used as the raw material. As described above, several methods are already known for cis, trans isomerization and racemization of primary chrysanthemum acids, but until now, chemical methods have been used to remove the attached functional group with respect to the inhospitable carbon at the C3 position. By selectively stereoconverting without changing (+)−
Nothing is known about the efficient production of (+)-trans isomers from cis isomers, and it is as if there is no such concept. However, as a result of extensive research into a method for obtaining the (+)-trans form from the (+)-cis form by changing the configuration at the C3 position ( C3 epimerization), the present inventors unexpectedly found that ( We have discovered that the objective can be efficiently achieved under mild conditions by treating +)-cis or (+)-cis(+)-trans mixed dichloromethane with a catalyst system in which a nitrile compound is added to a halogenated palladium compound. After further various studies, the present invention was completed. The steric transformation related to the present invention is illustrated as follows. The starting material of the present invention, (+)-cis primary chrysanthemum acid or (+)-cis, (+)-trans mixed primary chrysanthemum acid, is obtained by the optical resolution method of (±)-cis primary chrysanthemum acid (Unexamined Japanese Patent Publication No. 1971-125432), optical resolution method of (±)-cis, trans mixed dichroic acid (Japanese Patent Application Laid-open No. 48-48449), or method of deriving from optically active dihydrochrysansemolactone (Japanese Patent Application Laid-open No. 48-48449) Publication No. 47-30669,
JP-A No. 47-25155). Therefore, by combining the method of the present invention with these techniques, the (+)-trans isomer, which is the component with the highest insecticidal efficacy, can be obtained extremely efficiently. Next, to explain the method of the present invention in more detail, the (+)-cis primary chrysanthemum acid used as a raw material may be the cis-isomer alone or a mixture with the (+)trans-isomer in any proportion, and its optical purity can be determined. There is no problem even if it is only moderate. In this case, considering the nature of the C 3 epi form, the optical purity of the (+)- form upon trans conversion is almost the same as that of the raw material. By using these optically active cis-dairy chrysanthemum acids as a catalyst with a halogenated palladium compound added with a nitrile compound, C3 epimerization easily proceeds regardless of external pressure, resulting in the desired (+)- It can be converted to trans-synthetic acid or trans-synthetic acid-enriched. The halogenated palladium compound used in the present invention may be any halogenated palladium compound that can use a nitrile compound as a ligand,
For example, palladium chloride, palladium bromide, etc. are used, and palladium chloride is particularly preferred. The amount used is 1/100 per mole of ester to be treated.
A suitable amount is about 1/20 to 1/2 mole, preferably about 1/20 to 1/2 mole. The nitrile compound used in the present invention may be any nitrile compound as long as it has the ability to coordinate with the halogenated palladium compound used. Examples of such nitrile compounds include alkyl, aralkyl, and allyl cyanide compounds substituted with nitrile groups such as acetonitrile, propionitrile, butyronitrile, benzonitrile, and benzyl cyanide. The appropriate amount to be used is about 2 moles based on the halogenated palladium compound used, but more may be used. The catalyst used in the present invention is a complex of palladium halide (2) and a nitrile compound as described above, and this complex is easy to manufacture. For example, dichlorobis(benzonitrile)palladium can be obtained in high yield by dissolving palladium chloride in benzonitrile under heating and precipitating it by cooling or adding it to petroleum ether, hexane, etc. (MSKharasch et al., J .Amer Chem.
Soc., 60 , 882 (1938)). Furthermore, when carrying out the reaction, it is preferable to optionally dilute the reaction with a solvent that does not essentially inhibit the reaction. Examples of such solvents include ethers such as dioxane and ethylene glycol dimethyl ether, and halogenated hydrocarbons such as chloroform and dichloroethane. Examples include esters such as ethyl acetate, aromatic hydrocarbons such as benzene and toluene, and acetic acid. Among them, acetic acid ester, dioxane, chloroform, etc. are preferable. The reaction temperature is usually -30°C to 110°C, preferably -
It is advantageous to work in a temperature range of 10°C to 100°C. The time required for the reaction varies depending on the reaction conditions, but usually 1 minute to 20 hours is sufficient. The degree of progress of the reaction can be determined by measuring the optical rotation or by analyzing the diastereoisomer with the optically active alcohol by gas chromatography. Although the method of the present invention can be carried out under reduced pressure or increased pressure, the purpose can be easily achieved under normal pressure. The method of the present invention can be carried out either batchwise or continuously, and the charging method can be either a method in which the raw material ester is put into a reaction vessel together with a catalyst, or a method depending on the progress of the reaction. It is possible to adopt either a method of continuously or intermittently adding the water. After separating and recovering the catalyst from the reaction solution that has completed the reaction as described above, if the reaction solution is fractionally distilled, C 3
The (+)-trans primary chrysanthemum acid produced by epimization of the position, or trans primary chrysanthemum enriched therein, is obtained. Furthermore, it can be purified by distillation, chromatography, etc., if necessary. The (+)-trans primary chrysanthemum acid thus obtained can be used for various purposes. For example, (+)-trans primary chrysanthemum acid is called a pyrethroid alcohol represented by pyrethrolone and allethrone. Reaction of a group of alcohols can lead to highly potent insecticidal compounds. The method of the invention will now be explained by way of examples. Example 1 (+)-cis form: 98.4%, (-)-cis form: 1.6%
2.0 g of optically active cis-dairy chrysanthemum acid consisting of the following were dissolved in 38.0 g of ethyl acetate, and 1.4 g of dichlorobis(benzonitrile) palladium () prepared from palladium chloride and benzonitrile was added thereto and stirred at 20°C for 3 hours. . After removing the catalyst from the reaction solution,
Add 10% caustic soda aqueous solution to extract and remove neutral substances, add 10% hydrochloric acid to the aqueous layer to acidify, extract with toluene, wash with water, concentrate, and distill to obtain a boiling point of 110-116.
1.42 g of Daishu chrysanthemum acid was obtained at ℃/2 mmHg. As a result of compositional analysis of this product by gas chromatography, (+)-cis form: 7.6%, (-)-cis form: 0.1
%, (+)-trans form: 90.7%, (-)-trans form: 1.6%. Content of (+)- isomer Starting material 98.4% Product 98.3% Example 2 Optically active cis-daisy chrysanthemum acid used in Example 1 2.0
g was dissolved in 38.0 g of dioxane, 0.68 g of dichlorobis(benzonitrile) palladium () used in Example 1 was added, and the mixture was stirred at 50°C for 3 hours. After the reaction, the same procedure as in Example 1 was carried out to obtain 1.50% of chrysanthemum acid.
I got g. As a result of compositional analysis of this substance by gas chromatography, (+)-cis form: 20.1%,
(-)-cis form: 1.2%, (+)-trans form: 74.3
%, (-)-trans form: 4.4%. Content of (+)- isomer Starting material 98.4% Reactant 94.4% Example 3 2.0 g of the optically active cis-dairy chrysanthemum acid used in Example 1
was dissolved in 38.0 g of isobutyl acetate, 0.46 g of dichlorobis(benzonitrile)palladium () used in Example 1 was added, and the mixture was stirred at 100°C for 3 hours. After the reaction, the same procedure as in Example 1 was carried out to obtain 1.63 g
I got g. As a result of compositional analysis of this substance by gas chromatography, (+)-cis form: 37.0%,
(-)-cis form: 0%, (+)-trans form: 60.6
%, (-)-trans form: 2.4%. Content of (+) substance Starting material 98.4% Reactant 97.6% Example 4 2.0 g of the optically active cis-dairy chrysanthemum acid used in Example 1
was dissolved in 38.0 g of ethyl acetate, 1.40 g of dichlorobis(benzonitrile)palladium () used in Example 1 was added at 0°C, and the mixture was stirred for 3 hours. After the catalyst was deactivated at the same temperature, it was removed from the reaction solution and operated in the same manner as in Example 1 to obtain 1.73 g of daisic chrysanthemum acid. As a result of compositional analysis of this product by gas chromatography, (+)-cis form: 78.0%, (-)-cis form:
1.4%, (+)-trans form: 20.3%, and (-)-trans form: 0.3%. (+)-isomer content Starting material 98.4% Reactant 98.3% Example 5 2.0 g of the optically active cis-dairy chrysanthemum acid used in Example 1
was dissolved in 38.0 g of ethyl acetate, 0.9 g of dichlorobis(acetonitrile) palladium () prepared from palladium chloride and acetonitrile was added at 20°C, and the mixture was stirred for 3 hours. After the reaction, the reaction was carried out in the same manner as in Example 1 to obtain 1.78 g of primary chrysanthemum acid. As a result of compositional analysis of this product by gas chromatography, (+)-cis form: 68.2%, (-)-cis form: 1.0%, (+)-trans form: 30.1%, (-)-trans form: 0.7%. It was hot. Content of (+)- isomer Starting material 98.4% Reactant 98.3% Examples 6 and 7 The following table shows examples in which the reaction was carried out according to Example 1 with different amounts of catalyst.

【表】 * 原料の光学活性シス第一菊酸の組成……実施例
1と同じ
実施例 8,9,10,11 実施例1に準じて溶媒を変えて行つた場合の実
施例を次表に示した。
[Table] * Composition of optically active cis-dairy chrysanthemum acid as a raw material...Same example as Example 1 8, 9, 10, 11 The following table shows examples in which the solvent was changed according to Example 1. It was shown to.

【表】 * 原料の光学活性シス第一菊酸の組成……実施例1
と同じ
実施例 12 (+)−シス体:19.1%、(−)−シス体:0.6%
(+)−トランス体:77.6%、(−)−トランス体:
2.7%からなる(+)−体に富む第一菊酸2.0gを
クロロホルム18.0gに溶解し50℃で塩化パラジウ
ムとベンゾニトリルから調製したジクロロビス
(ベンゾニトリル)パラジウム()1.40gを加
え1時間撹拌した。 反応後実施例1と同様に操作して第一菊酸1.65
gを得た。このもののガスクロマトグラフイーに
よる組成分析の結果、(+)−シス体:2.1%、
(−)−シス体:0%、(+)−トランス体:93.6
%、(−)−トランス体:4.3%であつた。 (+)体の含有率 出 発 物 96.7% 反 応 物 95.7% 実施例 13 (+)−シス体:14.2%、(−)−シス体:1.9%
(+)−トランス体:72.1%、(−)−トランス体:
11.8%からなる(+)−体に富む第一菊酸2.0gを
ジオキサン18.0gに溶解し、20℃で実施例12で用
いたジクロロビス(ベンゾニトリル)パラジウム
()0.68gを加え7時間撹拌した。 反応後実施例1と同様に操作して第一菊酸1.56
gを得た。このもののガスクロマトグラフイーに
よる組成分析の結果、(+)−シス体:6.2%、
(−)−シス体:1.1%、(+)−トランス体:79.4
%、(−)−トランス体:13.3%であつた。 (+)−体の含有率 出 発 物 86.4% 生 成 物 85.6%
[Table] * Composition of optically active cis-dairy chrysanthemum acid as raw material...Example 1
Same example 12 (+)-cis form: 19.1%, (-)-cis form: 0.6%
(+)-trans form: 77.6%, (-)-trans form:
Dissolve 2.0 g of (+)-enriched chrysanthemum acid consisting of 2.7% in 18.0 g of chloroform, add 1.40 g of dichlorobis(benzonitrile) palladium () prepared from palladium chloride and benzonitrile at 50°C, and stir for 1 hour. did. After the reaction, the same procedure as in Example 1 was carried out to obtain 1.65% of chrysanthemum acid.
I got g. As a result of compositional analysis of this substance by gas chromatography, (+)-cis form: 2.1%,
(-)-cis form: 0%, (+)-trans form: 93.6
%, (-)-trans form: 4.3%. Content of (+) isomer Starting material 96.7% Reactant 95.7% Example 13 (+)-cis isomer: 14.2%, (-)-cis isomer: 1.9%
(+)-trans form: 72.1%, (-)-trans form:
2.0 g of (+)-rich chrysanthemum acid consisting of 11.8% was dissolved in 18.0 g of dioxane, and 0.68 g of dichlorobis(benzonitrile) palladium () used in Example 12 was added at 20°C and stirred for 7 hours. . After the reaction, the same procedure as in Example 1 was carried out to obtain 1.56 g
I got g. As a result of compositional analysis of this substance by gas chromatography, (+)-cis form: 6.2%,
(-)-cis form: 1.1%, (+)-trans form: 79.4
%, (-)-trans form: 13.3%. Content of (+)− substance Starting material 86.4% Product 85.6%

Claims (1)

【特許請求の範囲】 1 (+)−シス第一菊酸もしくは(+)−シス、
(+)−トランス混合第一菊酸をハロゲン化パラジ
ウム化合物とニトリル化合物との錯体触媒で、−
30℃から110℃の温度の範囲で処理することを特
徴とする(+)−トランス第一菊酸の製造方法。 2 処理を−10℃から100℃の温度範囲で行う特
許請求の範囲第1項に記載の方法。
[Claims] 1 (+)-cis primary chrysanthemum acid or (+)-cis,
(+)-trans Mixed chrysanthemum acid with a complex catalyst of a halogenated palladium compound and a nitrile compound, -
1. A method for producing (+)-trans-daisy chrysanthemum acid, characterized by processing at a temperature in the range of 30°C to 110°C. 2. The method according to claim 1, wherein the treatment is carried out at a temperature range of -10°C to 100°C.
JP56081935A 1981-05-28 1981-05-28 Preparation of (+)-trans chrysanthemum-monocarboxylic acid Granted JPS57197242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56081935A JPS57197242A (en) 1981-05-28 1981-05-28 Preparation of (+)-trans chrysanthemum-monocarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56081935A JPS57197242A (en) 1981-05-28 1981-05-28 Preparation of (+)-trans chrysanthemum-monocarboxylic acid

Publications (2)

Publication Number Publication Date
JPS57197242A JPS57197242A (en) 1982-12-03
JPS6361934B2 true JPS6361934B2 (en) 1988-11-30

Family

ID=13760335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56081935A Granted JPS57197242A (en) 1981-05-28 1981-05-28 Preparation of (+)-trans chrysanthemum-monocarboxylic acid

Country Status (1)

Country Link
JP (1) JPS57197242A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621641U (en) * 1992-07-15 1994-03-22 株式会社デュシェルブルー UV garbage sterilizer
ITMI20050231A1 (en) * 2005-02-17 2006-08-18 Endura Spa PROCESS FOR OBTAINING ENANTIOMER OF CHRYSANTHEMICAL ACID

Also Published As

Publication number Publication date
JPS57197242A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
Burt et al. The pyrethrins and related compounds. XIX Geometrical and optical isomers of 2, 2‐dimethyl‐3‐(2, 2‐dichlorovinyl)‐cyclopropanecarboxylic acid and insecticidal esters with 5‐benzyi‐3‐furylmethyi and 3‐phenoxybenzyl alcohols
US4473703A (en) Method of epimerization of alkyl chrysanthemate
JPS6351136B2 (en)
DE69906607T2 (en) Process for the production of optically active chrysanthemic acid
Csuk et al. Enantioselective Dreiding-Schmidt reactions: asymmetric synthesis and analysis of α-methylene-γ-butyrolactones
JPS6361934B2 (en)
JPH0153850B2 (en)
JPH0453850B2 (en)
JPH0586775B2 (en)
JP3009374B2 (en) Method for producing trans-4-alkylcyclohexanecarboxylic acid esters
JPS6352617B2 (en)
JPH0253429B2 (en)
JPS6351137B2 (en)
JPH0688933B2 (en) Racemization Method for Optically Active Primary Chrysanthemic Acids
JP4576642B2 (en) Process for producing optically active chrysanthemic acid
JPH06122654A (en) Production of beta,beta,beta-trifluorolactic acid ester compound of high optical purity
JP4048759B2 (en) Process for producing trans-vinyl substituted cyclopropanecarboxylic acid
JPH0531538B2 (en)
JP2687939B2 (en) Optical resolution method of dihydrojasmonic acid
JPH04230235A (en) Process for optically resolving racemic modification of 2,2-dimethylcyclopropanecarboxylic acid
EP0122279A1 (en) A process for preparing a cycloaddition compound
JP2002326971A (en) Method of production for optically active chrysanthemumic acid
JPH0477738B2 (en)
JP3396101B2 (en) Method for producing 4-isopropylcyclohexanecarboxylic acid esters
FR2500443A1 (en) PROCESS FOR THE PREPARATION OF DIHALOVINYL-CYCLO-PROPANE-CARBOXYLIC ACIDS