JPS636192Y2 - - Google Patents

Info

Publication number
JPS636192Y2
JPS636192Y2 JP7993482U JP7993482U JPS636192Y2 JP S636192 Y2 JPS636192 Y2 JP S636192Y2 JP 7993482 U JP7993482 U JP 7993482U JP 7993482 U JP7993482 U JP 7993482U JP S636192 Y2 JPS636192 Y2 JP S636192Y2
Authority
JP
Japan
Prior art keywords
steel plate
nozzle
exhaust gas
furnace
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7993482U
Other languages
Japanese (ja)
Other versions
JPS58184199U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7993482U priority Critical patent/JPS58184199U/en
Publication of JPS58184199U publication Critical patent/JPS58184199U/en
Application granted granted Critical
Publication of JPS636192Y2 publication Critical patent/JPS636192Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【考案の詳細な説明】 本考案は、後段の熱処理炉等加熱炉の排ガスを
熱源とする鋼板等金属板材の予熱炉に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a preheating furnace for metal plates such as steel plates, which uses exhaust gas from a heating furnace such as a subsequent heat treatment furnace as a heat source.

たとえば、第1図に示すように、鋼板cを650
〜930℃の間の任意の温度まで加熱する熱処理炉
aと、該熱処理炉aの燃焼排ガスを熱源にして鋼
板cの予熱をする予熱炉bは、同図のような配置
になつている。そして、予熱炉bの後段に配置さ
れた熱処理炉aは図示されていない複数のバーナ
で鋼板cを加熱し、その排ガスが排ガスダクトd
を通り、途中のブロワeで吸引加圧され、第2図
に拡大してみられるように、上下に2分されて予
熱炉bに入る。この予熱炉bは断熱材hで囲わ
れ、鋼板cを搬送するロールiを有し、該鋼板c
の上方に上ノズルj、下方に下ノズルkを配置し
ている。これらのノズル群から前記排ガスが高速
噴流で鋼板表面に吹きつけられ、鋼板cを予熱
し、こののち、煙道fを通つて煙突gから大気放
散される。
For example, as shown in Figure 1, steel plate c is 650
A heat treatment furnace a that heats to an arbitrary temperature between 930° C. and 930° C. and a preheating furnace b that preheats a steel plate c using the combustion exhaust gas of the heat treatment furnace a as a heat source are arranged as shown in the figure. The heat treatment furnace a placed after the preheating furnace b heats the steel plate c with a plurality of burners (not shown), and the exhaust gas is sent to the exhaust gas duct d.
The air is sucked and pressurized by a blower e along the way, and is divided into upper and lower parts and enters the preheating furnace b, as shown in the enlarged view of FIG. This preheating furnace b is surrounded by a heat insulating material h, has a roll i for conveying a steel plate c, and has a roll i for conveying a steel plate c.
An upper nozzle j is arranged above the nozzle j, and a lower nozzle k is arranged below the nozzle k. The exhaust gas is blown onto the surface of the steel plate as a high-speed jet from these nozzle groups, preheating the steel plate c, and is then radiated into the atmosphere from the chimney g through the flue f.

この例のごとく、ノズルから高速の排ガスを吹
きつけて予熱する方式を噴流予熱と称し、このと
きの伝熱係数は下記の式で示されることはよく知
られている。
As in this example, it is well known that the method of preheating by blowing high-speed exhaust gas from a nozzle is called jet preheating, and the heat transfer coefficient at this time is expressed by the following formula.

αn=0.286×〔uaxo/ν〕0.625×λ/xo ここで、αnは平均熱伝達係数 ua=8.4uj/2+H/D uj=u(273+T1/273) ただし、D:ノズル径(m) H:ノズルと物体間の距離(m) u:噴出速度(m/s) xo:ノズルのピツチ(m) ν:動粘性係数(m2/s) λ:熱伝導率(Kcal/mh℃) T1:ノズル部ガス温度(℃) この例の鋼板cの厚さは4.5〜250mmの範囲であ
る。第2図に示すロールiの上面(パスラインと
称する)と上ノズルjの距離をH1、下ノズルk
との距離H2とする。そして、前記H1はノズルj
を保護する関係から、上記最高板厚の250mmに50
mmを加えた程度とする。前記H2は鋼板cのたわ
みを考慮すればよいので、板厚に関係なく、50〜
100mm程度としている。
α n =0.286×[u a x o /ν] 0.625 ×λ/x oHere , α n is the average heat transfer coefficient u a =8.4u j /2+H/D u j =u (273+T 1 /273) , D: Nozzle diameter (m) H: Distance between nozzle and object (m) u: Ejection speed (m/s) x o : Nozzle pitch (m) ν: Kinematic viscosity coefficient (m 2 /s) λ: Thermal conductivity (Kcal/mh°C) T 1 : Nozzle gas temperature (°C) The thickness of the steel plate c in this example is in the range of 4.5 to 250 mm. The distance between the upper surface of roll i (referred to as the pass line) and upper nozzle j shown in Fig. 2 is H 1 , and the lower nozzle k
Let the distance between the two points be H2 . And the above H 1 is the nozzle j
In order to protect the
Add mm. Since the above H 2 only needs to take into account the deflection of the steel plate c, it should be 50 to 50, regardless of the plate thickness.
It is approximately 100mm.

この装置で予熱を行なつているが、鋼板cの薄
い4.5〜25mm付近では、このH1が過大となり、噴
流の効果がうすれ、期待する平均熱伝達係数αn
が得られない。
Preheating is performed using this device, but when the steel plate c is thin, around 4.5 to 25 mm, this H 1 becomes excessive, the effect of the jet is weakened, and the expected average heat transfer coefficient α n
is not obtained.

この点に着目して、上ノズル群を鋼板cの厚さ
に合せて上下させる装置も考えられたが、複雑で
あつて高価となり、さほど効果がなかつた。
In view of this point, a device for moving the upper nozzle group up and down in accordance with the thickness of the steel plate c was considered, but it was complicated and expensive, and was not very effective.

このように、従来の予熱炉bでは、上ノズルj
の前記αnが変化し、とくに薄板材には上記αn
過小となる。また投入排ガスから鋼板cに充分に
熱の伝達が行なわれなく、かつ、熱管理も困難で
あるなどの、欠点を有している。
In this way, in the conventional preheating furnace b, the upper nozzle j
The above α n changes, and especially for thin plate materials, the above α n becomes too small. Further, there are disadvantages in that heat is not sufficiently transferred from the input exhaust gas to the steel plate c, and heat management is also difficult.

本考案は、下ノズルを主体とすることによつ
て、平均熱伝達係数が安定し、かつ、大きな値を
得ることができ、充分な予熱効果が得られるとと
もに、熱管理も容易な予熱炉を提供することを目
的とするものである。
By using the lower nozzle as the main component, the present invention provides a preheating furnace with a stable and large average heat transfer coefficient, a sufficient preheating effect, and easy heat management. The purpose is to provide

このため、本考案は、熱処理炉等加熱炉の前部
もしくは前方に設置して該加熱炉の排ガスを熱源
とする鋼板等予熱炉において、その排ガス流量を
上ノズル/下ノズル≦0.3の関係に保ち、上ノズルを粗
に、 下ノズルを密に配置したことを特徴としている。
Therefore, in a preheating furnace for steel plates, etc., which is installed in front of or in front of a heating furnace such as a heat treatment furnace and uses the exhaust gas of the heating furnace as a heat source, the present invention aims to adjust the exhaust gas flow rate to the upper nozzle/lower nozzle ≦0.3. The feature is that the upper nozzles are arranged sparsely and the lower nozzles are arranged densely.

以下、本考案の実施態様について、第4図およ
び第5図を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4 and 5.

第4図は本考案の第1実施例を示したもので、
同図において、1は予熱炉、2は鋼板、3は排ガ
スダクト、4は断熱材、5はデイスクロール、6
は上ノズル、7は下ノズルである。すなわち、従
来のものを示した第3図と比較すると、ロールi
をデイスクロール5に変え、上ノズル6と下ノズ
ル7の数比率を、1対1から、2対7に変えたも
のである。このようにすることにより、まず、下
ノズル7の鋼板2との距離H2は不変で、前述の
平均熱伝達係数αnの管理が容易となり、かつ、
距離H2が小さくできるので、前記αnが大きくな
る。またロールをデイスクロール5にすることに
より、噴流がさまたげられることなく、鋼板2と
接触するので、前記αnが大きくなる。なお符号
2′で示すように、厚い鋼板の場合は、上方が温
度低下を緩和する効果があるので、若干のノズル
を配置し、吹きつけてやる。この上ノズル6から
の排ガスの量は下ノズル7の30%以内にしてい
る。
Figure 4 shows the first embodiment of the present invention.
In the figure, 1 is a preheating furnace, 2 is a steel plate, 3 is an exhaust gas duct, 4 is a heat insulator, 5 is a day scroll, 6
is the upper nozzle, and 7 is the lower nozzle. That is, when compared with FIG. 3 which shows the conventional one, the roll i
is changed to a day scroll 5, and the ratio of the number of upper nozzles 6 to lower nozzles 7 is changed from 1:1 to 2:7. By doing this, firstly, the distance H 2 between the lower nozzle 7 and the steel plate 2 remains unchanged, making it easier to manage the average heat transfer coefficient α n described above, and
Since the distance H 2 can be made small, the above α n becomes large. Further, by using the day scroll 5 as the roll, the jet stream comes into contact with the steel plate 2 without being obstructed, so that the above α n becomes large. In addition, as shown by reference numeral 2', in the case of a thick steel plate, since the upper part has the effect of mitigating the temperature drop, several nozzles are arranged and sprayed. The amount of exhaust gas from the upper nozzle 6 is within 30% of the amount from the lower nozzle 7.

第5図は本考案の第2実施例を示したもので、
鋼板2が薄い場合に適している。すなわち、第4
図の上ノズル6をやめて天井を低くしたものであ
り、また下ノズル7の炉内分を断熱したものであ
る。さらにまた、鋼板2の上方、つまり、予焼炉
1の天井部の断熱材4の下に、蓄熱体8を設けた
ものである。この蓄熱体8は、かさ比重0.5を越
える耐火れんがを張つたものである。すなわち、
近年、断熱材4として、かさ比重0.1のセラミツ
クフアイバもしくはボードが多用されてきたが、
これでは蓄熱量が少なすぎて鋼板2の上方の断熱
材4の温度が低下し、ある時間の後は鋼板2の下
方の熱が上表面から該断熱材4にさかんに移動す
るようになる。第5図では、鋼板2の存在せぬ空
炉の時に、下ノズル7から吹出したガスで充分に
熱し、蓄熱させておき、次に投入される鋼板2の
上面に熱を与え、かつ、ある時間の後も鋼板2か
ら熱を吸収しにくくした。
FIG. 5 shows a second embodiment of the present invention.
This is suitable when the steel plate 2 is thin. That is, the fourth
The upper nozzle 6 in the figure is omitted to lower the ceiling, and the lower nozzle 7 inside the furnace is insulated. Furthermore, a heat storage body 8 is provided above the steel plate 2, that is, below the heat insulating material 4 on the ceiling of the preheating furnace 1. This heat storage body 8 is made of refractory bricks with a bulk specific gravity exceeding 0.5. That is,
In recent years, ceramic fiber or board with a bulk specific gravity of 0.1 has been frequently used as insulation material 4.
In this case, the amount of heat storage is too small, and the temperature of the heat insulating material 4 above the steel plate 2 decreases, and after a certain period of time, the heat below the steel plate 2 begins to actively move from the upper surface to the heat insulating material 4. In Fig. 5, when the furnace is empty and no steel plate 2 is present, the gas blown out from the lower nozzle 7 is sufficiently heated and stored, and the upper surface of the steel plate 2 to be fed next is given heat, and It is made difficult to absorb heat from the steel plate 2 even after a certain period of time.

第6図は第3図に示した従来の予熱炉bによつ
て鋼板cを予熱した場合の実験による温度上昇曲
線図である。同図において、実線曲線M1は鋼板
下表面の温度で、点線曲線M2は鋼板中心部の温
度である。そして、鋼板上表面の温度は図示はし
ていないが、ちようど、前記M1とM2の間にあ
る。すなわち、鋼板下表面の温度M1>鋼板上表
面の温度>鋼板中心部の温度M2という関係にな
つた。
FIG. 6 is an experimental temperature rise curve diagram when the steel plate c is preheated by the conventional preheating furnace b shown in FIG. In the figure, the solid line curve M 1 is the temperature at the lower surface of the steel plate, and the dotted line curve M 2 is the temperature at the center of the steel plate. Although the temperature of the upper surface of the steel plate is not shown, it is just between M1 and M2 . That is, the relationship was such that temperature M 1 of the lower surface of the steel plate>temperature of the upper surface of the steel plate>temperature M2 of the center of the steel plate.

なお第6図の実験の条件としては、 鋼板厚さ:19mm ノズルピツチ:500mm 上ノズルと鋼板の距離:350mm 下ノズルと鋼板の距離:100mm ノズルの内径:27mm ノズルの噴流速度:22/Nm/s 排ガスの温度:320℃ である。 The conditions for the experiment shown in Figure 6 are as follows: Steel plate thickness: 19mm Nozzle pitch: 500mm Distance between upper nozzle and steel plate: 350mm Distance between lower nozzle and steel plate: 100mm Nozzle inner diameter: 27mm Nozzle jet velocity: 22/Nm/s Exhaust gas temperature: 320℃ It is.

第7図は第5図に示した本考案の第2実施例の
予熱炉1によつて鋼板2を予熱した場合の実験に
よる温度上昇曲線図である。同図において、実線
曲線M3は鋼板下表面の温度で、点線曲線M4は鋼
板上表面の温度である。そして、第5図では、第
3図とノズルの総本数およびノズルピツチが異な
る関係から、この第7図を、第6図との比較を容
易にするため、排ガスの使用量が同一となるよう
なノズルの内径とした。
FIG. 7 is an experimental temperature rise curve diagram when the steel plate 2 is preheated by the preheating furnace 1 of the second embodiment of the present invention shown in FIG. In the same figure, the solid line curve M 3 is the temperature of the lower surface of the steel plate, and the dotted line curve M 4 is the temperature of the upper surface of the steel plate. Since the total number of nozzles and nozzle pitch in Fig. 5 are different from those in Fig. 3, in order to facilitate comparison with Fig. 6, Fig. It was taken as the inner diameter of the nozzle.

すなわち、第7図の実験の条件としては、 鋼板厚さ:19mm ノズルピツチ:250mm 上ノズル:なし(上方蓄熱体あり) ノズルと鋼板の距離:100mm ノズルの内径:29mm ノズルの噴流速度:22Nm/s 排ガスの温度:320℃ である。 In other words, the conditions for the experiment in Figure 7 are as follows: Steel plate thickness: 19mm Nozzle pitch: 250mm Upper nozzle: None (with upper heat storage element) Distance between nozzle and steel plate: 100mm Nozzle inner diameter: 29mm Nozzle jet speed: 22Nm/s Exhaust gas temperature: 320℃ It is.

前記第6図と第7図とから明らかなように、使
用する排ガス量が同じである場合、鋼板の温度上
昇特性が殆んど同じである。
As is clear from FIG. 6 and FIG. 7, when the amount of exhaust gas used is the same, the temperature rise characteristics of the steel plates are almost the same.

このように、本考案の予熱炉は、下ノズルが主
体であるため、平均熱伝達係数αnが安定し、大
きな値を得ることができ、しかも、熱管理が容易
となり、また主として下面の片面加熱であるが、
両面加熱に近い予熱効果が得られ、かつ、ノズル
の破損が減少し、とくに、上ノズルを廃止して炉
天井を低くした場合は、設備が著しく簡単にな
る。
In this way, the preheating furnace of the present invention mainly uses the lower nozzle, so the average heat transfer coefficient αn is stable and a large value can be obtained, and heat management is easy. In addition, although the heating is mainly performed on one side of the lower surface,
A preheating effect similar to that of double-sided heating is obtained, and damage to nozzles is reduced. In particular, when the upper nozzle is eliminated and the furnace roof is lowered, the equipment becomes significantly simpler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の予熱炉と熱処理炉の配置例を示
した側面図、第2図は第1図の予熱炉を拡大して
示した断面側面図、第3図は第2図の切断線A−
Aに沿う断面正面図、第4図は本考案の第1実施
例を示した断面正面図、第5図は本考案の第2実
施例を示した断面正面図、第6図は第3図の予熱
炉による鋼板温度上昇の説明図、第7図は第5図
の予熱炉による鋼板温度上昇の説明図である。 1……予熱炉、2……鋼板、3……排ガスダク
ト、4……断熱材、5……デイスクロール、6…
…上ノズル、7……下ノズル、8……蓄熱体。
Figure 1 is a side view showing an example of the arrangement of a conventional preheating furnace and heat treatment furnace, Figure 2 is an enlarged cross-sectional side view of the preheating furnace in Figure 1, and Figure 3 is a cutting line in Figure 2. A-
4 is a sectional front view taken along line A, FIG. 4 is a sectional front view showing the first embodiment of the present invention, FIG. 5 is a sectional front view showing the second embodiment of the present invention, and FIG. 6 is FIG. FIG. 7 is an explanatory diagram of the steel plate temperature increase due to the preheating furnace of FIG. 5. FIG. 1... Preheating furnace, 2... Steel plate, 3... Exhaust gas duct, 4... Insulation material, 5... Day scroll, 6...
...Upper nozzle, 7...Lower nozzle, 8...Heat storage body.

Claims (1)

【実用新案登録請求の範囲】 後段の加熱炉の排ガスを熱源とする金属板材の
予熱炉において、その排ガスを吹きつける下ノズ
ルが上ノズルよりも密に配置され、かつ、その排
ガスの流量が上ノズル/下ノズル≦0.3の関係に保たれ
てい ることを特徴とする、予熱炉。
[Scope of Claim for Utility Model Registration] In a preheating furnace for metal plates that uses exhaust gas from a subsequent heating furnace as a heat source, the lower nozzles that blow the exhaust gas are arranged more densely than the upper nozzles, and the flow rate of the exhaust gas is higher. A preheating furnace characterized by maintaining a relationship of nozzle/lower nozzle≦0.3.
JP7993482U 1982-06-01 1982-06-01 Preheating furnace Granted JPS58184199U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7993482U JPS58184199U (en) 1982-06-01 1982-06-01 Preheating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7993482U JPS58184199U (en) 1982-06-01 1982-06-01 Preheating furnace

Publications (2)

Publication Number Publication Date
JPS58184199U JPS58184199U (en) 1983-12-07
JPS636192Y2 true JPS636192Y2 (en) 1988-02-22

Family

ID=30089105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7993482U Granted JPS58184199U (en) 1982-06-01 1982-06-01 Preheating furnace

Country Status (1)

Country Link
JP (1) JPS58184199U (en)

Also Published As

Publication number Publication date
JPS58184199U (en) 1983-12-07

Similar Documents

Publication Publication Date Title
JP4067118B2 (en) Glass sheet ribbon forming apparatus and forming method
US4490107A (en) Method of processing charges in a continuous combustion furnace
JPS636192Y2 (en)
US4444557A (en) Continuous combustion furnace
JP7138487B2 (en) Regenerative alternating combustion device for heating furnace
JPH069665B2 (en) Method and apparatus for coating a substrate with powdered material
CN101004326A (en) Continuous sintering oven
JP4331879B2 (en) Blast furnace inner wall structure
JPS59500063A (en) Preheating furnace for long materials
JP4268281B2 (en) Horizontal bright continuous annealing furnace for metal strip
JPH01260205A (en) Solid fuel combustion furnace
JPS6233006Y2 (en)
EP0522407B1 (en) Blackening treating method of stainless steel strip surface and blackening treating furnace
JPH06346156A (en) Method for cooling steel sheet by gas jet
JPS6365060A (en) Method for preheating aluminum and aluminum alloy slab in direct firing type slab heating furnace
EP0400348B1 (en) Temperature-maintaining furnace for metallurgic products
JPS5813607B2 (en) Heat treatment furnace for pipes with setups
JP3092898B2 (en) Continuous heating method for steel sheet
JPS6120018Y2 (en)
JPS6140733B2 (en)
JPS5940437Y2 (en) Furnace with radiant tube
JPH0344367Y2 (en)
JPH0578757A (en) Method for continuously annealing steel strip and continuous annealing furnace therefor
JP2890531B2 (en) Continuous heat treatment furnace
JP2733885B2 (en) Continuous heat treatment of steel strip