JPS6361914B2 - - Google Patents

Info

Publication number
JPS6361914B2
JPS6361914B2 JP14799183A JP14799183A JPS6361914B2 JP S6361914 B2 JPS6361914 B2 JP S6361914B2 JP 14799183 A JP14799183 A JP 14799183A JP 14799183 A JP14799183 A JP 14799183A JP S6361914 B2 JPS6361914 B2 JP S6361914B2
Authority
JP
Japan
Prior art keywords
silica
sodium silicate
silica sol
reaction
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14799183A
Other languages
Japanese (ja)
Other versions
JPS6041476A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58147991A priority Critical patent/JPS6041476A/en
Publication of JPS6041476A publication Critical patent/JPS6041476A/en
Publication of JPS6361914B2 publication Critical patent/JPS6361914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【発明の詳細な説明】 本発明は、過性と吸着特性とに優れたシリカ
ヒドロゲル粒子から成る発酵酒精飲料用吸着剤の
製法に関する。 ビール等の発酵酒精飲料には、その透明性を阻
害する成分乃至は潜在的成分が含有されており、
これらの濁り成分乃至は貯蔵中に濁りとなる潜在
的成分を除去して、ビールを安定化するために、
ビール等を、ベントナイト、活性炭、ナイロン
類、ポリビニルピロリドン、シリカゲル等でビー
ルを処理し、これらの成分を除去することが既に
知られている。 これらの吸着剤の内でも、比表面積の比較的大
きいシリカヒドロゲルは、ビールの泡保持に役立
つ成分を除去することなしに、濁り成分や濁りの
潜在的成分を除去し得るという性質を有するが、
従来この種の用途に使用されているシリカヒドロ
ゲルは一般に過性が非常に悪く、ケイソウ土の
如き過助剤を用いなければ工業的な過操作が
不可能であるという欠点がある。 本発明者等は、以下に詳述する如く、酸性シリ
カゾルとケイ酸ソーダとを塩類の存在下に反応さ
せて得られるシリカヒドロゲルは、優れた吸着剤
性と過性との組合せを有しており、ビール等の
発酵酒精飲料用の吸着剤としての用途に特に適し
ていることを発見した。 即ち、本発明の目的は、過性と吸着特性との
組合せに優れたシリカヒドロゲルから成る発酵酒
精飲料用吸着剤の製法を提供するにある。 本発明の他の目的は、上述した特性を有するシ
リカヒドロゲルを、能率よく、良好な作業性をも
つて製造し得る方法を提供するにある。 本発明によれば、酸性のシリカゾルとケイ酸ソ
ーダとを塩類水溶液の存在下に反応させ、水分量
が60乃至90重量%でBET比表面積が300m2/g以
上のシリカヒドロゲル粒子を得ることを特徴とす
る発酵酒精飲料用吸着剤の製法が提供される。 本発明による発酵酒精飲料用吸着剤は、シリカ
ヒドロゲルのみから形成されていながら、電子顕
微鏡で測定した一次粒径が0.1ミクロン以下であ
るが、篩分け−コールターカウンター法で測定し
た二次粒径が10ミクロン以上のものが全体の60重
量%以上となるような粒度分布を有し、60乃至90
重量%の水分含有量、300m2/g以上のBET比表
面積及びPH4の水溶液で測定して100ppm以下の
溶液性を有する。 シリカヒドロゲルの一般的な製造方法は、ケイ
酸ソーダと硫酸等の酸とを反応させ、生成するヒ
ドロゾルをゲル化させることから成つている。得
られるシリカヒドロゲルの表面活性は、ヒドロゾ
ルのPHによつて大きく影響され、酸性サイドでは
表面活性が大きく、またアルカリサイドでは残存
するアルカリの影響によつて表面活性が小さいも
のとなり易い。 このような見地から、上記吸着剤用途のシリカ
ヒドロゲルは一般に酸性シリカヒドロゾルをゲル
化させて製造されているが、この方法によるシリ
カヒドロゲルは、上記吸着剤の用途に使用した
時、精製された発酵酒精飲料からの分離が全く困
難であり、ケイソウ土等の過助剤を多量に用い
て、始めてその過分離が可能となるという欠点
をもつている。このため、従来の処理は作業性が
悪く、形成される滓の量も多く、更に製品の
滓保持量も多く、経済性の点で未だ多くの難点を
有していた。 酸性ヒドロゾルからのシリカゲルがこのように
過性に劣る理由は、表面活性が増大する反面、
一次粒子が微細化することに伴なつて二次粒子中
にもかなり微細なものが含まれているのがその原
因と考えられる。 本発明は、酸性シリカゾルを、ケイ酸ソーダと
塩類水溶液の存在下に反応させて、シリカヒドロ
ゲルを生成させる点に特徴を有するものである。
即ち、この反応で生成するシリカヒドロゲルは、
一次粒径微細でありながら、分散時の二次粒径が
均一且つ一様に粗大化しており、そのため、吸着
特性を優れたレベルに維持しながら、過特性の
顕著な向上が可能となるものと認められる。この
ような粒度特性は、酸粗ヒドロゾルがケイ酸ソー
ダで中和されてヒドロゲルの生成が行われるとい
う反応機構と密接に関連するものと思われる。 本発明に用いる酸性のシリカゾルは、2.5以下
のPH、特に0.3乃至2.0のPHを有するものであり、
ケイ酸ソーダと硫酸等の酸とを、最終PHが上記範
囲となるように反応させることにより得られる。
ケイ酸ソーダとしては、水溶性であるという条件
を満足する限り任意の組成のものが使用される
が、経済性の見地からは、一般式 Na2O・nSiO2 式中、nは2乃至4の数である、 の組成を有するものが有利に使用される。酸粗シ
リカゾルの生成条件は、ゲイ化を防ぐために可及
的に低い温度で行うべきであり、一般に−10乃至
+20℃の温度で中和反応を行うのがよい。ゾル中
のSiO2濃度も、ゲル化に関係しており、一般に
20乃至200g/、特に30乃至150g/の範囲に
あることが望ましい。即ち、SiO2濃度が上記範
囲よりも高いと本発明の反応に先立つてゲル化す
る傾向があり、一方上記範囲よりも低いと、濃度
が低すぎて多量の液を取扱ねばならないという不
利がある。酸性シリカゾルの安定性はPH値によつ
ても変化し、一般的に言つてPHが約2で安定性が
最も大で、これよりPHが低くても、PHが高くて
も、PHの変化に従つて安定性が徐々に低下する。
本発明においては、このシリカヒドロゾルが安定
な内にケイ酸ソーダとの反応に供する。 シリカゾルと反応させるケイ酸ソーダとして
は、シリカゾルの製造に用いたのと同様な組成の
ケイ酸ソーダが使用される。このケイ酸ソーダ水
溶液のSiO2濃度は、一般的に言つて、20乃至300
g/、特に30乃至200g/の範囲にあるのが
よい。即ち、この濃度が上記範囲よりも高いと、
両者の均一な反応が困難となり、良好な吸着剤を
得ることが難しくなる傾向があり、一方上記範囲
よりも小さいと多量の液を扱わねばならないとい
う不利を生ずる。 酸性シリカゾルとケイ酸ソーダとは、SiO2
準で、両者3:97乃至80:20のモル比、特に20:
80乃至70:30のモル比で反応させることが望まし
い。即ち、上記モル比以外では反応が不均質に行
われる傾向があり、特にケイ酸ソーダの量が上記
範囲よりも多くなると、得られるヒドロゲルの吸
着特性が低下する傾向があり、一方酸性シリカゾ
ルのモル比が上記範囲よりも大きくなると、得ら
れるヒドロゲルの過性が悪くなる傾向がある。 本発明においては、ケイ酸ソーダ水溶液中に酸
性シリカゾルを添加しつつ撹拌下に両者の反応を
行わせることが望ましい。というのは、アルカリ
性のケイ酸塩媒質中に酸性ゾルが徐々に加えられ
ることにより、加えられたシリカヒドロゲルが全
体にわたつてジエリー化した形ではなく、個々の
粒子の形でしかも含有水分量が60乃至90重量%の
形で得られるからである。 本発明において、酸性シリカゾルとケイ酸ソー
ダとを塩類の存在下に反応させるが、この塩類
は、酸性シリカゾル中に含有される塩類の量、即
ちシリカゾル生成段階で中和により生ずる塩類の
量では一般に不充分であり、反応系中に別個の塩
類を共存させる必要がある。この塩類は、反応に
用いるケイ酸ソーダ溶液中に予じめ添加しておく
ことが有利であり、一般にケイ酸ソーダ溶液中に
おける塩類の濃度は、1乃至150g/の範囲と
するのがよい。塩類としては、食塩、芒硝等の鉱
酸の水溶性アルカリ金属塩が用いられる。 反応条件は、特に厳密なものではないが、一般
に0乃至90℃の温度で、0.5乃至8時間の反応が
用いられる。反応終了後、粒度の均質化の目的
で、引続き0.5乃至16時間程度の熟成を行うこと
も可能である。 生成したシリカヒドロゲルは過分離し、水洗
後再度過して吸着剤製品とする。 本発明に用いるシリカヒドロゾルは、電子顕微
鏡で測定した一次粒径が0.1ミクロン以下である
ことからも明白である通り、一次粒径が極めて微
細でありながら、しかも二次粒径が均一且つ一様
に粗大であるという特徴を有している。即ち、こ
のシリカヒドロゾルは篩分け−コールターカウン
ター法で測定した二次粒径が10ミクロン以上のも
のが全体の60重量%以上、特に全体の70重量%以
上となるような粒度分布を有している。 尚、篩分け−コールターカウンター法とは、後
述する二次粒径測定法を言う。 尚、本明細書において、シリカヒドロゲルの測
定に篩分け−コールターカウンター法を用いてい
る理由は、シリカヒドロゲル粒子は嵩高でコール
ターカウンターの測定チユーブを閉塞し易い傾向
を有するものであり、篩分けにより325メツシユ
金網通過のもののみを、コールターカウンターの
測定に供することにより、このようなトラブルな
しに、粒度分布のより正確な測定が可能となるこ
とによるものである。 本発明の目的に特に好適なシリカヒドロゲル
は、一般に5乃至100ミクロンの平均二次粒径
(メジアン径)を有する。 このような粒度特性により、吸着特性を阻害す
ることなしに、過性の顕著な向上がもたらさ
れ、例えば本発明に用いるシリカヒドロゲルは、
過助剤として最も普通に使用されているケイソ
ウ土にほぼ匹敵するか、或いはこれよりも優れた
過性を示す。 また、本発明に用いるシリカヒドロゲル粒子
は、60乃至90重量%、特に65乃至80重量%の水分
含有量と、300m2/g以上、特に350乃至800m2
gのBET比表面積を有している。この比表面積
は、飲料中の濁り成分や濁りの潜在的成分に対す
る吸着性に関係するものであり、本発明のシリカ
ヒドロゾルが優れた吸着特性を有することが了解
される。只、この比表面積が余りにも大きすぎる
ときには、泡の保持性や安定化等に寄与する成分
をも吸着する傾向があるので、800m2/g以下で
あることがむしろ好ましい。この吸着特性は、シ
リカのヒドロゲルにおいては、含有水分量にも関
連している。即ちこの水分量は、シリカゲル構造
の空隙容積(ポアボリユーム)に関係しており、
含有水分量が大きい程ポアボリユームは大きくな
る。只、含有水分量が上記範囲よりも大きくなる
と、吸着作用に関係のない水分量が増大すること
により、吸着性能が低下することになり、一方水
分量が上記範囲よりも小さくなると、被吸着成分
の有効吸着座席が減少するのでやはり好ましくな
い。 本発明において、シリカヒドロゲルは、後述す
る条件で測定して、40乃至150Åの平均細孔半径
を有する。 本発明に用いる吸着剤は、前述した粒度特性を
有するシリカヒドロゲルであることから、PH4の
水溶液で測定して、100ppm以下の溶解性を有し
ている。「例えば、シリカのコロイドゾルを吸着
処理剤として用いた場合には、その溶解性は同様
の条件下で120乃至200ppmであり、また一般にシ
リカ溶解量が未処理のビールで130ppm、ブドウ
酒で130ppmであるのに対して、本発明の吸着剤
のシリカ溶出量が著しく小さいことがわかる。 本発明の吸着剤は、ビールの安定化処理に特に
有利に使用される。例えば、後発酵後のビール
に、本発明の吸着剤を添加し、濁り成分乃至はそ
の潜在的成分をゲル中に吸着させ、次いで過に
よりその除去を行う。この吸着剤は、前記ビール
1当り50乃至5000mg、特に100乃至1000mgの量
で添加するのがよい。 本発明を次の例で説明する。 実施例 1 市販の精製ケイ酸ソーダ溶液(比重1.31、組成
Na2O・2.9SiO2・nH2O)4.65Kgに水6.45を加
え10とした。この溶液を8.7硫酸溶液13に添
加し、〓.63の酸性シリカゾル(SiO2濃度4.35
g/100ml)を調製した。 一方、前記組成のケイ酸ソーダ溶液4.65Kgに水
および塩として食塩600gを添加溶解し、SiO2
度7.24g/100mlの溶液を調製し、内容積50の
容器に張込み、撹拌下に温度30℃に保ちながら先
に調製し酸性シリカゾルを約3時間かけて添加し
中和反応を行い、ロ過性良好なシリカヒドロゲル
の沈殿を得た。この反応終了時の反応液のPHは
6.6であつた。次にこの反応液に硫酸溶液を加え
PH1.7に調整し、撹拌下に温度30℃に保ち90分熟
成処理を行なつた。次に、ロ過水洗を3回繰り返
し行ない、シリカヒドロゲルを得た。この試料の
物性を測定し第1表に示した。 尚、各物性の測定は以下の方法によつた。 1 比表面積 150℃乾燥品をBET法により求めた。 2 水分 一定量の試料を110℃恒温乾燥機で恒量にな
るまで乾燥させ、その減量より水分を求めた。 (3) シリカヒドロゲルの平均細孔半径は次式より
求められた。 平均細孔半径=2W/S(100−W)×104(Å) W:ヒドロゲルの水分(%) S:ヒドロゲルを乾燥して得たキセロゲルBT
法から求めた比表面積(m2/g) シリカキセロゲル平均細孔子半径は次式より
求めた。 平均細孔半径=2V/S×104(Å) V:窒素吸着により求めた細孔容積(ml/g) S:BET法から求めた比表面積(m2/g) 4 ロ過性(ロ過速度) ロ過性は第1図に示したロ過装置でシリカ分
散液のロ過を行ないロ過速度を測定した。ロ過
速度の小さいものがロ過性が良好であることを
示す。 ロ過速度の測定方法 塩酸でPH4〜4.5に調整した水500mlにシリカ
ヒドロゲル及びシリカキセロゲルを20gを入
れ、撹拌機で十分分散させたのち、図で示した
ロ過装置でロ過を行いロ過速度を測定した。 5 市販のビールを常温で脱気させた後、ビール
1に対しシリカ1g(SiO2として)加え、
30分間撹拌処理したのち、ロ過によりシリカを
分離し、ロ過したビールを0〜1℃に冷却させ
た。次に、底部にガス吸込多孔板を有した径20
mmのガラス管に20mlのビールを入れたのち、ガ
ラス管底部多孔板を通し炭酸ガスを吹込みを泡
立たせ、泡の高さを20cmにしたのち炭酸ガスの
吹込みをやめ、そのまま放置し、泡の消え具合
を肉眼で観察した。一つのサンプルにつき同様
の操作を3回行い泡保持性の評価を行つた。 泡保持性の評価は記号で示した。 〇:泡保持性が優れている。 ×:泡保持性が劣つている。 ことを示す。 6 粒度 シリカヒドロゲル50gをビーカーに秤りとり
水500mlを加え、超音波分散器に20分間分散さ
せたのち、径7cm、フルイの目の大きさ、325
メツシユの金網篩を通し篩分けを行ないそれぞ
れの重量を測定した。 次に、細かい粒子については、325メツシユ
(44μ)の篩を通過した分散液を米国コールタ
ーカウンター社製粒度測定器TA−型(測定
器の細孔管100μ)を用いて測定した。 尚、シリカキセロゲルは試料20gを用い、同
様の方法で求めた。 実施例 2 市販の精製ケイ酸ソーダ溶液(比重3.31、組成
Na2O・2.9SiO2nH2O)4.65Kgに水6.45を加え
10とした。このケイ酸ソーダ溶液を濃度9.1%
の硫酸溶液11.7に添加しPH0.55の酸性シリカゾ
ル(シリカ濃度4.6Å/100ml)を調製した。一
方、前記組成のケイ酸ソーダ溶液4.65Kgに水およ
び塩としてぼう硝600gを添加溶解し、SiO2濃度
4.6g/100mlの溶液18.74を調製し、内容積50
の容器に張込み、撹拌下に温度50℃に加温しな
がら先に調製した酸性シリカゾルを約3時間かけ
て添加し中和反応を行い、ロ過性に優れたシリカ
ヒドロゲルの沈殿を得た。この反応終了時の反応
液のPHは69であつた。 次にこの反応液に硫酸溶液を加えPH1.6に調製
し、撹拌下に温度50℃に保ち90分間熟成処理を行
なつた。次に、ロ過水洗を3回繰り返し行ない、
シリカヒドロゲルを得た。この試料の物性を測定
し第1表に示した。 比較例 市販シリカゲル 市販微粉シリカゲルを試料とし物性を測定し
た。これを第1表に示した。 比較例 USP3617301の方法によるシリカヒドロゲル 市販の精製ケイ酸ソーダ(比重1.40、組成
Na2O・3.3SiO2・nH2O)に水を加え比重1.315の
ケイ酸ソーダ溶液2を調製した。一方、水1280
mlに98%硫酸985gを加え、濃度42.7%、比重
1.33の硫酸溶液1.7を調製し、内容積7の容
器に張込み、5〜10℃の温度に保ち高速撹拌させ
ながら、上記ケイ酸ソーダ溶液を5分間で添加
し、均一なシリカゾル溶液を得た。このシリカゾ
ル溶液はPHが0.22であり5分後ゼリー状にゲル化
した。次に、シリカヒドロゲルを室温で6時間熟
成させた後、小塊状に砕き20時間水洗を行つた。
次にこの小塊状シリカヒドロゲルをポツトミルに
入れ、フリントボールを用いて湿式粉砕し、つい
でロ過しシリカヒドロゲルを製造した。この試料
の物性を測定し第1表に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an adsorbent for fermented alcoholic beverages comprising silica hydrogel particles having excellent permeability and adsorption properties. Fermented alcoholic beverages such as beer contain components or potential components that inhibit their transparency.
In order to stabilize beer by removing these turbid components or potential components that become turbid during storage,
It is already known to treat beer and the like with bentonite, activated carbon, nylons, polyvinylpyrrolidone, silica gel, etc. to remove these components. Among these adsorbents, silica hydrogel, which has a relatively large specific surface area, has the property of being able to remove turbidity components and potential turbidity components without removing components that help retain foam in beer.
The silica hydrogels conventionally used for this type of application generally have very poor permeability, and have the disadvantage that industrial overtreatment is impossible without the use of a superimposing agent such as diatomaceous earth. As detailed below, the present inventors have discovered that the silica hydrogel obtained by reacting acidic silica sol and sodium silicate in the presence of salts has a combination of excellent adsorbent properties and permeability. They have discovered that they are particularly suitable for use as adsorbents for fermented alcoholic beverages such as beer. That is, an object of the present invention is to provide a method for producing an adsorbent for fermented alcoholic beverages, which is made of silica hydrogel and has an excellent combination of permeability and adsorption properties. Another object of the present invention is to provide a method for producing silica hydrogel having the above-mentioned characteristics efficiently and with good workability. According to the present invention, acidic silica sol and sodium silicate are reacted in the presence of an aqueous salt solution to obtain silica hydrogel particles having a water content of 60 to 90% by weight and a BET specific surface area of 300 m 2 /g or more. A method for producing a characterized adsorbent for fermented alcoholic beverages is provided. Although the adsorbent for fermented alcoholic beverages according to the present invention is formed only from silica hydrogel, the primary particle size measured by an electron microscope is 0.1 micron or less, but the secondary particle size measured by the sieving-Coulter counter method is It has a particle size distribution such that particles of 10 microns or more account for 60% or more by weight of the total, and 60 to 90
It has a water content of % by weight, a BET specific surface area of 300 m 2 /g or more, and a solubility of 100 ppm or less when measured in an aqueous solution of PH4. A common method for producing silica hydrogels consists of reacting sodium silicate with an acid such as sulfuric acid and gelling the resulting hydrosol. The surface activity of the resulting silica hydrogel is greatly influenced by the pH of the hydrosol; on the acidic side, the surface activity is high, and on the alkaline side, the surface activity tends to be low due to the influence of the residual alkali. From this point of view, silica hydrogel for use as an adsorbent is generally produced by gelling acidic silica hydrosol, but silica hydrogel produced by this method is purified when used as an adsorbent. Separation from fermented alcoholic beverages is quite difficult, and it has the disadvantage that excessive separation is only possible by using a large amount of super-aiding agent such as diatomaceous earth. For this reason, the conventional processing has poor workability, a large amount of slag is formed, and a large amount of slag is retained in the product, and still has many disadvantages in terms of economic efficiency. The reason why silica gel from acidic hydrosol has such poor permanence is that while its surface activity increases,
This is thought to be due to the fact that as the primary particles become finer, the secondary particles also contain considerably finer particles. The present invention is characterized in that a silica hydrogel is produced by reacting acidic silica sol with sodium silicate in the presence of an aqueous salt solution.
That is, the silica hydrogel produced by this reaction is
Although the primary particle size is fine, the secondary particle size during dispersion becomes evenly and uniformly coarse, making it possible to significantly improve the adsorption properties while maintaining the adsorption properties at an excellent level. It is recognized that Such particle size characteristics are thought to be closely related to the reaction mechanism in which a crude acid hydrosol is neutralized with sodium silicate to produce a hydrogel. The acidic silica sol used in the present invention has a pH of 2.5 or less, particularly a pH of 0.3 to 2.0,
It is obtained by reacting sodium silicate with an acid such as sulfuric acid so that the final pH falls within the above range.
As sodium silicate, any composition can be used as long as it satisfies the condition of water solubility, but from the economic point of view, it has the general formula Na 2 O・nSiO 2 , where n is 2 to 4. Advantageously, those having a composition with a number of . The acid crude silica sol should be produced at a temperature as low as possible in order to prevent gay formation, and it is generally preferable to carry out the neutralization reaction at a temperature of -10 to +20°C. The SiO2 concentration in the sol is also related to gelation and is generally
The amount is preferably in the range of 20 to 200 g/, particularly 30 to 150 g/. That is, if the SiO 2 concentration is higher than the above range, there is a tendency for gelation to occur prior to the reaction of the present invention, while if it is lower than the above range, the concentration is too low and there is a disadvantage that a large amount of liquid must be handled. . The stability of acidic silica sol also changes depending on the pH value, and generally speaking, it is most stable at a pH of about 2, and even if the pH is lower or higher than this, it will not be affected by changes in pH. Stability therefore gradually decreases.
In the present invention, this silica hydrosol is subjected to the reaction with sodium silicate while it is stable. As the sodium silicate to be reacted with the silica sol, sodium silicate having the same composition as that used for producing the silica sol is used. Generally speaking, the SiO 2 concentration of this sodium silicate aqueous solution is 20 to 300
g/, preferably in the range of 30 to 200 g/. That is, if this concentration is higher than the above range,
It becomes difficult to react uniformly between the two, and it tends to be difficult to obtain a good adsorbent. On the other hand, if it is smaller than the above range, there is a disadvantage that a large amount of liquid must be handled. Acidic silica sol and sodium silicate have a molar ratio of 3:97 to 80:20, especially 20: 2 , based on SiO2.
It is desirable to carry out the reaction at a molar ratio of 80 to 70:30. That is, at molar ratios other than the above, the reaction tends to be heterogeneous, and especially when the amount of sodium silicate exceeds the above range, the adsorption properties of the resulting hydrogel tend to decrease, while the molar ratio of acidic silica sol If the ratio is larger than the above range, the resulting hydrogel tends to have poor permeability. In the present invention, it is desirable that the acidic silica sol be added to the aqueous sodium silicate solution and the reaction between the two be carried out with stirring. This is because the gradual addition of the acidic sol into the alkaline silicate medium causes the added silica hydrogel to be present in the form of individual particles and with a low water content, rather than in the form of a diellized product throughout. This is because it can be obtained in the form of 60 to 90% by weight. In the present invention, acidic silica sol and sodium silicate are reacted in the presence of salts, but the amount of salts contained in the acidic silica sol, that is, the amount of salts generated by neutralization in the silica sol production step, is generally This is insufficient, and it is necessary to coexist separate salts in the reaction system. It is advantageous to add the salts in advance to the sodium silicate solution used in the reaction, and generally the concentration of the salts in the sodium silicate solution is preferably in the range of 1 to 150 g/. As the salts, water-soluble alkali metal salts of mineral acids such as common salt and mirabilite are used. Although the reaction conditions are not particularly strict, generally a reaction time of 0.5 to 8 hours is used at a temperature of 0 to 90°C. After the reaction is completed, it is also possible to continue aging for about 0.5 to 16 hours for the purpose of homogenizing the particle size. The produced silica hydrogel is over-separated, washed with water and filtered again to obtain an adsorbent product. As is clear from the fact that the silica hydrosol used in the present invention has a primary particle size of 0.1 micron or less as measured by an electron microscope, the primary particle size is extremely fine, yet the secondary particle size is uniform and uniform. It has the characteristic of being coarse. That is, this silica hydrosol has a particle size distribution such that particles having a secondary particle size of 10 microns or more as measured by the sieving-Coulter counter method account for 60% by weight or more, particularly 70% by weight or more of the total. ing. Incidentally, the sieving-Coulter counter method refers to the secondary particle size measurement method described below. In this specification, the reason why the sieving-Coulter counter method is used to measure silica hydrogel is that silica hydrogel particles are bulky and tend to block the measurement tube of the Coulter counter. This is because by subjecting only the particles that have passed through the 325 mesh wire mesh to the Coulter counter measurement, it is possible to more accurately measure the particle size distribution without such troubles. Silica hydrogels particularly suitable for the purposes of the present invention generally have an average secondary particle size (median size) of 5 to 100 microns. Such particle size characteristics provide a significant improvement in perpendicularity without interfering with adsorption properties; for example, the silica hydrogels used in the present invention
It exhibits a permeability that is almost comparable to or even better than diatomaceous earth, which is the most commonly used superadjuvant. Furthermore, the silica hydrogel particles used in the present invention have a water content of 60 to 90% by weight, especially 65 to 80% by weight, and a water content of 300 m 2 /g or more, especially 350 to 800 m 2 /g.
It has a BET specific surface area of g. This specific surface area is related to the adsorption ability for turbidity components and potential turbidity components in beverages, and it is understood that the silica hydrosol of the present invention has excellent adsorption properties. However, if this specific surface area is too large, it tends to adsorb components that contribute to foam retention and stabilization, so it is preferable that it be 800 m 2 /g or less. This adsorption property is also related to the water content in silica hydrogels. In other words, this water content is related to the pore volume of the silica gel structure.
The larger the water content, the larger the pore volume. However, if the water content exceeds the above range, the adsorption performance will decrease due to an increase in the water content that is not related to the adsorption effect, while if the water content falls below the above range, the adsorbed components This is also undesirable since the effective suction seat is reduced. In the present invention, the silica hydrogel has an average pore radius of 40 to 150 Å, measured under the conditions described below. Since the adsorbent used in the present invention is a silica hydrogel having the particle size characteristics described above, it has a solubility of 100 ppm or less when measured in an aqueous solution of PH4. ``For example, when a colloidal sol of silica is used as an adsorption treatment agent, its solubility is 120 to 200 ppm under similar conditions, and the amount of silica dissolved is generally 130 ppm in untreated beer and 130 ppm in wine. In contrast, it can be seen that the amount of silica eluted from the adsorbent of the present invention is extremely small.The adsorbent of the present invention is particularly advantageously used for stabilizing beer. , the adsorbent of the present invention is added to adsorb the turbidity components or their potential components into the gel, and then their removal is carried out by filtration. The present invention will be explained with the following examples: Example 1 A commercially available purified sodium silicate solution (specific gravity 1.31, composition
Add 6.45 kg of water to 4.65 kg (Na 2 O・2.9SiO 2・nH 2 O) to make 10. Add this solution to 8.7 sulfuric acid solution 13, 63 acidic silica sol ( SiO2 concentration 4.35
g/100ml) was prepared. On the other hand, water and 600 g of common salt were added and dissolved in 4.65 kg of the sodium silicate solution having the above composition to prepare a solution with an SiO 2 concentration of 7.24 g/100 ml.The solution was poured into a container with an internal volume of 50 ml, and heated to 30 ml with stirring. A previously prepared acidic silica sol was added over a period of about 3 hours to carry out a neutralization reaction while maintaining the temperature at 0.degree. C., thereby obtaining a precipitate of silica hydrogel with good filtration properties. The pH of the reaction solution at the end of this reaction is
It was 6.6. Next, add sulfuric acid solution to this reaction solution.
The pH was adjusted to 1.7, and the temperature was maintained at 30° C. with stirring for 90 minutes of aging. Next, filtration and water washing were repeated three times to obtain a silica hydrogel. The physical properties of this sample were measured and shown in Table 1. Incidentally, each physical property was measured by the following method. 1 Specific surface area Determined by BET method for a product dried at 150°C. 2 Moisture A certain amount of the sample was dried in a constant temperature dryer at 110°C until it reached a constant weight, and the moisture content was determined from the weight loss. (3) The average pore radius of the silica hydrogel was calculated from the following formula. Average pore radius = 2W/S (100-W) x 104 (Å) W: Water content of hydrogel (%) S: Xerogel BT obtained by drying the hydrogel
Specific surface area (m 2 /g) determined from the method The average pore radius of the silica xerogel was determined from the following formula. Average pore radius = 2V/S×10 4 (Å) V: Pore volume determined by nitrogen adsorption (ml/g) S: Specific surface area determined by BET method (m 2 /g) (Overspeed) The filtration rate was measured by filtering the silica dispersion using the filtration apparatus shown in Fig. 1. A small filtration speed indicates good filtration properties. Method for measuring filtration rate Add 20 g of silica hydrogel and silica xerogel to 500 ml of water adjusted to pH 4 to 4.5 with hydrochloric acid, sufficiently disperse with a stirrer, and then filter using the filtration device shown in the figure. The speed was measured. 5 After degassing commercially available beer at room temperature, add 1 g of silica (as SiO 2 ) to 1 beer,
After stirring for 30 minutes, silica was separated by filtration, and the filtered beer was cooled to 0-1°C. Next, a diameter 20 with a gas suction perforated plate at the bottom
After pouring 20ml of beer into a mm glass tube, blow carbon dioxide gas through the perforated plate at the bottom of the glass tube to create bubbles.After making the foam height 20cm, stop blowing carbon dioxide gas and leave it as it is. The disappearance of the bubbles was observed with the naked eye. The same operation was performed three times for each sample to evaluate foam retention. Evaluation of foam retention was indicated by symbols. ○: Excellent foam retention. ×: Poor foam retention. Show that. 6 Particle size Weigh out 50 g of silica hydrogel in a beaker, add 500 ml of water, and disperse it in an ultrasonic disperser for 20 minutes.
The mixture was sieved through a mesh wire sieve and the weight of each was measured. Next, regarding fine particles, the dispersion that passed through a 325-mesh (44μ) sieve was measured using a particle size analyzer model TA-type (measurement device's pore tube 100μ) manufactured by Coulter Counter, USA. Incidentally, silica xerogel was determined in the same manner using 20 g of sample. Example 2 Commercially available purified sodium silicate solution (specific gravity 3.31, composition
Add 6.45 kg of water to 4.65 kg of Na 2 O・2.9SiO 2 nH 2 O)
It was set as 10. This sodium silicate solution has a concentration of 9.1%.
of sulfuric acid solution to prepare an acidic silica sol (silica concentration: 4.6 Å/100 ml) with a pH of 0.55. On the other hand, water and 600 g of salt as salt were added and dissolved in 4.65 kg of sodium silicate solution having the above composition, and the SiO 2 concentration was
Prepare a solution of 4.6g/100ml 18.74, internal volume 50
The above-prepared acidic silica sol was added over a period of about 3 hours while stirring and heating to 50°C to conduct a neutralization reaction, resulting in the precipitation of a silica hydrogel with excellent filtration properties. . The pH of the reaction solution at the end of this reaction was 69. Next, a sulfuric acid solution was added to this reaction solution to adjust the pH to 1.6, and the temperature was maintained at 50° C. while stirring, and an aging treatment was performed for 90 minutes. Next, repeat filtration and water washing three times,
A silica hydrogel was obtained. The physical properties of this sample were measured and shown in Table 1. Comparative Example Commercially available silica gel A commercially available finely powdered silica gel was used as a sample and its physical properties were measured. This is shown in Table 1. Comparative Example Silica hydrogel by the method of USP 3617301 Commercially available purified sodium silicate (specific gravity 1.40, composition
A sodium silicate solution 2 having a specific gravity of 1.315 was prepared by adding water to Na 2 O.3.3SiO 2.nH 2 O). Meanwhile, water 1280
Add 985g of 98% sulfuric acid to ml, concentration 42.7%, specific gravity
A sulfuric acid solution 1.7 of 1.33 was prepared, poured into a container with an internal volume of 7, and the above sodium silicate solution was added over 5 minutes while maintaining the temperature at 5 to 10°C and stirring at high speed to obtain a uniform silica sol solution. . This silica sol solution had a pH of 0.22 and gelled into a jelly after 5 minutes. Next, the silica hydrogel was aged at room temperature for 6 hours, and then crushed into small pieces and washed with water for 20 hours.
Next, this small-sized silica hydrogel was placed in a pot mill, wet-pulverized using a flint ball, and then filtered to produce a silica hydrogel. The physical properties of this sample were measured and shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた過速度測定装置の概
略配置である。 1……ステンレス製ロート、2……ステンレス
製金網(口径20μ)、3……ステンレス製目皿、
4……ゴム栓、5……ビン、6……ビーカー、
7……ガラス板、8……コツク、9……水銀マノ
メーター、10……吸引ポンプ。
FIG. 1 is a schematic layout of the overspeed measuring device used in the example. 1...Stainless steel funnel, 2...Stainless steel wire mesh (diameter 20μ), 3...Stainless steel perforated plate,
4...Rubber stopper, 5...Bottle, 6...Beaker,
7...Glass plate, 8...Kotoku, 9...Mercury manometer, 10...Suction pump.

Claims (1)

【特許請求の範囲】 1 酸性のシリカゾルとケイ酸ソーダとを塩類水
溶液の存在下に反応させ、水分量が60乃至90重量
%でBET比表面積が300m2/g以上のシリカヒド
ロゲル粒子を得ることを特徴とする発酵酒精飲料
用吸着剤の製法。 2 酸性シリカゾルが2.5以下のPHを有するもの
であることを特徴とする特許請求の範囲第1項記
載の方法。 3 SiO2基準で酸性シリカゾルとケイ酸ソーダ
とを、3:97乃至80:20のモル比で反応させる特
許請求の範囲第1項記載の方法。 4 ケイ酸ソーダ及び塩類を含む母液中に酸性シ
リカゾルを添加して、反応を行うことを特徴とす
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. Reacting acidic silica sol and sodium silicate in the presence of an aqueous salt solution to obtain silica hydrogel particles having a water content of 60 to 90% by weight and a BET specific surface area of 300 m 2 /g or more. A method for producing an adsorbent for fermented alcoholic beverages characterized by: 2. The method according to claim 1, wherein the acidic silica sol has a pH of 2.5 or less. 3. The method according to claim 1, wherein the acidic silica sol and sodium silicate are reacted in a molar ratio of 3:97 to 80:20 based on SiO 2 . 4. The method according to claim 1, characterized in that the reaction is carried out by adding acidic silica sol to a mother liquor containing sodium silicate and salts.
JP58147991A 1983-08-15 1983-08-15 Adsorbent for fermented liquor drink and its preparation Granted JPS6041476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147991A JPS6041476A (en) 1983-08-15 1983-08-15 Adsorbent for fermented liquor drink and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147991A JPS6041476A (en) 1983-08-15 1983-08-15 Adsorbent for fermented liquor drink and its preparation

Publications (2)

Publication Number Publication Date
JPS6041476A JPS6041476A (en) 1985-03-05
JPS6361914B2 true JPS6361914B2 (en) 1988-11-30

Family

ID=15442680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147991A Granted JPS6041476A (en) 1983-08-15 1983-08-15 Adsorbent for fermented liquor drink and its preparation

Country Status (1)

Country Link
JP (1) JPS6041476A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153749B2 (en) 2007-02-09 2012-04-10 Obshchestvo s Ogranichennoy Otvetstennostyu “Esfarm” Absorbent and a method of production thereof
JP4908296B2 (en) * 2007-04-11 2012-04-04 山形県 Processing method of sake
JP2020110089A (en) * 2019-01-11 2020-07-27 アサヒビール株式会社 Method for producing fermented malt beverage and method for filtering fermentation liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302258A1 (en) * 1982-02-04 1983-08-11 W.R. Grace & Co., 10036 New York, N.Y. Composition and process for stabilising beverages against cloud formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302258A1 (en) * 1982-02-04 1983-08-11 W.R. Grace & Co., 10036 New York, N.Y. Composition and process for stabilising beverages against cloud formation

Also Published As

Publication number Publication date
JPS6041476A (en) 1985-03-05

Similar Documents

Publication Publication Date Title
US7538067B2 (en) Composition of, and process for preparing, silica xerogel for beer stabilization
JP3316325B2 (en) Silica gel for beer stabilization treatment, method for producing the same, and beer stabilization treatment method
US3940498A (en) Chill-proofing with synthetic magnesium silicates
US4508742A (en) Treating beer to prevent chill haze and metal contamination
JP2008080332A (en) Process for making and using low beverage soluble iron content adsorbent and composition made thereby
JP2000507834A (en) Composition comprising liquid absorbed on carrier based on precipitated silica
US3480390A (en) Process for producing finely-divided precipitated silicon dioxide
US5643624A (en) Amorphous silicas
US5468558A (en) Process for preparing fracture-resistant sol/gel particles
JPS6361914B2 (en)
JP3460357B2 (en) Silicon dioxide for stabilizing beer and method for producing the same
DE3302258A1 (en) Composition and process for stabilising beverages against cloud formation
EP0231897B1 (en) Aged silica
JPH11157827A (en) New silicon dioxide
US4847235A (en) Silica product
JP3719686B2 (en) Silica gel for filter media
US4563441A (en) Composition for treating beer to prevent chill haze and metal contamination
KR0169299B1 (en) Improved beer processing and composition
JPH07232059A (en) Silica gel for filter aid and its production
USH89H (en) Apple juice clarification by using silica hydrogels
JPH01165363A (en) Stabilizing treatment of beer
JPH05177132A (en) Filter aid
CA1292973C (en) Aged silica
BR0312238B1 (en) Use of colloidal anionic silica solution as a clarifying agent