JPS6361894A - Heat exchanger with fins - Google Patents

Heat exchanger with fins

Info

Publication number
JPS6361894A
JPS6361894A JP20637186A JP20637186A JPS6361894A JP S6361894 A JPS6361894 A JP S6361894A JP 20637186 A JP20637186 A JP 20637186A JP 20637186 A JP20637186 A JP 20637186A JP S6361894 A JPS6361894 A JP S6361894A
Authority
JP
Japan
Prior art keywords
cut
fins
fin
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20637186A
Other languages
Japanese (ja)
Other versions
JPH0686996B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Shinji Fujimoto
藤本 真嗣
Kaoru Kato
薫 加藤
Tomoaki Ando
智朗 安藤
Hisao Kusuhara
尚夫 楠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP61206371A priority Critical patent/JPH0686996B2/en
Publication of JPS6361894A publication Critical patent/JPS6361894A/en
Publication of JPH0686996B2 publication Critical patent/JPH0686996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the heat resistance of fins and provide a compact device with high performance by a method wherein heat transfer tubes in the second and subsequent rows to the air flow direction have partial overlapping parts with projection plane projecting to the down stream side from any heat transfer tube located on the upstream side of an air flow and a plurality of cut and raised parts opened to the air flow direction between the tubes on a fin are installed at the upper and lower parts of fin base plates which are left as they are and the relations among the height of the cut and raised part, a fin space, and a fin thickness are specified. CONSTITUTION:Heat transfer tubes 10 in the second and subsequent rows to the air flow direction are so arranged to overlap by half with the projection plane projecting to the down stream side from any heat transfer tube located on the upstream side of an air flow and the base plates 11 are so constituted to exist between a plurality of bridge-shaped cut and raised parts 13a, 13b which are opened at the upper and lower surface sides to the fins 11 as the base plates in the air flow direction on the fins 11 between the tubes 11. Assuming that a space between adjoining fins 11 is s, and a fin plate thickness is t, the height of the cut and raised part h is set as s/3<h<=(s+t)/2. Thereby, the distribution of the air flow velocity in the directions of parallel and right angles to the fins is made uniform.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1空調、冷凍等に使用され、冷媒と空気等の流
体間で熱の授受を行う熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in air conditioning, refrigeration, etc., for transferring heat between a refrigerant and a fluid such as air.

従来の技術 従来、この種の熱交換器は、第8図に示したように、U
ベンドにより互いに接続された銅管1とアルミ等を材料
とするフィン2よりなり、銅管1の内部を流れる冷媒と
フィン2間を流れる空気3が熱交換を行う構成2有して
いた。この様な熱交換器は近年、小型、高性能化が要求
されているが、騒音等の観点からフィン間の空気流速は
低く抑さえられているため、管内側の熱抵抗に比して、
空気側の熱抵抗は高い。そこで現在は空気側の伝熱面積
を拡大することで管内側の熱抵抗との差を減少させる様
に工夫している。しかしながら、伝熱面を拡大すること
には物理的な限界が存在するとともに、経済性、省スペ
ース性等の点から問題もあり、空気側の熱抵抗を低下さ
せることが、この様な熱交換器に於て重要な課題である
BACKGROUND OF THE INVENTION Conventionally, this type of heat exchanger has a U
It has a configuration 2 in which a copper tube 1 and a fin 2 made of aluminum or the like are connected to each other by a bend, and a refrigerant flowing inside the copper tube 1 and air 3 flowing between the fins 2 exchange heat. In recent years, such heat exchangers have been required to be smaller and have higher performance, but the air flow velocity between the fins is kept low from the viewpoint of noise etc., compared to the thermal resistance inside the tube.
Thermal resistance on the air side is high. Therefore, efforts are currently being made to reduce the difference in thermal resistance from the inside of the tube by expanding the heat transfer area on the air side. However, there are physical limits to enlarging the heat transfer surface, and there are also problems in terms of economy and space saving. This is an important issue when it comes to pottery.

第9図及び第10図は、この様な熱交換器の従来例を示
しだものである。第9図は平面図、第10図はC−C面
フィン断面図である。銅管4の内部はフロン等の冷媒が
循環しており、その熱は銅管4からフィンカラー5へ伝
わシ、フィン6及び切り起し7へ伝わる。一方矢印8方
向からファン等により送られる空気は7476間を通過
するが、その際、温度の異なったフィン面と熱の授受を
行う。この作用によって冷媒と空気の熱交換が連続的に
行なわれる。
FIGS. 9 and 10 show conventional examples of such heat exchangers. FIG. 9 is a plan view, and FIG. 10 is a cross-sectional view of the fin along the line CC. A refrigerant such as fluorocarbon is circulating inside the copper tube 4, and its heat is transmitted from the copper tube 4 to the fin collar 5, and then to the fins 6 and the cut-and-raised portions 7. On the other hand, air sent by a fan or the like from the direction of arrow 8 passes between 7476, but at that time, it exchanges heat with the fin surfaces having different temperatures. This action causes continuous heat exchange between the refrigerant and the air.

発明が解決しようとする問題点 前述の従来例は、フィ/6に切)起し7を有するスリッ
トフィンと称せられるもので、フィン表面に加工のない
フラットフィンと比較すると表面の熱抵抗を4Q〜60
チ低下させている。しかしながら、この様に切り起しを
フィン面に設けた場合、平板理論を適用すると層流の助
走区間の熱伝達率が非常に高いために、現在のこの様な
スリットフィンにより達成しているフィン表面の熱抵抗
値より60%以上低い熱抵抗値を実現しうるはずである
。この理論値を達成し得ない理由に様々考えられるが、
それらのうちで重要な理由として掲げられるものは、■
 切り起し7を通過する空気流の通風抵抗が高く、切り
起し7以外の部分を通過する空気量が増加するので切り
起し部での熱的性能が十分生かされない。
Problems to be Solved by the Invention The above-mentioned conventional example is called a slit fin having a fin cut to 6) and a raised 7. Compared to a flat fin with no processing on the fin surface, the surface thermal resistance is 4Q. ~60
It is lowering the temperature. However, when the fin surface is cut and raised in this way, the heat transfer coefficient in the run-up section of laminar flow is extremely high when applying the flat plate theory. It should be possible to achieve a thermal resistance value that is 60% or more lower than that of the surface. There are various possible reasons why this theoretical value cannot be achieved, but
Among them, the important reasons are: ■
The ventilation resistance of the airflow passing through the cut-and-raised portion 7 is high, and the amount of air passing through the portion other than the cut-and-raised portion 7 increases, so that the thermal performance at the cut-and-raised portion cannot be fully utilized.

すなわち、フィン6に平行な面における流速分布、及び
、フィン6′に垂直な面における流速分布は、第9図及
び、第1Q図に示す様に、伝熱管4の周シ、及び、切り
起し7とその上側にあるフィンeとの隙間の流速が速く
、切り起し7の境界層前縁効果が十分に生かされない。
In other words, the flow velocity distribution in the plane parallel to the fins 6 and the flow velocity distribution in the plane perpendicular to the fins 6' are determined by the circumference and cut edges of the heat exchanger tubes 4, as shown in FIG. 9 and FIG. 1Q. The flow velocity in the gap between the cut-out 7 and the fin e above it is high, and the leading edge effect of the boundary layer of the cut-up 7 cannot be fully utilized.

■ 止水域が広く存在するため有効な伝熱面積が減少す
る。特に空気流8の上流側にある銅管4後流の止水域は
、その後部の切り起し7を覆うため、これら切り起し7
の熱抵抗が増大し、フィンの平均熱抵抗を増大させる。
■ The effective heat transfer area decreases because there is a wide still area. In particular, the cut-off area downstream of the copper pipe 4 on the upstream side of the airflow 8 covers the cut-out area 7 at the rear thereof, so these cut-off areas 7
increases the thermal resistance of the fins, increasing the average thermal resistance of the fins.

■ 銅管4がちどり状に配置され、銅管4の前方又は後
方に切り起し7が設けられるため銅管4からの熱流を妨
げフィン効率が低下すム■ 空気流8の上流側の切り起
し7の先端より発生する温度境界層の中に、下流側の切
り起し7が覆われてしまうため、下流側に位置する切り
起し7の境界層前縁効果がほとんど生かされない。
■ Copper tubes 4 are arranged in a staggered manner, and cut-outs 7 are provided at the front or rear of the copper tubes 4, which obstructs heat flow from the copper tubes 4 and reduces fin efficiency ■ Cuts on the upstream side of air flow 8 Since the downstream cut-off 7 is covered in the temperature boundary layer generated from the tip of the raised-up 7, the leading edge effect of the boundary layer of the cut-off 7 located on the downstream side is hardly utilized.

そこで本発明は、■ 伝熱管間及び、切り起し間の流れ
を均一化し、切り起し部の通過空気量を低下させないよ
うにし、平行平板間流れを実現せして理論値に近い熱伝
達率を得ることができる。
Therefore, the present invention aims to: (1) equalize the flow between the heat transfer tubes and between the cut and raised portions, prevent the amount of air passing through the cut and raised portions from decreasing, and realize a flow between parallel plates to achieve heat transfer close to the theoretical value; You can get the rate.

■ 空気流下流側の切り起しか、上流側の切り起しの温
度境界層に覆われないようにし、切り起しによる境界層
前縁効果を十分に生かすことができる。0 止水域へ流
体の付着現象によって流れを誘導する。■ 伝熱管間の
熱流を妨げない様に伝熱管及び伝熱面構成を採用するこ
とで、前記の問題点を解決し、フィンの熱抵抗を低下さ
せ、コンパクトかつ高性能なフィン付熱交換器を提案す
ることを目的とするものである。
■ Only the cutting edges on the downstream side of the airflow are covered by the temperature boundary layer of the upstream cutting edges, and the leading edge effect of the boundary layer due to the cutting edges can be fully utilized. 0 Flow is guided by the phenomenon of fluid adhesion to the still area. ■ By adopting a heat transfer tube and heat transfer surface configuration that does not impede heat flow between heat transfer tubes, the above problems are solved and the thermal resistance of the fins is reduced, resulting in a compact and high-performance finned heat exchanger. The purpose is to propose the following.

問題点を解決するだめの手段 上記問題点を解決する本発明の技術的手段は、気流方向
に対して、第2列目以降の伝熱管が、気流上流側にある
いづれかの伝熱管の下流側への投影面と部分的な重なり
を有し、かつ、フィンの伝熱管間部に気流方向に開口し
た複数の切り起しをフィン基板を残して上、下に設置す
ると共に、切り起し高さhと、フィン間隔S及びフィン
板、厚tとの関係をs/3 (h≦(s十t)/2とす
るものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is that the heat transfer tubes in the second and subsequent rows are located on the downstream side of any of the heat transfer tubes located on the upstream side of the airflow. A plurality of cutouts that partially overlap the projection plane of the fin and are open in the airflow direction between the heat transfer tubes of the fin are installed above and below, leaving the fin substrate, and the height of the cutouts is The relationship between the height h, the fin spacing S, and the thickness t of the fin plate is s/3 (h≦(s + t)/2).

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、■ 各伝熱管群内の管列は気流方向にわずか
ずれて設置されるために、橋状又はルーバー状の切り起
しを管の後流部へその一部が入シ込む様に構成できるた
め、伝熱管近傍に部分的に空気流速の高い箇所が生ぜず
、切り起しへ十分な流量の空気を通過させることができ
るため、切り起しの熱的な性能を十分生かすことができ
る。■伝熱管間のフィン上に気流方向に開口した複数の
切り起しをフィン基板を残して上、下に設置すると共に
、切り起し高さhとフィン間隔8及びフィン板厚tとの
関係をs/3(h≦(s+t)/2とするため、隣接す
るフィンとの間隔における空気流速が均一になり、切り
起し部分へ十分な空気流量を流すことができるため、切
り起しによる境界層前縁効果を十分に生かすことができ
る。以上、■、■により、理論的な平行平板の助走区間
の熱伝達率に十分近い値を実現できる。■ 各伝熱管は
空気流の上流側の管投影面のどれかと部分的に重なる様
に設置されているために、上流側の管の後流が下流側の
管により流動方向を下流側の管の止水域側へ誘引され、
止水域が減少する。またこの現象は、伝熱管群間の切り
起しを設けているためより顕著になる。つまり切り起し
は気流方向に開口しだ側辺部とフィンに接続される脚部
を有するが、こ0脚部を伝熱管後流部へ入り込む様に設
けられるので、気流は止水域側へ流動する様になシ、止
水域は減少するのである。これは脚部を気流と傾斜させ
、仰角を持たせればより効果は大きくなる。
In other words, ■ Since the tube rows in each heat transfer tube group are installed slightly offset in the airflow direction, a bridge-like or louver-like cut-out is constructed so that a part of it enters the downstream part of the tubes. As a result, there are no areas with high air velocity near the heat transfer tubes, and a sufficient flow rate of air can pass through the cut-and-bore, making it possible to fully utilize the thermal performance of the cut-and-bore. . ■Multiple cutouts opening in the airflow direction on the fins between the heat transfer tubes are installed above and below, leaving the fin substrate, and the relationship between the cutout height h, the fin spacing 8, and the fin plate thickness t. Since s/3 (h≦(s+t)/2), the air flow velocity in the interval between adjacent fins becomes uniform, and sufficient air flow can flow to the cut-and-raised part, so the cut-and-raised part It is possible to fully utilize the leading edge effect of the boundary layer. As described above, it is possible to achieve a value sufficiently close to the theoretical heat transfer coefficient of the run-up section of a parallel plate. ■ Each heat transfer tube is placed on the upstream side of the air flow. Because it is installed so that it partially overlaps with one of the projected planes of the pipe, the flow direction of the wake of the upstream pipe is induced by the downstream pipe to the cutoff area side of the downstream pipe.
The still area will decrease. Moreover, this phenomenon becomes more noticeable because cut-and-raised portions are provided between the heat exchanger tube groups. In other words, the cut-and-raised part has a side part that opens in the airflow direction and a leg part that is connected to the fin, but since this leg part is provided so as to enter the downstream part of the heat exchanger tube, the airflow is directed to the stop area side. As water flows, the still water area decreases. This effect will be even greater if the legs are tilted with the airflow and have an elevation angle.

■ 各伝熱管列は上流側の管と気流流方向から見て著し
く位置がずれて設置されることがないので、伝熱管群間
のフィンへの熱の流れは切り起しにより阻害されること
が少ない。
■ Each heat exchanger tube row is not installed with a significant position shift from the upstream tube when viewed from the air flow direction, so the flow of heat to the fins between the heat exchanger tube groups is inhibited by the cut-and-rise. Less is.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例のフィン付熱交換器の平面図
、第2図は第1図のA−A断面図、第3図は第2図詳細
図である。10は伝熱管、11はフィン、12はフィン
カラーであり、13a及び13bは橋状の切り起しであ
る。伝熱管10の内部には、冷媒が循環しており、その
冷媒の有する熱は、伝熱管10.フィンカラー12、フ
ィン11、及び切り起し13&及び13bへと順次伝え
られる。一方、気流方向14から流動する気流は、74
711間を通過する際に、冷媒から伝えられた熱を、空
気の接する面を介して間接的に熱の授受を行う。
FIG. 1 is a plan view of a finned heat exchanger according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a detailed view of FIG. 2. 10 is a heat exchanger tube, 11 is a fin, 12 is a fin collar, and 13a and 13b are bridge-like cut-outs. A refrigerant circulates inside the heat exchanger tubes 10, and the heat of the refrigerant is transferred to the heat exchanger tubes 10. It is sequentially transmitted to the fin collar 12, the fin 11, and the cut-and-raised portions 13& and 13b. On the other hand, the airflow flowing from the airflow direction 14 is 74
When passing between 711 and 711, the heat transferred from the refrigerant is transferred indirectly through the surface in contact with the air.

次に、この一実施例の構成に於ける作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

気流方向に対して、第2列目以降の伝熱管1oは、気流
上流側にあるいづれかの伝熱管10の下流側への投影面
と半分だけ重なるように配置されている。すなわち、切
り起し13a及び13bの一部が伝熱管10の後流部へ
入り込む様に構成できるため、伝熱管10近傍に部分的
に空気流速の速い箇所が生じることがなく、気流方向1
4に直角方向の伝熱管10間で均一空気流速が得られる
With respect to the airflow direction, the heat exchanger tubes 1o in the second and subsequent rows are arranged so as to overlap by half with the downstream projection plane of any heat exchanger tube 10 located on the upstream side of the airflow. That is, since it can be configured so that a part of the cut-and-raised parts 13a and 13b enters the downstream part of the heat exchanger tube 10, a part where the air flow velocity is high does not occur in the vicinity of the heat exchanger tube 10, and the air flow direction 1
A uniform air flow velocity is obtained between the heat exchanger tubes 10 in the direction perpendicular to the direction of the heat exchanger tubes 4.

また、伝熱管1o間のフィン11上に、気流方向14に
対してフィン11の基板に対して上面側に開口した複数
の橋状の切り起し13aと、下面側へ開口した橋状の切
り起し13bとの間にフィン11の基板が存在するよう
に構成し、かつ、隣接するフィン11同志の間隔を81
フイン板厚をtとすると、切り起し高さhをh=(s+
t)/2としているため、切り起し13a及び13bが
フィン間隔Sの丁度、中央に位置する。従って、第3図
に示す様に隣接するフィン11の間に於いて均一な空気
流速が得られる。
Furthermore, on the fins 11 between the heat exchanger tubes 1o, there are a plurality of bridge-like cutouts 13a that are open to the upper surface side with respect to the substrate of the fins 11 with respect to the air flow direction 14, and a plurality of bridge-like cutouts 13a that are open to the bottom surface side. The structure is such that the substrate of the fin 11 is present between the riser 13b, and the interval between adjacent fins 11 is set to 81.
If the thickness of the fin plate is t, then the cut height h is h=(s+
t)/2, the cut-and-raised portions 13a and 13b are located exactly at the center of the fin spacing S. Therefore, as shown in FIG. 3, a uniform air flow velocity can be obtained between adjacent fins 11.

以上、伝熱管1o聞及びフィン11間の両方において、
空気流速が均一となるため、切り起し13部分へ十分な
空気流量を流すことができ、切り起し13による境界層
前縁効果を十分に生かすことができる。即ち、理論的な
平行平板の助走区間の熱伝達率に十分近い、高い値を得
ることができる。
As described above, both between the heat exchanger tubes 1o and between the fins 11,
Since the air flow velocity becomes uniform, a sufficient amount of air can flow to the cut and raised portions 13, and the boundary layer leading edge effect of the cut and raised portions 13 can be fully utilized. That is, it is possible to obtain a high value sufficiently close to the theoretical heat transfer coefficient of the run-up section of parallel flat plates.

尚、切り起し高さhについては、第4図に示す様に、h
=(s+t)/2の時、伝熱性能は最大になるが、h)
s/sであれば最大の約90  、チ以上の性能をする
が、逆に、h)(s+t)/2とすると、切り起し13
a及び13bの脚部による通風抵抗の増大をまねく。従
って、s / 3 (h≦(s+t)/2であれば、実
用上、十分優れた伝熱性能を有する。次に、気流方向1
4に対して第2列目以降の伝熱管10が気流上流側にあ
るいづれかの伝熱管1oの下流側への投影面と半分だけ
重なる様に配置されているため、上流側伝熱管10後流
が下流側伝熱管1oの存在により、その流動方向を下流
側伝熱管1oの止水域側へ誘引され、止水域が減少する
。更に、伝熱管10間に切り起し13a及び13bを設
け、かつ、切り起し13a及び13bのフィン11と接
続する脚部を気流方向14に対して傾斜させて設けてい
るので、この現象はより顕著になり、止水域減少の効果
は大きくなる。
In addition, as for the cut height h, as shown in Fig. 4, h
When = (s + t) / 2, the heat transfer performance is maximum, but h)
If it is s/s, it will have a maximum performance of about 90, or better than chi, but on the other hand, if it is h)(s+t)/2, the performance will be 13
This results in an increase in ventilation resistance due to the leg portions a and 13b. Therefore, if s/3 (h≦(s+t)/2), the heat transfer performance is sufficiently excellent for practical use. Next, in the airflow direction 1
4, the heat exchanger tubes 10 in the second and subsequent rows are arranged so as to overlap only half of the downstream projection plane of one of the heat exchanger tubes 1o on the upstream side of the airflow. Due to the presence of the downstream heat exchanger tube 1o, the flow direction is guided toward the cutoff area side of the downstream heat exchanger tube 1o, and the cutoff area is reduced. Furthermore, this phenomenon can be prevented by providing the cut and raised portions 13a and 13b between the heat exchanger tubes 10, and the leg portions of the cut and raised portions 13a and 13b that connect to the fins 11 are provided at an angle with respect to the airflow direction 14. This will become more noticeable, and the effect of reducing the still area will become greater.

また、伝熱管1o各々は気流方向14に対して概ね一列
となっているため、気流方向14に直角な方向の伝熱管
10間のフィン11上に於ける熱の移動を妨げることが
なく、フィン効率も高くなる。
In addition, since each of the heat exchanger tubes 1o is generally in a line with respect to the airflow direction 14, the transfer of heat on the fins 11 between the heat exchanger tubes 10 in the direction perpendicular to the airflow direction 14 is not hindered, and the fins Efficiency also increases.

以上の点より、全体的なフィンの伝熱性能は著しく向上
する。
From the above points, the overall heat transfer performance of the fins is significantly improved.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第6図、第6図及び第7図は、本発明の他の実施例の一
つを示したものであり、第6図は平面図、第6図は第6
図のB−B断面図、第7図は第6図詳細図である。10
は伝熱管、11はフィン、12はフィンカラーであり、
16a及び16bは橋状の切り起しである。フィンの基
板11に対して上面側に設けた切り起し’fr: 15
 a 1下面側に設けた切り起しを16bとすると、気
流方向14に対して、上面側切り起し16a、フィン基
板11、下面側切り起し16bの順で切り起しを設置し
ている。一連の切り起し群において、気流方向14に対
する最上流側の上図切り起ず16a′の高さ及び最下流
側の下面切り起し16b′の高さIh1 とするとh1
=(g+t)/2とし、その他の切り起し高さh2は 
h 2 =(s −t)/2  としている。そして、
伝熱管10の配列については、第1実施例と同様である
6, 6 and 7 show one of the other embodiments of the present invention, FIG. 6 is a plan view, and FIG.
The BB sectional view in the figure, and FIG. 7 is a detailed view of FIG. 6. 10
is a heat exchanger tube, 11 is a fin, 12 is a fin collar,
16a and 16b are bridge-like cutouts. Cut-out 'fr: 15 provided on the upper surface side of the fin substrate 11
a1 If the cut-off provided on the bottom side is 16b, the cut-off is installed in the order of the top-side cut-off 16a, the fin board 11, and the bottom-side cut-off 16b with respect to the airflow direction 14. . In a series of cut-and-raised groups, the height of the upper cut-out 16a' on the most upstream side with respect to the airflow direction 14 and the height of the lower-face cut-off 16b' on the most downstream side with respect to the airflow direction 14 are Ih1, then h1
= (g+t)/2, and the other cut height h2 is
h 2 =(s − t)/2. and,
The arrangement of the heat exchanger tubes 10 is the same as in the first embodiment.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

第7図に示すように、一連の切り起し群において、気流
方向14に対する最上流側の上面切り起し16a′及び
最下流側の下面切り起し16′の高さhlがh 1= 
(s+t )/2になっているので、15a′及び16
b′はフィン間隔Sの丁度、中央に位置する。従って、
一連の切り起し群の気流流入部及び流出部のフィン11
間に於いて均一な空気流速が得られる。また、中央部に
於いては、切り起し高さh2がh1=(トt)/2であ
るため、隣り合う74711間の中心線に対して切り起
し15a及び15bがフィン板厚tだけずれた構成にな
っている。即ち、下面切り起し15bと隣り合うフィン
の上面切り起し15aとの間には、板厚を分の間隙が生
じ、その間隙を流れる気流は加速されるため、切り起し
15aに生じる温度境界層が薄くなり、局所の熱伝達率
が向上する。しかも、隣り合うフィン11間に於ける切
り起し15a及び15bの、中心線に対するずれはフィ
ン板厚さだけであるので、フィン間における気流分布は
ほぼ均一となる。
As shown in FIG. 7, in a series of cut and raised groups, the height hl of the uppermost cut and cut 16a' on the most upstream side and the lower surface cut and cut 16' on the most downstream side with respect to the airflow direction 14 is h1=
(s+t)/2, so 15a' and 16
b' is located exactly at the center of the fin spacing S. Therefore,
Fins 11 at the airflow inflow and outflow portions of a series of cut-and-raised groups
A uniform air flow velocity is obtained between the two. In addition, in the central part, the cut height h2 is h1=(tt)/2, so the cut and raise heights 15a and 15b are equal to the fin plate thickness t with respect to the center line between adjacent 74711s. It has a misconfigured configuration. That is, a gap equal to the thickness of the plate is created between the lower surface cut and raised 15b and the upper surface cut and raised 15a of the adjacent fin, and since the airflow flowing through the gap is accelerated, the temperature generated at the lower surface cut and raised 15a is The boundary layer becomes thinner and the local heat transfer coefficient increases. Moreover, since the only deviation from the center line of the cut-outs 15a and 15b between adjacent fins 11 is the thickness of the fin plate, the airflow distribution between the fins becomes substantially uniform.

従って、切り起し群における気流分布は、全体的にほぼ
均一であるため、切り起し15a、15a’ 。
Therefore, the airflow distribution in the cut-and-raised group is generally uniform throughout, so the cut-and-raised groups 15a and 15a'.

1sb、1sb’それぞれに於ける境界層前縁効果を十
分に生かすことができ、かつ、局所的に流速の速い部分
が形成されることによる局所熱伝達率の向上が付加され
るので、伝熱性能は、第1実施例より更に向上する。
The leading edge effect of the boundary layer in each of 1sb and 1sb' can be fully utilized, and the local heat transfer coefficient is improved by forming a region with a locally high flow velocity, so heat transfer is improved. Performance is further improved over the first embodiment.

尚、切り起し高さh2=(8−t)/2について言及し
ておくと、通常、フィン板厚tは材料にアルミニウムを
使用すると、t=0.1〜0.2−で、また、フィン間
隔Bは、熱交換器の通風抵抗や目詰りの問題から8≧0
.8〜0.9mmで使用される。よって、s ) 3 
t  であるため、h 2 =(s−t )/2 > 
s/3となり。
In addition, to mention the cutting height h2 = (8-t)/2, the fin plate thickness t is usually 0.1 to 0.2- when aluminum is used as the material, and , the fin spacing B should be 8≧0 due to ventilation resistance and clogging problems of the heat exchanger.
.. It is used at 8 to 0.9 mm. Therefore, s) 3
Since t, h2 = (s-t)/2>
It becomes s/3.

本特許請求範囲を満足している。It satisfies the scope of this patent claim.

発明の効果 以上のように本発明は、一定間隔で平行に並べられ、そ
の間を気流が流動するフィンと、このフィンに直角に挿
入され、内部を流体が流動する、気流方向に複数列配置
された伝熱管とから構成され、気流方向に対して、第2
列目以降の伝熱管75ζ気流上流側にあるいづれかの伝
熱管の下流側への投影面と部分的な重なりを有し、かつ
、フィンの伝熱管間部に気流方向に開口した複数の切り
起しをフィン基板を残して上、下に設置すると共に、切
り起し高さhとフィン間隔B及びフィン板厚tとの関係
をs/3(h≦(s+t)/2  とするフィン付熱交
換器であるから、次の様な効果を有する。
Effects of the Invention As described above, the present invention includes fins that are arranged in parallel at regular intervals and through which the airflow flows, and fins that are inserted at right angles to the fins and through which the fluid flows and are arranged in multiple rows in the airflow direction. It consists of a heat exchanger tube with a second
Heat exchanger tubes 75ζ in the rows and subsequent rows partially overlap with the downstream projection plane of any heat exchanger tube on the upstream side of the airflow, and have a plurality of cutouts opening in the airflow direction between the heat exchanger tubes of the fin. The fins are installed on the top and bottom leaving the fin board, and the relationship between the cut height h, the fin spacing B, and the fin plate thickness t is s/3 (h≦(s+t)/2). Since it is an exchanger, it has the following effects.

■ 伝熱管群間及び隣接するフィン間、即ち、フィンに
平行な方向及び直角な方向に於ける気流流速分布が均一
化され、切り起しの境界層前縁効果によって、フィン表
面熱伝達率が大巾に向上する。
■ The airflow velocity distribution between the heat transfer tube groups and between adjacent fins, that is, in the direction parallel and perpendicular to the fins, is made uniform, and the fin surface heat transfer coefficient is improved due to the leading edge effect of the boundary layer of the cut and raised edges. Improve greatly.

■ 気流上流側にある伝熱管の後流が下流側の伝熱管に
よって流れの方向を変え、止水域側へ流動するため止水
域の面積が減少し、有効な伝熱面積が増加する。
■ The flow direction of the wake from the heat transfer tube on the upstream side of the airflow is changed by the heat transfer tube on the downstream side and flows toward the cutoff area, reducing the area of the cutoff area and increasing the effective heat transfer area.

■ 各伝熱管が気流方向から見て著しくづれて設置され
ないので、伝熱管からフィン及び切り起しへの熱の流れ
が阻害されず、フィン効率が向上する。
- Since the heat transfer tubes are not installed with significant deviations from each other when viewed from the airflow direction, the flow of heat from the heat transfer tubes to the fins and cutouts is not obstructed, improving fin efficiency.

以上の効果により、伝熱性能が向上し、小型で高性能な
フィン付熱交換器が実現できる。
Due to the above effects, heat transfer performance is improved, and a compact and high-performance finned heat exchanger can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるフィン付熱交換器の平
面図、第2図は第1図のA−A線断面図、第3図は同断
面詳細図、第4図は伝熱性能と切り起し高さの関係を示
す説明図、第6図は本発明の他の実施例によるフィン付
熱交換器の平面図、第6図は第5図のB−B線断面図、
第7図は同断面詳細図、第8図は従来例を示すフィン付
熱交換器の斜視図、第9図は同平面図、第10図は第9
図のC−C線断面図である。 10・・・・・・伝熱管、11・・・・・・フィン、1
3.13a。 13b、15a、15b・・・・・・切り起し、14・
・・・・・気流方向、h・・・・・・切り起し高さ、S
・・・・・・フィン間隔、t・・・・・・フィン板厚。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/θ
−−−伝熱管 l/−−−フィン /3θノ3b−−−を刀り起し /4−−一気う剋方町 劃−−−す刀り六Δし亀さ 第2図 第3図 第4図 “ワリリ米じし傅層ih−
Fig. 1 is a plan view of a finned heat exchanger according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along line A-A in Fig. 1, Fig. 3 is a detailed view of the same cross-section, and Fig. 4 is a heat transfer diagram. An explanatory diagram showing the relationship between performance and cut height, FIG. 6 is a plan view of a finned heat exchanger according to another embodiment of the present invention, FIG. 6 is a sectional view taken along the line B-B in FIG. 5,
7 is a detailed cross-sectional view of the same, FIG. 8 is a perspective view of a conventional example of a finned heat exchanger, FIG. 9 is a plan view of the same, and FIG.
It is a sectional view taken along the line CC in the figure. 10... Heat exchanger tube, 11... Fin, 1
3.13a. 13b, 15a, 15b...Cut up, 14.
... Airflow direction, h ... Cutting height, S
...Fin spacing, t...Fin plate thickness. Name of agent: Patent attorney Toshio Nakao and 1 other person/θ
--- Heat exchanger tube l / --- Fin / 3θ 3b --- Raise the sword / 4 --- Sword 6 Δ Shigamesa Figure 2 Figure 3 Figure 4 “Wariri rice cake layer ih-

Claims (4)

【特許請求の範囲】[Claims] (1)一定間隔で平行に並べられ、その間を気流が流動
するフィンと、このフィンに直角に挿入され、内部を流
体が流動する、気流方向に複数列配置された伝熱管とか
ら構成され、気流方向に対して、第2列目以降の前記伝
熱管が、気流上流側にあるいづれかの伝熱管の下流側へ
の投影面と部分的な重なりを有し、かつ、フィンの伝熱
管間部に気流方向に開口した複数の切り起しをフィン基
板を残して上,下に設置すると共に、切り起し高さhと
フィン間隔s及びフィン板厚tとの関係をs/3<h≦
(s+t)/2とするフィン付熱交換器。
(1) Consisting of fins arranged in parallel at regular intervals, through which air flows, and heat transfer tubes arranged in multiple rows in the air flow direction, inserted at right angles to the fins, through which fluid flows, With respect to the airflow direction, the heat transfer tubes in the second row and subsequent rows partially overlap the downstream projection plane of any heat transfer tube located on the upstream side of the airflow, and the fins have a portion between the heat transfer tubes. A plurality of cut-outs opening in the airflow direction are installed above and below, leaving the fin board, and the relationship between the cut-out height h, the fin spacing s, and the fin plate thickness t is expressed as s/3<h≦
(s+t)/2 heat exchanger with fins.
(2)フィン基板に対して上面側及び下面側に設けた切
り起しを上面側切り起し、及び下面側切り起しとし、気
流方向に対して、上面側切り起し、フィン基板、下面側
切り起しの順で切り起しを設置した特許請求の範囲第1
項記載のフィン付熱交換器。
(2) The cut-outs provided on the upper and lower sides of the fin board are the top-side cut-outs and the bottom-side cut-outs, and in the airflow direction, the top-side cut-outs, the fin board, and the bottom side. Claim 1 in which the cut-offs are installed in the order of the side cut-up
Heat exchanger with fins as described in section.
(3)気流方向に対して、上面側切り起しと下面側切り
起しとの間にフィン基板が存在するように切り起しを設
置した特許請求の範囲第1項記載のフィン付熱交換器。
(3) The finned heat exchanger according to claim 1, wherein the cut-outs are installed so that the fin board is present between the upper side cut-outs and the lower side cut-outs with respect to the airflow direction. vessel.
(4)フィン基板に対する切り起しの高さが部分的に異
なる様に切り起しを設置した特許請求の範囲第2項また
は第3項記載のフィン付熱交換器。
(4) The heat exchanger with fins according to claim 2 or 3, wherein the cut-outs are installed so that the height of the cut-outs with respect to the fin board is partially different.
JP61206371A 1986-09-02 1986-09-02 Heat exchanger with fins Expired - Lifetime JPH0686996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206371A JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206371A JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Publications (2)

Publication Number Publication Date
JPS6361894A true JPS6361894A (en) 1988-03-18
JPH0686996B2 JPH0686996B2 (en) 1994-11-02

Family

ID=16522219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206371A Expired - Lifetime JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Country Status (1)

Country Link
JP (1) JPH0686996B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366451B1 (en) * 2000-10-27 2002-12-31 주식회사 엘지이아이 Evaporator combined with dual-tube and fins for refrigerator
JP2010025476A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger
JPS59103071U (en) * 1982-12-24 1984-07-11 三菱重工業株式会社 Heat exchanger
JPS6055877U (en) * 1983-09-26 1985-04-19 株式会社タニタ fire starter crater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055877B2 (en) * 1978-06-12 1985-12-06 能美防災工業株式会社 fire detection sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger
JPS59103071U (en) * 1982-12-24 1984-07-11 三菱重工業株式会社 Heat exchanger
JPS6055877U (en) * 1983-09-26 1985-04-19 株式会社タニタ fire starter crater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366451B1 (en) * 2000-10-27 2002-12-31 주식회사 엘지이아이 Evaporator combined with dual-tube and fins for refrigerator
JP2010025476A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger

Also Published As

Publication number Publication date
JPH0686996B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
JPH09133488A (en) Heat exchanger with fin
JP2966825B2 (en) Air conditioner heat exchanger
JPH1089876A (en) Heat exchanger for air conditioner
JP2957155B2 (en) Air conditioner heat exchanger
JPH0271096A (en) Heat exchanger with fin
JPS633183A (en) Finned heat exchanger
JPS6361894A (en) Heat exchanger with fins
JPH0684876B2 (en) Heat exchanger with fins
JPS62112997A (en) Heat exchanger
JPS61243292A (en) Finned heat exchanger
JPS58158497A (en) Finned-tube type heat exchanger
JPS616592A (en) Finned heat exchanger
KR19980031147A (en) Heat exchanger of air conditioner
JPS616591A (en) Finned heat exchanger
JPS6338892A (en) Fin tube type heat exchanger
JPS62172192A (en) Heat exchanger
JPS63101698A (en) Heat exchanger with fin
JPS63201496A (en) Finned heat exchanger
JPS61243289A (en) Finned heat exchanger
JPS61237995A (en) Finned heat exchanger
JPS6060495A (en) Plate fin tube type heat exchanger
KR100318229B1 (en) A heat exchanger of air conditioner
JPS63108196A (en) Heat exchanger with fins
JPH01107096A (en) Finned heat exchanger