JP2844178B2 - Method for producing α, β-unsaturated carboxylic acid ester - Google Patents

Method for producing α, β-unsaturated carboxylic acid ester

Info

Publication number
JP2844178B2
JP2844178B2 JP32804895A JP32804895A JP2844178B2 JP 2844178 B2 JP2844178 B2 JP 2844178B2 JP 32804895 A JP32804895 A JP 32804895A JP 32804895 A JP32804895 A JP 32804895A JP 2844178 B2 JP2844178 B2 JP 2844178B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
acid ester
anhydride
reaction
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32804895A
Other languages
Japanese (ja)
Other versions
JPH09143126A (en
Inventor
由晴 安宅
准次 越野
忠弘 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP32804895A priority Critical patent/JP2844178B2/en
Publication of JPH09143126A publication Critical patent/JPH09143126A/en
Application granted granted Critical
Publication of JP2844178B2 publication Critical patent/JP2844178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、β−ヒドロキシカ
ルボン酸エステルを原料とし、種々の合成中間体、医薬
品原料、樹脂原料等として工業的に非常に有用なα,β
−不飽和カルボン酸エステルを工業的に製造する方法に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an .alpha., .Beta. Industrially useful as a synthetic intermediate, a pharmaceutical raw material, a resin raw material, etc., starting from a .beta.-hydroxycarboxylic acid ester.
A process for industrially producing unsaturated carboxylic esters.

【0002】[0002]

【従来の技術】従来、アルコール類の脱離反応による不
飽和化合物の合成方法としては、硫酸、リン酸、シュウ
酸等の酸触媒を用いる方法、アルミナ、シリカゲル、モ
ンモリロナイト等の固体触媒を用いる方法、FeS
4 、CuSO4 、NiSO4 等の金属触媒を用いる方
法が知られている(例えば、新実験化学講座、14巻、p
119)。しかしながら、これらの触媒を用いる反応条件で
は高温を必要とし、β−ヒドロキシカルボン酸エステル
を用いて反応を行おうとした場合、分解、重合反応等が
起こってしまい、満足な収率が得られない。また、β−
ヒドロキシカルボン酸エステルからの脱離反応の場合、
生成物として、α,β−不飽和カルボン酸エステルと
β,γ−不飽和カルボン酸エステルの2種の異性体が生
じうるが、これらの触媒を用いる反応の場合には、異性
体の混合物として得られ、目的とするα,β−不飽和カ
ルボン酸エステルの選択率は一般に高くない。
2. Description of the Related Art Conventionally, as a method of synthesizing an unsaturated compound by an elimination reaction of alcohols, a method using an acid catalyst such as sulfuric acid, phosphoric acid, oxalic acid, a method using a solid catalyst such as alumina, silica gel, montmorillonite and the like are known. , FeS
A method using a metal catalyst such as O 4 , CuSO 4 , and NiSO 4 is known (for example, New Experimental Chemistry Course, Vol. 14, p.
119). However, under the reaction conditions using these catalysts, high temperatures are required, and when attempting to carry out the reaction using β-hydroxycarboxylic acid ester, decomposition, polymerization reaction and the like occur, and a satisfactory yield cannot be obtained. Also, β-
In the case of the elimination reaction from the hydroxycarboxylic acid ester,
As a product, two kinds of isomers of an α, β-unsaturated carboxylic acid ester and a β, γ-unsaturated carboxylic acid ester can be produced. In the case of a reaction using these catalysts, a mixture of isomers is obtained. The selectivity of the desired α, β-unsaturated carboxylic acid ester obtained is generally not high.

【0003】[0003]

【化3】 Embedded image

【0004】また、β−ヒドロキシカルボン酸エステル
のようにヒドロキシル基のβ−位に電子吸引性基を有す
る原料の場合には、KOH、NaOMe等の強塩基触媒
を用いても脱離反応が進行することが知られており(J.
Am. Chem. Soc., 70, 1895 (1948), J. Am. Chem. So
c., 81, 2822 (1959))、この場合には前述のような位置
異性体の生成は抑えられ、目的のα,β−不飽和体の選
択率は高くなるものの、これらの触媒を用いた場合には
原料および生成物の加水分解反応によるカルボン酸の生
成が起こり、目的とするα,β−不飽和カルボン酸エス
テルは低収率でしか得られない。そこで、これらの副反
応を防ぐための方法として、POCl3 、SOCl2
MeSO3 Cl、pTsCl等のハロゲン化剤、スルホ
ン化剤等を用いてヒドロキシル基を適当な反応基に変換
した後に、穏和な条件で脱離を行う方法が行われている
(J. Am. Chem. Soc., 75, 4830 (1953), J. Am. Chem.
Soc., 77, 1028 (1955), J. Am. Chem. Soc., 79, 1095
(1957))。これらの方法によればβ,γ−不飽和体が生
成することなく目的とするα,β−不飽和カルボン酸エ
ステルを高選択率、高収率で得ることができるが、工業
的にこれらの方法を行う場合には、高価な試薬であるハ
ロゲン化剤、スルホン化剤を等量用いる必要があるこ
と、また、反応により大量の脱離塩が生成し、廃棄物の
増加、後処理工程の煩雑化につながることからコスト的
に非常に不利である。
In the case of a raw material having an electron-withdrawing group at the β-position of a hydroxyl group such as a β-hydroxycarboxylic acid ester, the elimination reaction proceeds even using a strong base catalyst such as KOH or NaOMe. (J.
Am. Chem. Soc., 70 , 1895 (1948), J. Am. Chem. So
c., 81 , 2822 (1959)). In this case, the formation of regioisomers as described above is suppressed, and the selectivity of the target α, β-unsaturated compound is increased. In such a case, a carboxylic acid is generated by a hydrolysis reaction of the raw material and the product, and the desired α, β-unsaturated carboxylic acid ester can be obtained only in a low yield. Therefore, as a method for preventing these side reactions, POCl 3 , SOCl 2 ,
A method of converting a hydroxyl group into a suitable reactive group using a halogenating agent such as MeSO 3 Cl, pTsCl, or the like, a sulfonating agent, or the like, and then performing elimination under mild conditions is performed.
(J. Am. Chem. Soc., 75 , 4830 (1953), J. Am. Chem.
Soc., 77 , 1028 (1955), J. Am. Chem. Soc., 79 , 1095
(1957)). According to these methods, the desired α, β-unsaturated carboxylic acid ester can be obtained at a high selectivity and a high yield without generating a β, γ-unsaturated product. When performing the method, it is necessary to use equal amounts of expensive reagents such as a halogenating agent and a sulfonating agent.Moreover, a large amount of eliminated salt is generated by the reaction, resulting in an increase in waste and an increase in post-treatment steps. This is very disadvantageous in terms of cost because it leads to complication.

【0005】また、 J. Am. Chem. Soc., 1947, 1471に
は、無水フタル酸を用いる、β−ヒドロキシニトロアル
カンの脱水反応の例が示されているが、この例において
は等量の酸無水物を用いて行っており、収率も65%程
度にすぎない。
Also, J. Am. Chem. Soc., 1947 , 1471 shows an example of the dehydration reaction of β-hydroxynitroalkane using phthalic anhydride. The reaction is performed using an acid anhydride, and the yield is only about 65%.

【0006】[0006]

【化4】 Embedded image

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、高価な試薬を使用せず、廃棄物の生成を抑えて、β
−ヒドロキシカルボン酸エステルからα,β−不飽和カ
ルボン酸エステルを高収率かつ高選択的に製造する工業
的に有利な方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to eliminate the use of expensive reagents, suppress the generation of waste,
It is an object of the present invention to provide an industrially advantageous method for producing an α, β-unsaturated carboxylic acid ester from a hydroxycarboxylic acid ester with high yield and high selectivity.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明者らは鋭意検討した結果、触媒量の芳香族多
塩基性カルボン酸またはその無水物の存在下に、高温条
件下にβ−ヒドロキシカルボン酸エステルを連続的に反
応させることで、高価な試薬を使うことなく、廃棄物の
生成も少量で、高収率、高選択的にα,β−不飽和カル
ボン酸エステルを製造する条件を確立し、本発明を完成
した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, in the presence of a catalytic amount of an aromatic polybasic carboxylic acid or an anhydride thereof, under high temperature conditions. By continuously reacting β-hydroxycarboxylic acid esters, it is possible to produce α, β-unsaturated carboxylic acid esters with high yield and high selectivity without using expensive reagents and with a small amount of waste. Conditions were established, and the present invention was completed.

【0009】即ち、本発明の要旨は、(1) 芳香族多
塩基性カルボン酸、またはその無水物の存在下に、一般
式(I)
That is, the gist of the present invention is to provide (1) a compound of the formula (I) in the presence of an aromatic polybasic carboxylic acid or an anhydride thereof.

【0010】[0010]

【化5】 Embedded image

【0011】(式中、R1 、R2 、R3 は、それぞれ水
素原子または炭素数1〜5の直鎖または分岐のアルキル
基を表し、ただしR1 とR3 は一緒になって環を形成し
てもよく、R4 は炭素数1〜3の直鎖または分岐のアル
キル基を表す。)で表されるβ−ヒドロキシカルボン酸
エステルを100〜300℃で反応系内に連続的に供給
しつつ、且つ生成物を速やかに反応系外に除去しながら
反応させることを特徴とするα,β−不飽和カルボン酸
エステルの製造方法、(2) 芳香族多塩基性カルボン
酸、またはその無水物の量が、原料であるβ−ヒドロキ
シカルボン酸エステルの総仕込量に対し0.1〜50モ
ル%であることを特徴とする前記(1)記載の方法、
(3) 芳香族酸無水物が、無水フタル酸、無水トリメ
リット酸であることを特徴とする前記(1)または
(2)記載の方法、並びに(4) β−ヒドロキシカル
ボン酸エステルが、2−ヒドロキシシクロペンタンカル
ボン酸エチル(II)であることを特徴とする前記(1)
〜(3)いずれかに記載の方法、に関する。
(Wherein R 1 , R 2 and R 3 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 3 together form a ring R 4 represents a linear or branched alkyl group having 1 to 3 carbon atoms), and the β-hydroxycarboxylic acid ester represented by the formula (1) is continuously supplied into the reaction system at 100 to 300 ° C. A process for producing an α, β-unsaturated carboxylic acid ester, wherein the reaction is carried out while rapidly removing the product from the reaction system, and (2) an aromatic polybasic carboxylic acid or its anhydride. The method according to the above (1), wherein the amount of the substance is 0.1 to 50 mol% based on the total charged amount of the β-hydroxycarboxylic acid ester as a raw material,
(3) The method according to the above (1) or (2), wherein the aromatic acid anhydride is phthalic anhydride or trimellitic anhydride, and (4) the β-hydroxycarboxylic acid ester is The above-mentioned (1), which is ethyl-hydroxycyclopentanecarboxylate (II).
To (3).

【0012】[0012]

【化6】 Embedded image

【0013】[0013]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明に用いられる芳香族多塩基性カルボン酸と
しては、容易に酸無水物を形成しやすく、かつ酸無水物
の沸点が生成物の沸点より高いものであればいずれのも
のでも良いが、工業的に使用する観点から芳香族多塩基
性カルボン酸およびその無水物の具体例としては、フタ
ル酸、テレフタル酸、トリメリット酸、ピロメリット
酸、無水フタル酸、無水トリメリット酸、無水ピロメリ
ット酸等が好ましく、より好ましくは無水フタル酸、無
水トリメリット酸である。芳香族多塩基性カルボン酸は
反応中に無水物に変換されて脱水剤として作用している
と考えられ、酸より無水物を直接使用する方が好まし
い。尚、酸無水物の形成し難いテレフタル酸等を酸無水
物と共存させると酸触媒ともなり、好ましい。これらは
単独で、あるいは混合物として用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The aromatic polybasic carboxylic acid used in the present invention may be any one as long as it easily forms an acid anhydride and the boiling point of the acid anhydride is higher than the boiling point of the product. Specific examples of aromatic polybasic carboxylic acids and anhydrides from the viewpoint of global use include phthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, phthalic anhydride, trimellitic anhydride, and pyromellitic anhydride. And the like, more preferably phthalic anhydride and trimellitic anhydride. It is considered that the aromatic polybasic carboxylic acid is converted to an anhydride during the reaction and acts as a dehydrating agent, and it is preferable to use the anhydride directly rather than the acid. In addition, it is preferable that terephthalic acid or the like, which hardly forms an acid anhydride, coexist with the acid anhydride, because it also serves as an acid catalyst. These can be used alone or as a mixture.

【0014】芳香族多塩基性カルボン酸、またはその無
水物の使用量は、例えば原料β−ヒドロキシカルボン酸
エステルの総仕込量に対して、0.1〜50モル%の量
を用いることができる。この範囲であれば、反応性が特
に高く反応率も向上する。また、製造コストも低く、廃
棄物の生成も抑えることができる。なかでも、1〜30
モル%がより好ましく、5〜30モル%がさらに好まし
い。
The amount of the aromatic polybasic carboxylic acid or the anhydride thereof can be, for example, 0.1 to 50 mol% based on the total charged amount of the raw material β-hydroxycarboxylic acid ester. . Within this range, the reactivity is particularly high and the reaction rate is improved. Further, the production cost is low, and the generation of waste can be suppressed. Above all, 1-30
Mol% is more preferable, and 5 to 30 mol% is further preferable.

【0015】本発明に用いられる原料化合物としては種
々のβ−ヒドロキシカルボン酸エステル(一般式
(I))を用いることができるが、生成物を連続的に反
応系外に除去しながら反応を行う必要があるので、総炭
素数15以下の比較的低沸点の化合物が好ましい。ま
た、一般式(I)におけるR4 としては、炭素数1〜3
のアルキル基であるが、好ましくはメチル基またはエチ
ル基であり、特にエチル基が好ましい。かかるβ−ヒド
ロキシカルボン酸エステルの具体例としては、3−ヒド
ロキシブタン酸エチル、3−ヒドロキシペンタン酸エチ
ル、3−ヒドロキシヘキサン酸エチル、2−ヒドロキシ
シクロペンタンカルボン酸エチル、2−ヒドロキシシク
ロヘキサンカルボン酸エチル等を挙げることができる。
特に2−ヒドロキシシクロペンタンカルボン酸エチルが
好ましい。
Various β-hydroxycarboxylic acid esters (general formula (I)) can be used as the raw material compound used in the present invention. The reaction is carried out while continuously removing the product outside the reaction system. Since it is necessary, a compound having a relatively low boiling point having a total carbon number of 15 or less is preferable. R 4 in the general formula (I) has 1 to 3 carbon atoms.
The alkyl group is preferably a methyl group or an ethyl group, and particularly preferably an ethyl group. Specific examples of such β-hydroxycarboxylic acid esters include ethyl 3-hydroxybutanoate, ethyl 3-hydroxypentanoate, ethyl 3-hydroxyhexanoate, ethyl 2-hydroxycyclopentanecarboxylate, and ethyl 2-hydroxycyclohexanecarboxylate. And the like.
Particularly, ethyl 2-hydroxycyclopentanecarboxylate is preferred.

【0016】本発明の反応は、芳香族多塩基性カルボン
酸、またはその無水物の存在下に、β−ヒドロキシカル
ボン酸エステルを100〜300℃で反応系内に連続的
に供給しつつ、且つ生成物を速やかに反応系外に除去し
ながら反応させることを特徴とする。ここで、連続的と
は、生成物が速やかに反応系外に除去される条件下で原
料のβ−ヒドロキシカルボン酸エステルを反応系に供給
して反応を行わしめることを意味する。従って、単に原
料を連続的に反応系に供給することや生成物を連続的に
取得することのみを意味するものではない。それは、生
成物であるα,β−不飽和カルボン酸エステルを高温に
放置すると分解反応、重合反応等が起こり収率が低下す
るので、これを回避することを目的として行う手法だか
らである。従って、例えば、生成物の沸点以上かつ酸無
水物の沸点以下の温度で反応を行い、生成物が生成後速
やかに反応系外に除去されるような条件の下で原料化合
物を連続的に反応系に供給し、結果として生成物が連続
的に反応系外へ除去されるような場合が本発明でいう
「連続的」の典型例である。従って、原料化合物の供給
の態様としては、所定の供給速度で継続的に供給しても
よく、また断続的に供給してもよい。原料化合物の供給
速度は、装置の能力に応じて適宜決めればよい。なお、
装置を安定的に運転するには、連続的に一定速度で原料
化合物を供給すると共に一定速度で生成物を取得するの
が好ましい。また、生成物の留出を助ける意味で不活性
ガスを系内に吹き込んでもよい。
In the reaction of the present invention, the β-hydroxycarboxylic acid ester is continuously fed into the reaction system at 100 to 300 ° C. in the presence of an aromatic polybasic carboxylic acid or its anhydride, and The reaction is carried out while quickly removing the product out of the reaction system. Here, "continuously" means that the reaction is carried out by supplying the raw material β-hydroxycarboxylic acid ester to the reaction system under the condition that the product is quickly removed from the reaction system. Therefore, it does not merely mean that the raw materials are continuously supplied to the reaction system or that the products are continuously obtained. This is because, when the α, β-unsaturated carboxylic acid ester, which is a product, is left at a high temperature, a decomposition reaction, a polymerization reaction and the like occur to lower the yield. Therefore, for example, the reaction is carried out at a temperature not lower than the boiling point of the product and not higher than the boiling point of the acid anhydride, and the starting compound is continuously reacted under conditions such that the product is immediately removed from the reaction system after generation. A typical example of the “continuous” in the present invention is a case where the product is supplied to the system, and as a result, the product is continuously removed outside the reaction system. Therefore, as a mode of supplying the raw material compound, the raw material compound may be supplied continuously at a predetermined supply rate or may be supplied intermittently. The feed rate of the raw material compound may be determined appropriately according to the capacity of the apparatus. In addition,
In order to operate the apparatus stably, it is preferable to continuously supply the starting compound at a constant rate and obtain the product at a constant rate. Further, an inert gas may be blown into the system in order to assist in distilling out the product.

【0017】反応は無溶媒で行うこともできるが、反応
条件で不活性な高沸点溶媒を用いて行うこともできる。
不活性な高沸点溶媒としては、流動パラフィンや、アル
キル置換ベンゼンのような炭化水素類、安息香酸アルキ
ルエステル類、フタル酸アルキルエステル類、およびト
リメリット酸アルキルエステル類等を挙げることができ
る。
The reaction can be carried out without a solvent, but can also be carried out using a high-boiling solvent which is inert under the reaction conditions.
Examples of the inert high-boiling solvent include liquid paraffin, hydrocarbons such as alkyl-substituted benzene, alkyl benzoates, alkyl phthalates, and alkyl trimellites.

【0018】反応温度は、用いる反応原料により異なる
が、100〜300℃の範囲で適宜選択でき、好ましく
は150〜250℃である。また、用いる原料化合物に
より、反応を減圧下で行うこともでき、その場合の減圧
度としては50〜500torr、さらに好ましくは1
00〜300torrを選択することができる。本発明
の方法によれば、種々の合成中間体として工業的に有用
なα,β−不飽和カルボン酸エステルをβ−ヒドロキシ
カルボン酸エステルから、高価な試薬を用いることな
く、廃棄物の生成も少量で、高収率、高選択的に製造す
ることが可能である。
The reaction temperature varies depending on the reaction raw materials used, but can be appropriately selected within the range of 100 to 300 ° C., and is preferably 150 to 250 ° C. The reaction can also be carried out under reduced pressure depending on the starting compound used, and in this case, the degree of reduced pressure is 50 to 500 torr, more preferably 1 to 500 torr.
00 to 300 torr can be selected. According to the method of the present invention, waste products can be produced from β-hydroxycarboxylic acid esters from α, β-unsaturated carboxylic acid esters which are industrially useful as various synthetic intermediates without using expensive reagents. It can be produced in a small amount, with high yield, and with high selectivity.

【0019】反応生成物は脱離水と共に得られるが、こ
れらは常法により速やかに分離するのが好ましい。こう
して、本発明の目的物であるα,β−不飽和カルボン酸
エステルを高純度にかつ高収率で製造することができ
る。
Although the reaction product is obtained together with the desorbed water, it is preferable that these are separated quickly by a conventional method. Thus, the α, β-unsaturated carboxylic acid ester which is the object of the present invention can be produced with high purity and high yield.

【0020】[0020]

【実施例】以下、実施例および比較例により本発明をさ
らに詳しく説明するが、本発明はこれらの実施例等によ
りなんら限定されるものではない。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.

【0021】実施例1 回転攪拌棒、内部温度計、クライゼン蒸留装置、及び定
量滴下装置を付した100mlの四つ口フラスコに、無
水フタル酸(5.0g、33.8mmol)および2−
ヒドロキシシクロペンタンカルボン酸エチル(5.3
g、33.8mmol)を仕込んだ。マントルヒーター
にて220℃まで昇温を行い、300torrに減圧し
た。シクロペンテンカルボン酸エチルおよび脱離水が留
出し始めたら、滴下装置より2−ヒドロキシシクロペン
タンカルボン酸エチルを2g/hの流量で8時間滴下を
行い、生成物を留出させた。滴下終了後、さらに2時間
減圧下で加熱を続け、系中に残存する生成物を留出させ
た。2時間毎に留分をGLCにより分析し、表1に示す
結果を得た。総仕込量23.0g、総留分量19.4
g、回収率84.5%、反応率92〜97%、異性体選
択率94〜95%であった。収率(回収率×反応率×選
択率)は76.3%であった。
EXAMPLE 1 Phthalic anhydride (5.0 g, 33.8 mmol) and 2-phthalic anhydride were placed in a 100 ml four-necked flask equipped with a rotary stir bar, an internal thermometer, a Claisen distillation apparatus, and a metered addition apparatus.
Ethyl hydroxycyclopentanecarboxylate (5.3
g, 33.8 mmol). The temperature was raised to 220 ° C. with a mantle heater, and the pressure was reduced to 300 torr. When the ethyl cyclopentenecarboxylate and the desorbed water began to distill, ethyl 2-hydroxycyclopentanecarboxylate was dropped from the dropping device at a flow rate of 2 g / h for 8 hours to distill the product. After completion of the dropwise addition, heating was further continued under reduced pressure for 2 hours to distill off the product remaining in the system. The fraction was analyzed by GLC every 2 hours, and the results shown in Table 1 were obtained. Total charge 23.0 g, total distillate 19.4
g, recovery rate was 84.5%, reaction rate was 92 to 97%, and isomer selectivity was 94 to 95%. The yield (recovery rate x reaction rate x selectivity) was 76.3%.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 回転攪拌棒、内部温度計、クライゼン蒸留装置、及び定
量滴下装置を付した300mlのセパラブルフラスコ
に、無水トリメリット酸(24.3g、126mmo
l)、2−ヒドロキシシクロペンタンカルボン酸エチル
(20g、126mmol)、及び溶媒としてフタル酸
ジ2−エチルヘキシルエステル(80g)を仕込んだ。
マントルヒーターにて220℃まで昇温を行い、200
torrに減圧した。シクロペンテンカルボン酸エチル
および脱離水が留出し始めたら、滴下装置より2−ヒド
ロキシシクロペンタンカルボン酸エチルを5g/hの流
量で連続して30時間滴下し、生成物を留出させた。滴
下終了後、さらに2時間減圧下で加熱を続け、系中に残
存する生成物を留出させた。4時間毎に留分をGLCに
より分析して、表2に示す結果を得た。総仕込量17
6.0g、総留分量164.0g、回収率93.2%、
反応率96〜98%、異性体選択率97〜98%、そし
て収率は88.6%であった。
Example 2 Trimellitic anhydride (24.3 g, 126 mmo) was placed in a 300 ml separable flask equipped with a rotary stir bar, an internal thermometer, a Claisen distillation apparatus, and a metering dropping apparatus.
l), ethyl 2-hydroxycyclopentanecarboxylate (20 g, 126 mmol), and di-2-ethylhexyl phthalate (80 g) as a solvent were charged.
The temperature was raised to 220 ° C with a mantle heater, and 200
The pressure was reduced to torr. When the ethyl cyclopentenecarboxylate and the desorbed water began to be distilled, ethyl 2-hydroxycyclopentanecarboxylate was continuously dropped from the dropping device at a flow rate of 5 g / h for 30 hours to distill the product. After completion of the dropwise addition, heating was further continued under reduced pressure for 2 hours to distill off the product remaining in the system. The fraction was analyzed by GLC every 4 hours and the results shown in Table 2 were obtained. Total charge 17
6.0 g, total distillate amount 164.0 g, recovery rate 93.2%,
The conversion was 96-98%, the isomer selectivity was 97-98%, and the yield was 88.6%.

【0024】[0024]

【表2】 [Table 2]

【0025】比較例1 回転攪拌棒、内部温度計、滴下ロート、クライゼン蒸留
装置を付した200mlの四つ口フラスコに、流動パラ
フィン(20g)、及び表3に示した触媒をそれぞれ5
mol%加えた(ゼオライトは5重量%)。マントルヒ
ーターを用いて、反応装置を200℃まで昇温し、20
0torrに減圧した。滴下ロートより2−ヒドロキシ
シクロペンタンカルボン酸エチル(5g、31.6mm
ol)を30分かけてゆっくりと加え、生成物および脱
離水を留出させた。留分のGLC分析により目的生成
物、位置異性体、未反応原料の収率を求めたところ、表
3に示す結果が得られた。
Comparative Example 1 In a 200 ml four-necked flask equipped with a rotary stirring bar, an internal thermometer, a dropping funnel, and a Claisen distillation apparatus, 5 g of liquid paraffin and 20 g of the catalyst shown in Table 3 were added.
mol% (5% by weight of zeolite). Using a mantle heater, heat the reactor to 200 ° C.
The pressure was reduced to 0 torr. From the dropping funnel, ethyl 2-hydroxycyclopentanecarboxylate (5 g, 31.6 mm
ol) was added slowly over 30 minutes to distill off the product and desorbed water. The yield of the target product, regioisomer, and unreacted raw material was determined by GLC analysis of the fraction, and the results shown in Table 3 were obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】実施例3 上記実施例1と同様の手法にて、無水フタル酸(5.0
g、33.8mmol)、テレフタル酸(0.56g、
3.37mmol)、2−ヒドロキシシクロペンタンカ
ルボン酸エチル(5.3g、33.8mmol)を仕込
んだ。220℃、400torrで、2−ヒドロキシシ
クロペンタンカルボン酸エチルを2g/hで8時間滴下
した。2時間毎に留分のGLC分析を行うことにより、
表4に示す結果を得た。総仕込量21.0g、総留分量
16.34g、回収率77.8%、反応率94〜97
%、異性体選択率96〜97%、収率は71.7%であ
った。
Example 3 In the same manner as in Example 1, phthalic anhydride (5.0
g, 33.8 mmol), terephthalic acid (0.56 g,
3.37 mmol) and ethyl 2-hydroxycyclopentanecarboxylate (5.3 g, 33.8 mmol). At 220 ° C. and 400 torr, ethyl 2-hydroxycyclopentanecarboxylate was added dropwise at 2 g / h for 8 hours. By performing GLC analysis of the fraction every 2 hours,
The results shown in Table 4 were obtained. Total charge 21.0 g, total fraction 16.34 g, recovery 77.8%, conversion 94-97
%, The isomer selectivity was 96 to 97%, and the yield was 71.7%.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例4 上記実施例1と同様の手法にて、無水フタル酸(5.0
g、33.8mmol)および3−ヒドロキシヘキサン
酸エチル(5.4g、33.8mmol)を仕込み、2
20℃、200torrで、3−ヒドロキシヘキサン酸
エチルを2g/hで8時間滴下した。2時間毎に留分の
GLC分析を行うことにより、表5に示す結果が得られ
た。総仕込量21.0g、総留分量16.48g、回収
率78.5%、反応率92〜96%、異性体選択率96
〜97%、収率は71.6%であった。
Example 4 In the same manner as in Example 1, phthalic anhydride (5.0
g, 33.8 mmol) and ethyl 3-hydroxyhexanoate (5.4 g, 33.8 mmol).
At 200C and 200 torr, ethyl 3-hydroxyhexanoate was added dropwise at 2 g / h for 8 hours. By performing GLC analysis of the fraction every 2 hours, the results shown in Table 5 were obtained. Total charge 21.0 g, total fraction 16.48 g, recovery 78.5%, conversion 92-96%, isomer selectivity 96
~ 97%, yield was 71.6%.

【0030】[0030]

【表5】 [Table 5]

【0031】比較例2 回転攪拌棒、内部温度計、クライゼン蒸留装置を付した
100mlの四つ口フラスコに、無水フタル酸(9.4
g、63.5mmol)および2−ヒドロキシシクロペ
ンタンカルボン酸エチル(10.05g、63.5mm
ol)を仕込んだ。マントルヒーターにて220℃まで
昇温を行い、300torrに減圧し、生成するシクロ
ペンテンカルボン酸エチルおよび脱離水を留出させた
(留分量6.4g、回収率64%)。留分のGLC分析
より、β,γ−体4.9%、α,β−体87.8%、未
反応原料5.9%であり、反応率94.1%、異性体選
択率95%、収率は57.2%であった。
Comparative Example 2 Phthalic anhydride (9.4) was placed in a 100 ml four-necked flask equipped with a rotary stirring bar, an internal thermometer and a Claisen distillation apparatus.
g, 63.5 mmol) and ethyl 2-hydroxycyclopentanecarboxylate (10.05 g, 63.5 mm)
ol). The temperature was raised to 220 ° C. by a mantle heater, and the pressure was reduced to 300 torr, and the resulting ethyl cyclopentenecarboxylate and desorbed water were distilled off (fraction: 6.4 g, recovery: 64%). According to GLC analysis of the fraction, the β, γ-isomer was 4.9%, the α, β-isomer was 87.8%, the unreacted raw material was 5.9%, the conversion was 94.1%, and the isomer selectivity was 95%. And the yield was 57.2%.

【0032】[0032]

【発明の効果】本発明の方法により、α,β−不飽和カ
ルボン酸エステルを高収率かつ高選択的に工業的に有利
に製造することができる。
According to the method of the present invention, an α, β-unsaturated carboxylic acid ester can be industrially advantageously produced in a high yield and a high selectivity.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C07C 69/74 C07C 67/327 C07C 69/533 CA(STN) WPI/L(QUESTEL)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C07C 69/74 C07C 67/327 C07C 69/533 CA (STN) WPI / L (QUESTEL)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芳香族多塩基性カルボン酸、またはその
無水物の存在下に、一般式(I) 【化1】 (式中、R1 、R2 、R3 は、それぞれ水素原子または
炭素数1〜5の直鎖または分岐のアルキル基を表す。た
だしR1 とR3 は一緒になって環を形成してもよい。R
4 は炭素数1〜3の直鎖または分岐のアルキル基を表
す。)で表されるβ−ヒドロキシカルボン酸エステルを
100〜300℃で反応系内に連続的に供給しつつ、且
つ生成物を反応系外に除去しながら反応させることを特
徴とするα,β−不飽和カルボン酸エステルの製造方
法。
1. A compound of the formula (I) in the presence of an aromatic polybasic carboxylic acid or an anhydride thereof. (Wherein, R 1 , R 2 , and R 3 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 3 together form a ring R
4 represents a linear or branched alkyl group having 1 to 3 carbon atoms. Wherein the β-hydroxycarboxylic acid ester represented by the formula (1) is continuously supplied into the reaction system at 100 to 300 ° C. and the reaction is carried out while removing the product outside the reaction system. A method for producing an unsaturated carboxylic acid ester.
【請求項2】 芳香族多塩基性カルボン酸またはその無
水物の量が、β−ヒドロキシカルボン酸エステルの総仕
込量に対し0.1〜50モル%であることを特徴とする
請求項1記載の方法。
2. The method according to claim 1, wherein the amount of the aromatic polybasic carboxylic acid or its anhydride is 0.1 to 50 mol% based on the total amount of the β-hydroxycarboxylic acid ester. the method of.
【請求項3】 芳香族多塩基性カルボン酸の無水物が、
無水フタル酸および/または無水トリメリット酸である
ことを特徴とする請求項1または請求項2記載の方法。
3. An anhydride of an aromatic polybasic carboxylic acid,
3. The method according to claim 1, wherein the method is phthalic anhydride and / or trimellitic anhydride.
【請求項4】 β−ヒドロキシカルボン酸エステルが、
2−ヒドロキシシクロペンタンカルボン酸エチル(式
(II))であることを特徴とする請求項1〜請求項3い
ずれか1項に記載の方法。 【化2】
4. A β-hydroxycarboxylic acid ester,
The method according to any one of claims 1 to 3, which is ethyl 2-hydroxycyclopentanecarboxylate (formula (II)). Embedded image
JP32804895A 1995-11-21 1995-11-21 Method for producing α, β-unsaturated carboxylic acid ester Expired - Lifetime JP2844178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32804895A JP2844178B2 (en) 1995-11-21 1995-11-21 Method for producing α, β-unsaturated carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32804895A JP2844178B2 (en) 1995-11-21 1995-11-21 Method for producing α, β-unsaturated carboxylic acid ester

Publications (2)

Publication Number Publication Date
JPH09143126A JPH09143126A (en) 1997-06-03
JP2844178B2 true JP2844178B2 (en) 1999-01-06

Family

ID=18205937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32804895A Expired - Lifetime JP2844178B2 (en) 1995-11-21 1995-11-21 Method for producing α, β-unsaturated carboxylic acid ester

Country Status (1)

Country Link
JP (1) JP2844178B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221457A1 (en) * 2002-03-25 2005-10-06 Paraskevas Tsobanakis Methods of manufacturing derivatives of beta-hydroxycarboxylic acids
WO2015058118A1 (en) 2013-10-17 2015-04-23 Cargill, Incorporated Method for producing alkyl hydroxyalkanoates
JP2015151340A (en) * 2014-02-10 2015-08-24 国立研究開発法人海洋研究開発機構 Method for producing coniferyl alcohol
US10239819B2 (en) 2014-10-17 2019-03-26 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid

Also Published As

Publication number Publication date
JPH09143126A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US4467112A (en) Process for producing p-n-alkylbenzoic acid
Miyashita et al. A New and Efficient Esterification Reaction via Mixed Anhydrides by the Promotion of a Catalytic Amount of Lewis Acid.
US5405991A (en) Process for producing carboxylic acid esters from carboxylic acid halides and alcohols
Wienand et al. Reactions of Fischer carbene complexes with electron-deficient olefins: scope and limitations of this route to donor-acceptor-substituted cyclopropanes
JPH1192423A (en) Production of methyl ester or ethyl ester of trifluoroacetic acid and chlorodifluoroacetic acid
KR101158132B1 (en) Manufacture of vitamin b6
JPS5995237A (en) Manufacture of oxyphenoxy-alkane carboxylic acid
EP1564205B1 (en) Process for synthesizing (7-methoxy-1-naphthyl) acetonitrile and its application in the synthesis of agomelatine
JP2844178B2 (en) Method for producing α, β-unsaturated carboxylic acid ester
US3928403A (en) Process for preparing farnesyl acetic acid esters and 2-substituted-products thereof
JP4515639B2 (en) Method for producing ester
US5091563A (en) Process for preparing α-phenylpropionic acid derivative
JP3923133B2 (en) Method for producing α, β-unsaturated aldehyde
JPH01113341A (en) Production of methyl carboxylate
JP4464274B2 (en) Process for producing alkylidene-substituted 1,4-dione derivatives
JPS5946932B2 (en) Production method of p-cresol
JP4464275B2 (en) Process for producing alkylidene-substituted 1,4-dione derivatives
JP3818785B2 (en) Process for the preparation of α, β-dicarbonylated compounds
JP4421153B2 (en) Method for producing trialkanoyloxyboron
JP2000229909A (en) Production of 2,3,5-trimethylhydroquinone diester
JPH06329567A (en) Production of 1,6-hexanediol
JP3036661B2 (en) Method for producing 2-chlorocyclododecadienone oxime
US6417391B2 (en) Process for the preparation of 2-methyl-1,3-dicarboxylates
JPH11180990A (en) Alkenyl phosphinate and its production
JPS6324501B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term