JPS6361932B2 - - Google Patents

Info

Publication number
JPS6361932B2
JPS6361932B2 JP56014666A JP1466681A JPS6361932B2 JP S6361932 B2 JPS6361932 B2 JP S6361932B2 JP 56014666 A JP56014666 A JP 56014666A JP 1466681 A JP1466681 A JP 1466681A JP S6361932 B2 JPS6361932 B2 JP S6361932B2
Authority
JP
Japan
Prior art keywords
reaction
acetone cyanohydrin
water
molar ratio
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014666A
Other languages
Japanese (ja)
Other versions
JPS57128653A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56014666A priority Critical patent/JPS57128653A/en
Publication of JPS57128653A publication Critical patent/JPS57128653A/en
Publication of JPS6361932B2 publication Critical patent/JPS6361932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアセトンシアンヒドリンからα−オキ
シイソ酪酸を製造する方法に関する。 α−オキシイソ酪酸は触媒存在下加熱、脱水す
ることにより容易にメタクリル酸になる。メタク
リル酸は従来アセトンシアンヒドリンを濃硫酸と
混合し、アミド化反応を経て加水分解によりメタ
クリル酸となるが、この過程においては中間体と
してアミド硫酸、メタクリロアミドの硫酸塩を生
成し、高粘度の反応液が生成する。この方法でメ
タクリル酸の収率を向上させるには反応液の急速
な加熱、冷却が必要であるが、反応液の粘度が高
い為急速な熱移動を行なわせることが困難であ
り、この為アミド化工程、加水分解工程と経過す
るたびに副反応の生起、反応生成物の分解等が起
り目的とするメタクリル酸の収率は原料アセトン
シアンヒドリンに対し70%程度に低下する。本発
明はかゝる欠点を解消し、アセトンシアンヒドリ
ンからアクリルアミドを経過することなく、メタ
クリル酸の原料であるα−オキシイソ酪酸を得る
方法である。 即ち本発明はアセトンシアンヒドリン、硫酸及
び水を、アセトンシアンヒドリンに対する硫酸の
モル比、0.5〜2.0、アセトンシアンヒドリンに対
する水のモル比、0.2〜1.0の条件下、40〜60℃で
反応させた後、水を加えて原料のアセトンシアン
ヒドリンに対する水のモル比を2以上とし、80〜
120℃で加水分解する方法である。 本発明においてアセトンシアンヒドリンに対す
る硫酸のモル比は0.5〜2.0、好ましくは0.9〜1.2
である。アセトンシアンヒドリンに対する硫酸の
モル比が2以上でも特に支障はないが、水に対す
る比率が大となり濃硫酸になるとアミド化反応が
生起するので好ましくない。硫酸のモル比が0.5
以下では反応が充分進行しない。又アセトンシア
ンヒドリンに対する水のモル比は0.2〜1.0、好ま
しくは0.4〜0.6である。この比率が1.0以上である
とアセトンシアンヒドリンの分解等の副反応が生
起し収率低下につながる。又0.2以下であると反
応液が高粘度化し、混合均一化が困難になる。反
応温度は40〜60℃である。圧力は特に制限なく、
常圧下、加圧下で行なうことが出来る。 本発明においてアセトンシアンヒドリン、硫酸
及び水の混合は、硫酸に半量のアセトンシアン
ヒドリンを混ぜ、次いで水を加え、更に残り半量
のアセトンシアンヒドリンを加える。アセトン
シアンヒドリンと水の混合物を硫酸中に加える、
水に硫酸を加え、次いで全量のアセトンシアン
ヒドリンを加える、等の方法で行なうことが出来
る。これらの反応操作は速やかに混合、均一化
し、発生する熱を速やかに除去する事により反応
熱の局在化を防止することが必要であり、反応器
としては外部ジヤケツト付きの撹拌機つき槽型反
応器の他、ジヤケツト付きラインミキサー、管内
かきとり式撹拌機あるいはスクリユー式撹拌機の
管型反応器が使用される。溶媒は特に必要ない
が、反応に不活性な溶媒を加えることは差支えな
い。 反応形式としては、回分式合成、連続式合成と
もいずれも可能である。 以上の条件下反応は30〜120分で終了するので、
水を加え加水分解を行なう。加水分解時の温度は
80〜120℃である。水の添加量はアセトンシアン
ヒドリンに対し2倍モル以上であり上限に特に制
限はないが、好ましくは3〜8倍モルである。 加水分解反応は撹拌、加熱下に行なえば良く、
加水分解用反応器としては上記の混合反応に使用
したものの他、パイプリアクターも使用する事が
出来る。 本発明によればアセトンシアンヒドリンから97
〜99%の収率でα−オキシ酪酸を得ることが出
来、これはメタクリル酸の製造原料として有効に
利用することが出来る。 実施例 1 撹拌機、温度センサーおよび還流冷却器を備え
た24つ口フラスコに、98%H2SO4 525gを
仕込む。 フラスコ内容物を撹拌しながら、アセトンシア
ンヒドリン(ACH)425g、H2O 54gの混合物
を徐々に滴下する。フラスコ外部を冷水で冷却
し、反応器内部温度を55±5℃に保ちつゝ、30〜
60分で滴下終了後、30〜60分、55±5℃で更に撹
拌を続ける。 本実施例におけるアセトンシアンヒドリンに対
する硫酸のモル比は1.07であり、アセトンシアン
ヒドリンに対する水のモル比は、反応時0.6、加
水分解時5.4である。 フラスコに水 486gを投入、フラスコ内液温
を110℃に加熱、30〜60分撹拌、終予後室温まで
冷却する。 加水分解後の合成液からエーテル抽出(5回)
によつて得られるα−オキシイソ酪酸をガスクロ
マトグラフ分析したところ、合成液中に512gの
α−オキシイソ酪酸が含まれていることが認めら
れた。これは、仕込みアセトンシアンヒドリンに
対し収率98.5%に相当する。 実施例 2 それぞれ撹拌機を有する連続4段槽型合成装置
の第1槽に98%硫酸及びACHと水の混合物を連
続的に供給し、反応液は第2槽を経て第3槽へ導
き、こゝで加水分解の為の水を加え更に第4槽へ
導き加水分解を行なうという工程で連続合成反応
を行なつた結果、加水分解合成液中のα−オキシ
イソ酪酸収率は供給アセトンシアンヒドリンに対
し98.0%であつた。各反応槽の反応条件は第1表
のとおりである。 なお本実施例におけるアセトンシアンヒドリン
に対する硫酸のモル比は1.12であり、アセトンシ
アンヒドリンに対する水のモル比は、反応時0.6、
加水分解時5.8である。
The present invention relates to a method for producing α-oxyisobutyric acid from acetone cyanohydrin. α-oxyisobutyric acid is easily converted to methacrylic acid by heating and dehydration in the presence of a catalyst. Methacrylic acid is conventionally produced by mixing acetone cyanohydrin with concentrated sulfuric acid, undergoing an amidation reaction, and then being hydrolyzed to produce methacrylic acid, but in this process, amidosulfuric acid and methacryloamide sulfate are produced as intermediates, resulting in high A viscous reaction liquid is produced. In order to improve the yield of methacrylic acid using this method, it is necessary to rapidly heat and cool the reaction solution, but the high viscosity of the reaction solution makes it difficult to perform rapid heat transfer. Each time the oxidation process and the hydrolysis process occur, side reactions occur, decomposition of the reaction product, etc. occur, and the yield of the desired methacrylic acid decreases to about 70% based on the raw material acetone cyanohydrin. The present invention eliminates these drawbacks and provides a method for obtaining α-oxyisobutyric acid, a raw material for methacrylic acid, from acetone cyanohydrin without converting it to acrylamide. That is, in the present invention, acetone cyanohydrin, sulfuric acid, and water are mixed at 40 to 60°C under the conditions that the molar ratio of sulfuric acid to acetone cyanhydrin is 0.5 to 2.0, and the molar ratio of water to acetone cyanhydrin is 0.2 to 1.0. After the reaction, water is added to make the molar ratio of water to the raw material acetone cyanohydrin 2 or more, and the
This method involves hydrolysis at 120℃. In the present invention, the molar ratio of sulfuric acid to acetone cyanohydrin is 0.5 to 2.0, preferably 0.9 to 1.2.
It is. Although there is no particular problem if the molar ratio of sulfuric acid to acetone cyanohydrin is 2 or more, if the ratio to water becomes large and becomes concentrated sulfuric acid, an amidation reaction will occur, which is not preferable. The molar ratio of sulfuric acid is 0.5
Below this, the reaction will not proceed sufficiently. The molar ratio of water to acetone cyanohydrin is 0.2 to 1.0, preferably 0.4 to 0.6. When this ratio is 1.0 or more, side reactions such as decomposition of acetone cyanohydrin occur, leading to a decrease in yield. If it is less than 0.2, the viscosity of the reaction liquid will increase, making it difficult to mix uniformly. The reaction temperature is 40-60°C. There is no particular limit to the pressure.
This can be carried out under normal pressure or increased pressure. In the present invention, acetone cyanohydrin, sulfuric acid, and water are mixed by mixing sulfuric acid with half the amount of acetone cyanohydrin, then adding water, and then adding the remaining half of the acetone cyanohydrin. Adding a mixture of acetone cyanohydrin and water into sulfuric acid,
This can be done by adding sulfuric acid to water and then adding the entire amount of acetone cyanohydrin. These reaction operations require rapid mixing, homogenization, and rapid removal of the generated heat to prevent localization of the reaction heat.The reactor is a tank type with an external jacket and a stirrer. In addition to the reactor, a line mixer with a jacket, a tube reactor with an internal scraping type stirrer, or a screw type stirrer is used. Although a solvent is not particularly required, an inert solvent may be added to the reaction. As for the reaction format, both batch synthesis and continuous synthesis are possible. The reaction under the above conditions will complete in 30 to 120 minutes, so
Add water to perform hydrolysis. The temperature during hydrolysis is
The temperature is 80-120℃. The amount of water added is at least 2 times the amount of acetone cyanohydrin by mole, and there is no particular upper limit, but it is preferably 3 to 8 times the amount by mole. The hydrolysis reaction can be carried out under stirring and heating.
As the reactor for hydrolysis, in addition to the one used for the above-mentioned mixing reaction, a pipe reactor can also be used. According to the invention, from acetone cyanohydrin 97
α-oxybutyric acid can be obtained with a yield of ~99%, and this can be effectively used as a raw material for producing methacrylic acid. Example 1 A 24-necked flask equipped with a stirrer, temperature sensor, and reflux condenser is charged with 525 g of 98% H 2 SO 4 . While stirring the contents of the flask, a mixture of 425 g of acetone cyanohydrin (ACH) and 54 g of H 2 O is gradually added dropwise. While cooling the outside of the flask with cold water and maintaining the reactor internal temperature at 55±5℃,
After the dropwise addition was completed in 60 minutes, stirring was continued for 30 to 60 minutes at 55±5°C. In this example, the molar ratio of sulfuric acid to acetone cyanohydrin was 1.07, and the molar ratio of water to acetone cyanohydrin was 0.6 during reaction and 5.4 during hydrolysis. Add 486 g of water to the flask, heat the liquid in the flask to 110°C, stir for 30 to 60 minutes, and cool to room temperature. Ether extraction from the synthetic solution after hydrolysis (5 times)
Gas chromatographic analysis of α-oxyisobutyric acid obtained by the method revealed that 512 g of α-oxyisobutyric acid was contained in the synthesis solution. This corresponds to a yield of 98.5% based on the charged acetone cyanohydrin. Example 2 A mixture of 98% sulfuric acid and ACH and water was continuously supplied to the first tank of a continuous four-stage synthesis apparatus each having a stirrer, and the reaction solution was led to the third tank via the second tank. As a result of continuous synthesis reaction in the step of adding water for hydrolysis and further leading to the fourth tank for hydrolysis, the yield of α-oxyisobutyric acid in the hydrolyzed synthesis solution was the same as that of the supplied acetone cyanhydride. It was 98.0% relative to phosphorus. The reaction conditions of each reaction tank are shown in Table 1. In this example, the molar ratio of sulfuric acid to acetone cyanohydrin was 1.12, and the molar ratio of water to acetone cyanohydrin was 0.6 during the reaction.
It is 5.8 when hydrolyzed.

【表】 実施例 3 回転ブラシ撹拌機を備えた反応筒の上方より98
%硫酸、50.9g/H、ACH+水(H2O/ACH=
0.5)53.5g/Hを供給し、反応筒の外側を水で
冷却し、反応筒底部の温度が50〜60℃になるよう
に調節した。混合液を熟成槽に送り1.5時間撹拌
熟成し、次いで抜出液に水56.4g/Hを添加し、
110℃で60分間反応させた。本実施例におけるア
セトンシアンヒドリンに対する硫酸のモル比は
0.91であり、アセトンシアンヒドリンに対する水
のモル比は、反応時0.5、加水分解時5.5である。
α−オキシイソ酪酸の収率はACH基準で98.3%
であつた。 比較例 1 実施例1において、アセトンシアンヒドリン
(ACH)425gとのH2Oの混合量を135g(ACH
に対するモル比1.5)としたところ、反応時に多
量の青酸(HCN)およびアセトンの生成が認め
られた。 反応終了後、実施例1と同様の操作で加水分解
を行つた結果、合成液中のα−オキシイソ酪酸は
234gであり、仕込みACHに対する収率は45%で
あつた。 比較例 2 実施例1においてアセトンシアンヒドリン
(ACH)425gとのH2Oの混合量を9g(ACHに
対するモル比0.1)とした。 反応終了後、実施例1と同様の操作で加水分解
を行つた結果、合成液中のα−オキシイソ酪酸は
374gであり、仕込みACHに対する収率は72%で
あつた。なおこの時副生成物としてメタクリルア
ミドが認められた。
[Table] Example 3 From the top of the reaction column equipped with a rotating brush stirrer 98
% sulfuric acid, 50.9g/H, ACH+water (H 2 O/ACH=
0.5) 53.5 g/H was supplied, the outside of the reaction column was cooled with water, and the temperature at the bottom of the reaction column was adjusted to 50 to 60°C. The mixed liquid was sent to an aging tank and aged with stirring for 1.5 hours, and then 56.4 g/H of water was added to the extracted liquid.
The reaction was carried out at 110°C for 60 minutes. In this example, the molar ratio of sulfuric acid to acetone cyanohydrin is
The molar ratio of water to acetone cyanohydrin is 0.5 during reaction and 5.5 during hydrolysis.
Yield of α-oxyisobutyric acid is 98.3% based on ACH standard
It was hot. Comparative Example 1 In Example 1, the amount of H 2 O mixed with 425 g of acetone cyanohydrin (ACH) was changed to 135 g (ACH).
When the molar ratio was set to 1.5), large amounts of hydrocyanic acid (HCN) and acetone were observed to be produced during the reaction. After the reaction was completed, hydrolysis was carried out in the same manner as in Example 1. As a result, α-oxyisobutyric acid in the synthesis solution was
The amount was 234 g, and the yield was 45% based on the charged ACH. Comparative Example 2 In Example 1, the amount of H 2 O mixed with 425 g of acetone cyanohydrin (ACH) was 9 g (molar ratio to ACH 0.1). After the reaction was completed, hydrolysis was carried out in the same manner as in Example 1. As a result, α-oxyisobutyric acid in the synthesis solution was
The amount was 374 g, and the yield was 72% based on the charged ACH. At this time, methacrylamide was observed as a by-product.

Claims (1)

【特許請求の範囲】[Claims] 1 アセトンシアンヒドリン、硫酸及び水を、ア
セトンシアンヒドリンに対する硫酸のモル比0.5
〜2.0、アセトンシアンヒドリンに対する水のモ
ル比0.2〜1.0の条件下、40〜60℃で反応させた
後、水を加えて原料のアセトンシアンヒドリンに
対する水のモル比を2以上とし、80〜120℃で加
水分解することを特徴とするα−オキシイソ酪酸
の製造法。
1 Acetone cyanohydrin, sulfuric acid and water at a molar ratio of sulfuric acid to acetone cyanohydrin of 0.5.
~2.0, the molar ratio of water to acetone cyanohydrin is 0.2 to 1.0, and after reacting at 40 to 60 °C, water is added to make the molar ratio of water to acetone cyanohydrin of the raw material 2 or more, and 80 A method for producing α-oxyisobutyric acid characterized by hydrolysis at ~120°C.
JP56014666A 1981-02-03 1981-02-03 Preparation of alpha-oxyisobutyric acid Granted JPS57128653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56014666A JPS57128653A (en) 1981-02-03 1981-02-03 Preparation of alpha-oxyisobutyric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56014666A JPS57128653A (en) 1981-02-03 1981-02-03 Preparation of alpha-oxyisobutyric acid

Publications (2)

Publication Number Publication Date
JPS57128653A JPS57128653A (en) 1982-08-10
JPS6361932B2 true JPS6361932B2 (en) 1988-11-30

Family

ID=11867529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56014666A Granted JPS57128653A (en) 1981-02-03 1981-02-03 Preparation of alpha-oxyisobutyric acid

Country Status (1)

Country Link
JP (1) JPS57128653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022084274A1 (en) 2020-10-23 2022-04-28 Röhm Gmbh Optimized process for synthesizing methacrylic acid (maa) and/or alkyl methacrylate by reducing unwanted byproducts
WO2022084032A1 (en) 2020-10-23 2022-04-28 Röhm Gmbh Optimized process for synthesizing alkyl methacrylate by reducing unwanted byproducts
WO2023169810A1 (en) 2022-03-11 2023-09-14 Röhm Gmbh Process for producing alpha-hydroxyisobutyric acid methyl ester, and its use in the electronics industry

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229135A (en) * 1989-02-28 1990-09-11 Kyowa Gas Chem Ind Co Ltd Production of 2-hydroxy-4-phenylbutyric acid
DE102004006826A1 (en) * 2004-02-11 2005-08-25 Röhm GmbH & Co. KG Production of methacrylic acid from acetone cyanohydrin involves production of an alpha-hydroxyisobutyric acid in presence of an inert polar solvent for easy stirring, followed by dehydration
JP4925410B2 (en) * 2006-02-27 2012-04-25 三菱レイヨン株式会社 Method for producing optically active mandelic acid or derivative thereof
TWI716495B (en) 2015-11-19 2021-01-21 日商協和發酵生化股份有限公司 Crystal of monovalent cation salt of 3-hydroxyisovaleric acid and method for producing the crystal
RU2018145506A (en) * 2016-06-24 2020-07-27 Оцука Фармасьютикал Фэктори, Инк. CRYSTALLINE AMINO ACID SALT OF 3-HYDROXYISOVALERIANIC ACID AND METHOD FOR ITS PRODUCTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADVANCED ORGANIC CHEMISTRY=1977 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022084274A1 (en) 2020-10-23 2022-04-28 Röhm Gmbh Optimized process for synthesizing methacrylic acid (maa) and/or alkyl methacrylate by reducing unwanted byproducts
WO2022084032A1 (en) 2020-10-23 2022-04-28 Röhm Gmbh Optimized process for synthesizing alkyl methacrylate by reducing unwanted byproducts
WO2023169810A1 (en) 2022-03-11 2023-09-14 Röhm Gmbh Process for producing alpha-hydroxyisobutyric acid methyl ester, and its use in the electronics industry

Also Published As

Publication number Publication date
JPS57128653A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
JPS6361932B2 (en)
JPS5995237A (en) Manufacture of oxyphenoxy-alkane carboxylic acid
CN108864178B (en) Micro-reaction method and device for synthesizing tris (2-chloropropyl) phosphate
JPH0615520B2 (en) Process for producing surface-active condensation products
JP2909198B2 (en) Production method of α-hydroxyisobutyric acid
JPS6078928A (en) Continuous manufacture of 1,2-alkanediol
JPH11246452A (en) Preparation of benzyl alcohol
JPH0132813B2 (en)
JP4992288B2 (en) Method for producing fluoroalkylsulfonic anhydride
CN109824514A (en) A method of synthesis 2- methylglutaric acid dimethyl ester
EP0197408A2 (en) A method of preparing omega -lactams, in particular caprolactam
US3027328A (en) Process for the preparation of acetonecyanohydrin/sulfuric acid mixtures
US5144074A (en) Process for the synthesis of carboxamides
JP2844178B2 (en) Method for producing α, β-unsaturated carboxylic acid ester
JP3866626B2 (en) Method for producing sulfuric acid methacrylamide and apparatus for carrying out the method
US3940439A (en) Acid chloride synthesis
CN113773221B (en) P-benzoquinone compound and preparation method thereof
SU791734A1 (en) Method of preparing omega-chlorocarboxylic acids
JPH0729994B2 (en) Method for producing N-alkylalkylenediamine
SU1766912A1 (en) Method of perfluaroallylfluorsulfate synthesis
JP2552319B2 (en) 3-amino-2,4,5-trifluorobenzoic acid
JP4030293B2 (en) Process for producing β-ketonitriles
SU510923A1 (en) Method of producing ketoalkylphosphonates
JPH07108870B2 (en) Method for producing 2,4-di-t-butylphenol
JP2003221360A (en) Method for manufacturing 2-fluoro-2-methylpropionic acids