JPS6361293B2 - - Google Patents

Info

Publication number
JPS6361293B2
JPS6361293B2 JP60203372A JP20337285A JPS6361293B2 JP S6361293 B2 JPS6361293 B2 JP S6361293B2 JP 60203372 A JP60203372 A JP 60203372A JP 20337285 A JP20337285 A JP 20337285A JP S6361293 B2 JPS6361293 B2 JP S6361293B2
Authority
JP
Japan
Prior art keywords
ruthenium
acetic acid
cobalt
compound
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60203372A
Other languages
Japanese (ja)
Other versions
JPS6263536A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60203372A priority Critical patent/JPS6263536A/en
Publication of JPS6263536A publication Critical patent/JPS6263536A/en
Publication of JPS6361293B2 publication Critical patent/JPS6361293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、一酸化炭素と水素(以下、合成ガス
と称する)から直接エタノールを製造する方法に
関する。さらに詳しくは、本発明はルテニウム化
合物、コバルト化合物およびハロゲン化合物を触
媒として用いる液相触媒反応によつて、合成ガス
からエタノールを直接合成する選択的製造方法に
関する。 エタノールは各種化学物質の中間原料または溶
媒として広範囲な用途を有する化合物である。 (従来の技術) 一酸化炭素および水素を原料としてルテニウム
含有触媒存在下でメタノールおよび/またはエタ
ノールを製造する方法は公知である。たとえば、
可溶化ルテニウムカルボニル錯体を含む適当な溶
剤中で水素と一酸化炭素を反応させて、メタノー
ル、エチレングリコールおよびエタノールまたは
それらのカルボキシレート誘導体を直接に製造す
る方法(特開昭55−115834号)、また、ルテニウ
ム源とハロゲン化物源とからなる触媒系の存在下
に一酸化炭素とを反応させ、アセトアルデヒドお
よび/またはエタノールを製造する方法(特開昭
56−166133号)、さらに均質ルテニウム触媒、ハ
ロゲンもしくはハロゲン化物促進剤および有機酸
化ホスフイン化合物と一酸化炭素および水素を接
触させ、メタノールおよびエタノールを選択的に
製造する方法(特開昭57−82327号)などが挙げ
られる。 このようなルテニウム化合物を用いた触媒反応
では、エタノールのほかに副生成物としてメタン
が生成する。 ルテニウム化合物を触媒とする一酸化炭素と水
素との反応に関する特許出願の多くの明細書には
メタン生成に関する記載がない。しかし、本発明
者らが公知技術を実施した限りにおいては、エタ
ノールの生成量に比べ多量のメタンが検出され
た。一般にメタンの生成量は、反応温度が高い場
合、あるいは助触媒としてハワゲン化水素やハロ
ゲン化アルキルを多量に使用した場合に増加する
傾向を示した。また、エタノールの活性が高い場
合、それに伴つてメタンの収量が増加した。 この副生するメタンは工業的プロセスにおい
て、未反応の合成ガスの一部と共に廃棄される。
この過程は合成ガスの利用率を低下させ、プロセ
スの経済性を大きく損うものである。 したがつて、合成ガスからエタノールを製造す
る方法を工業化するにはメタンの副生をできる限
り抑制する必要がある。 一方、ルテニウム化合物およびコバルト化合物
を用いた触媒反応ではメタンの副生が極めて少な
いという特徴を有するが、主生成物は酢酸であ
り、エタノールの選択率は低い(特開昭58−
67641)。 このように、公知技術は工業化するにはエタノ
ールの選択率の面で充分ではない。 (発明が解決しようとする問題点) 本発明の課題は、合成ガスからエタノールを製
造する従来技術におけるメタン副生の問題点を解
決し、経済的なエタノールの選択的製造方法を提
供することである。 (問題点を解決するための手段) 本発明者らはこのような課題を解決するために
鋭意検討した。その結果、メタンの副生量の少い
ルテニウムとコバルトの原子比が特定の範囲にあ
るルテニウムおよびコバルトの二元系触媒を用い
たホスフインオキシド類を溶媒とした液相均一反
応において、酢酸および/または酢酸のエステル
を反応系に供給し、それによつて酢酸の正味の生
成量を減少させることにより、メタンの副生量を
少く保つたままエタノールを選択的に製造する方
法を見出し、本発明に至つた。 すなわち、本発明はルテニウム化合物、コバル
ト化合物およびハロゲン化合物を主成分とする触
媒に一酸化炭素および水素を高温高圧下で接触さ
せてエタノールを選択的に製造する方法において ルテニウムとコバルトの比率が原子比で1:
0.3〜1:10の範囲であること 反応をホスフインオキシド類溶媒中で行うこ
と 酢酸および/または酢酸のエステル類を反応
系に供給することを特徴とするエタノールの選
択的製造方法である。 本発明の方法で使用されるルテニウム化合物お
よびコバルト化合物は、反応条件において一酸化
炭素配位子を有するルテニウム錯体を生成するも
のであれば、いずれも使用することができる。こ
れらの例として、ルテニウム化合物としては、金
属ルテニウムのほかに二酸化ルテニウムや四酸化
ルテニウムなどのルテニウム酸化物、これらの水
和物、塩化ルテニウム、ヨウ化ルテニウム、硝酸
ルテニウムのようなルテニウムの鉱酸塩、酢酸ル
テニウム、プロピオン酸ルテニウムなどのルテニ
ウムの有機酸塩などがある。 また、ルテニウム化合物は、配位化合物の形の
ものでも直接用いることができ、これらの例とし
ては、トリルテニウムドデカカルボニルのような
ルテニウムカルボニルや、ルテニウムに酸素、硫
黄、ハロゲン、窒素、リン、ヒ素、アンチモン、
ビスマスなどを含む配位子などを配位させたルテ
ニウム錯体やその塩類などがあげられる。 これらのルテニウム化合物の中でも、ルテニウ
ム酸化物、ルテニウムハロゲン化物、ルテニウム
カルボニル、ルテニウムアセチルアセトネート、
あるいは、ルテニウムカルボルの少くとも一部の
一酸化炭素配位子を、他の配位子でおきかえたル
テニウム錯体などが好ましい。 また、コバルト化合物としては、金属コバルト
のほかにコバルト酸化物、コバルト水酸化物、塩
化コバルト、ヨウ化コバルト、硝酸コバルトのよ
うなコバルト鉱酸塩、酢酸コバルト、安息香酸コ
バルト、ナフテン酸コバルトのようなコバルトの
有機酸塩などがある。また、このほか、配位化合
物も使用することが可能で、このような例として
は、ジコバルトオクタカルボニル、テトラコバル
トドデカカルボニル、シクロペンタンジエニルコ
バルトジカルボニルのようなコバルトカルボニル
や、コバルトに酸素、硫黄、ハロゲン、窒素、リ
ン、ヒ素、アンチモン、ビスマスなどを含む配位
子などを配位させたコバルト錯体やその塩類など
があげられる。 これらのコバルト化合物の中でもコバルト酸化
物、コバルトハロゲン化物、コバルトカルボニ
ル、コバルト有機酸塩、コバルトアセチルアセト
ネート、あるいはコバルトカルボニルの少くとも
一部の一酸化炭素配位子を他の配位子でおきかえ
たコバルト錯体などが好ましい。 本発明の方法において使用するルテニウム化合
物の液体媒体中の量は、ルテニウム金属に換算し
た重量として液体媒体1000重量部あたり0.1〜300
重量部の範囲である。 また、コバルト化合物の使用量は、ルテニウム
対コバルトの原子比として1対0.1〜1対100、好
ましくは1対0.3〜1対10の範囲である。 また、本発明の方法においては、ルテニウム化
合物およびコバルト化合物に助触媒として、ハロ
ゲン化合物を用いることが必要である。これらの
ハロゲン化合物の不存在下では、エタノール活性
および選択性は著しく小さい。 これらのハロゲン化合物としては、塩を構成す
る陰イオンとして、塩素イオン、臭素イオン、ヨ
ウ素イオンなどのハロゲンイオンを有するアルカ
リ金属塩、アルカリ土類金属塩のような金属塩、
アンモニウム塩、第4級ホスホニウム塩、イミニ
ウム塩などの塩類や、ハロゲン化アルキル、ハロ
ゲン化アリール等の炭化水素のハロゲン化物など
があげられる。また、ハロゲン化水素や、酸ハロ
ゲン化物、遷移金属のハロゲン化物なども用いる
ことができる。更に具体的には、金属塩の例と
して塩化リチウム、臭化リチウム、ヨウ化リチウ
ム、塩化ナトリウム、臭化カリウム、ヨウ化セシ
ウム、塩化マグネシウム、ヨウ化ランタンなど、
アンモニウム塩の例として、トリメチルアンモ
ニウムクロライド、トリメチルアンモニウムブロ
マイド、トリメチルアンモニウムアイオダイド、
ジメチルエチルアンモニウムクロライド、メチル
ジエチルアンモニウムアイオダイド、テトラメチ
ルアンモニウムクロライド、テトラメチルアンモ
ニウムアイオダイド、テトラフエニルアンモニウ
ムクロライド、セチルトリエチルアンモニウムブ
ロマイドなど、第4級ホスホニウム塩の例とし
て、テトラフエニルホスホニウムクロライド、テ
トラn―ブチルホスホニウムブロマイド、n―ヘ
プチルトリフエニルホスホニウムブロマイド、ベ
ンジルトリフエニルホスホニウムアイオダイド、
メチルトリフエニルホスホニウムクロライドな
ど、イミニウム塩の例として、ビス(トリフエ
ニルホスフイン)イミニウムクロライド、ビス
(トリフエニルホスフイン)イミニウムブロマイ
ド、ビス(トリフエニルホスフイン)イミニウム
アイオダイドやこれらのイミニウム化合物のフエ
ニル基の少くとも1部がメチル基やエチル基など
で置換されたイミニウム塩など、ハロゲン化ア
ルキルの例として塩化メチル、塩化メチレン、ク
ロロホルム、四塩化炭素、ヨウ化メチル、ヨウ化
エチル、塩化ベンジル、ヨウ化ベンジルなど、
ハロゲン化水素の例として塩化水素、臭化水素、
ヨウ化水素など、また、酸ハロゲン化物の例と
して、塩化アセチルや臭化アセチルなどさらに
遷移金属ハロゲン化物の例としては塩化ニツケル
や塩化ルテニウム、ヨウ化銅などをあげることが
できる。 また、沃素や塩素ガスや臭素ガスも使用するこ
とができる。 これらのハロゲン化合物は、単独または二種類
以上を混合して用いることもできる。 本発明の方法において、これらのハロゲン化合
物の使用量は、ルテニウム1グラム原子あたり、
ハロゲン原子が0.1〜200グラム原子の範囲、更に
好ましくは1〜20グラム原子の範囲である。 本発明の方法は、液体媒体中で実施することが
できる。使用する液体媒体としては、非プロトン
性液体溶媒が好ましい。 例えば、ヘプタン、オクタン、シクロヘキサ
ン、デカリン、テトラリン、灯油、ベンゼン、ト
ルエン、キシレン、ジユレン、ヘキサメチルベン
ゼンなどの飽和炭化水素および芳香族炭化水素、
クロロペンタン、o―ジクロルベンゼン、p―ク
ロルトルエン、フルオロベンゼンなどのハロゲン
化炭化水素、ジオキサン、テトラヒドロフラン、
エチルエーテル、アニソール、フエニルエーテ
ル、ジグライム、テトラグライム、18―クラウン
―6などのエーテル類、酢酸メチル、酪酸エチ
ル、安息香酸メチル、γ―ブチロラクトンなどの
エステル類、アセトン、アセトフエノン、ベンゾ
フエノンなどのケトン類、N―メチルピロリジン
―2―オン、N―エチルピロリジン―2―オン、
N,N―ジメチルアセトアミド、N―メチルピペ
リドン、ヘキサメチルホスホリツクトリアミドな
どのN―置換アミド類、N,N―ジエチルアニリ
ン、N―メチルモルホリン、ピリジン、キノリン
などの3級アミン類、スルホランなどのスルホン
類、ジメチルスルホキサイドなどのスルホキサイ
ド類、1,3―ジメチル―2―イミダゾリジノン
などの尿素誘導体、さらに、トリブチルホスフイ
ンオキシドなどのホスフインオキシド類や、シリ
コンオイルなどをあげることができる。 このうち、とくに好ましい液体溶媒としてホス
フインオキシド類があげられる。 これらの液体溶媒は単独で使用してもまた二種
類以上を混合しても使用できる。 また、本発明の方法において使用される液体溶
媒は少くとも反応条件下において液体であれば、
常温常圧下で固体であつても使用することができ
る。 本発明の方法において、反応系に酢酸および/
または酢酸エステルを供給する。酢酸の形態とし
ては酢酸のほかに、酢酸メチル、酢酸エチル、酢
酸プロピル、酢酸ブチルなどが挙げられる。 また、酢酸塩、例えば酢酸アンモニウム、酢酸
カルシウム、酢酸コバルトなどを用いることもで
きる。 これらの化合物の中でも酢酸および酢酸メチル
が特に好ましい。これらの化合物は単独または二
種類以上を混合して用いることができる。 これら酢酸、酢酸エステルおよび/または酢酸
塩の反応系への供給は、酢酸の正味の生成量が0
となるように行なうのが好ましい。このような供
給を行なえば、回収した酢酸および酢酸エステル
を反応器へ再び循環使用する工業的プロセスにお
いて好都合である。 反応系への供給量を多くするほど、酢酸の正味
の生成量は減少し、0となるよう供給量を調節す
る。しかし、多量に供給しすぎると触媒の活性が
低下し好ましくない。 こゝで、酢酸の正味の生成量とは、反応後の酢
酸量と酢酸のエステル類を酢酸に換算した量の総
量から、供給した酢酸量と、酢酸エステル類や酢
酸塩を用いたときは、それらを酢酸に換算した量
の総量を除いた量である。 本発明の方法において合成原料として使用され
る一酸化炭素と水素のモル比の範囲は、通常、
1:10〜10:1、好ましくは1:3〜2:1であ
る。 また、合成ガス中に不活性な他の成分、たとえ
ばメタンや窒素を含有していても使用することが
できる。 本発明の方法は、反応温度が160〜300℃の範
囲、好ましくは180〜260℃の範囲である。反応温
度が160℃未満では、一酸化炭素と水素の反応は
極めて遅い。また、反応温度が300℃を越えると、
メタンの副生は著しく増大し、エタノールの選択
率は低くなる。 また、反応圧力は150〜800Kg/cm2の範囲、好ま
しくは300〜500Kg/cm2の範囲である。 反応圧力は高い程一酸化炭素と水素の反応には
好ましいが、実用的な圧力としては800Kg/cm2以下
が好ましい。 本発明の方法はバツチ方式、半連続方式または
連続方式のいずれの方法によつても実施すること
ができる。 本発明の方法において、供給する酢酸および/
または酢酸のエステル類は反応器に最初にバツチ
方式で加えてもよく、半連続または連続式に供給
することもできる。 (作 用) 本発明ではルテニウム化合物およびコバルト化
合物を含有する触媒に原料合成ガスを接触させて
エタノールを製造する方法において、ルテニウム
とコバルトの原子比が特定の範囲にあるルテニウ
ムおよびコバルトの二元系触媒の存在下、ホスフ
インオキシド類を溶媒に用い、且つ、酢酸およ
び/または酢酸のエステル類を反応系に供給する
ことによつて酢酸の正味の生成量を減少させ、生
成した生成物中のエタノールの割合を相対的に高
めることができる。 この方法によれば、ルテニウムおよびコバルト
触媒の利点であるメタンの副生量を抑制したまま
エタノールの選択率を向上する。 工業的には原料合成ガスの廃棄量を従来の方法
にくらべ少なく抑制することができる。 すなわち、本発明の方法は、従来の方法にくら
べC1化学の技術を工業的な水準にまで向上させ
るものである。 (実施例) 以下、実施例および比較例によつて、本発明の
方法を更に具体的に説明する。 実施例 1 内容量50mlのステンレス製オートクレーブに
0.28mg原子のトリルテニウムドデカカルボニル
〔Ru3(CO)12〕、0.84mg原子のジコバルトオクタカ
ルボニル〔CO2(CO)8〕、3.5mmoleのビス(トリ
フエニルホスフイン)イミニウムクロライド
〔(φ3p)2NCl〕、0.84mmoleのリン酸、2gの酢酸
および10gのトリ―n―ブチルホスフインオキサ
イド(Bu3po)を入れ、合成ガス(CO:H2モル
比1:1)を室温にて340Kg/cm2まで圧入した。撹
拌下でオートクレーブを加熱し、内温を240℃に
保持し反応を行わせた。この間、オートクレーブ
の内圧は460〜350Kg/cm2に変化した。次いでオー
トクレーブの加熱を止め、室温まで冷却した後圧
を抜き、内容物を取り出し、ガスクロマトグラフ
により分析した。結果を1表に示す。 実施例 2〜7 実施例1の方法において酢酸の添加量および
CO、H2のモル比をかえた。その結果を実施例1
と共に表1に示す。 比較例 1〜4 実施例1の方法において酢酸、またはコバルト
化合物および酢酸を添加しなかつた結果を表1に
示す。
(Industrial Application Field) The present invention relates to a method for directly producing ethanol from carbon monoxide and hydrogen (hereinafter referred to as synthesis gas). More specifically, the present invention relates to a selective production method for directly synthesizing ethanol from synthesis gas by a liquid phase catalytic reaction using ruthenium compounds, cobalt compounds and halogen compounds as catalysts. Ethanol is a compound that has a wide range of uses as an intermediate raw material or solvent for various chemicals. (Prior Art) A method for producing methanol and/or ethanol using carbon monoxide and hydrogen as raw materials in the presence of a ruthenium-containing catalyst is known. for example,
A method for directly producing methanol, ethylene glycol and ethanol or their carboxylate derivatives by reacting hydrogen and carbon monoxide in a suitable solvent containing a solubilized ruthenium carbonyl complex (Japanese Patent Application Laid-Open No. 115834/1983); In addition, a method for producing acetaldehyde and/or ethanol by reacting carbon monoxide with a ruthenium source and a halide source in the presence of a catalyst system (Japanese Patent Application Laid-open No.
56-166133), and a method for selectively producing methanol and ethanol by contacting a homogeneous ruthenium catalyst, a halogen or halide promoter, and an organic oxidized phosphine compound with carbon monoxide and hydrogen (Japanese Patent Application Laid-open No. 57-82327). ), etc. In a catalytic reaction using such a ruthenium compound, methane is produced as a byproduct in addition to ethanol. Many patent applications relating to the reaction of carbon monoxide and hydrogen catalyzed by ruthenium compounds have no mention of methane production. However, as long as the present inventors carried out known techniques, a large amount of methane was detected compared to the amount of ethanol produced. Generally, the amount of methane produced tends to increase when the reaction temperature is high or when a large amount of hydrogen halide or alkyl halide is used as a promoter. Furthermore, when the activity of ethanol was high, the yield of methane increased accordingly. This by-product methane is discarded in the industrial process along with a portion of the unreacted synthesis gas.
This process reduces the utilization rate of synthesis gas and greatly impairs the economics of the process. Therefore, in order to industrialize the method of producing ethanol from synthesis gas, it is necessary to suppress the by-product of methane as much as possible. On the other hand, catalytic reactions using ruthenium compounds and cobalt compounds are characterized by very little methane by-product, but the main product is acetic acid, and the selectivity for ethanol is low (Japanese Patent Application Laid-open No.
67641). As described above, the known techniques are not sufficient in terms of ethanol selectivity for industrialization. (Problems to be Solved by the Invention) An object of the present invention is to solve the problem of methane by-product production in the conventional technology of producing ethanol from synthesis gas, and to provide an economical method for selectively producing ethanol. be. (Means for Solving the Problems) The present inventors have made extensive studies to solve these problems. As a result, acetic acid and We have discovered a method for selectively producing ethanol while keeping the amount of methane as a by-product small by supplying an ester of acetic acid to the reaction system, thereby reducing the net production amount of acetic acid, and the present invention It came to this. That is, the present invention provides a method for selectively producing ethanol by contacting a catalyst containing a ruthenium compound, a cobalt compound, and a halogen compound as main components with carbon monoxide and hydrogen under high temperature and high pressure. So 1:
The ratio should be in the range of 0.3 to 1:10. The reaction should be carried out in a phosphine oxide solvent. This is a selective ethanol production method characterized by supplying acetic acid and/or esters of acetic acid to the reaction system. The ruthenium compound and cobalt compound used in the method of the present invention may be any compound that produces a ruthenium complex having a carbon monoxide ligand under the reaction conditions. Examples of ruthenium compounds include metal ruthenium, ruthenium oxides such as ruthenium dioxide and ruthenium tetroxide, their hydrates, and mineral acid salts of ruthenium such as ruthenium chloride, ruthenium iodide, and ruthenium nitrate. , organic acid salts of ruthenium such as ruthenium acetate and ruthenium propionate. Ruthenium compounds can also be used directly in the form of coordination compounds, examples of which include ruthenium carbonyl, such as triruthenium dodecacarbonyl, and ruthenium combined with oxygen, sulfur, halogens, nitrogen, phosphorous, arsenic, etc. , antimony,
Examples include ruthenium complexes coordinated with ligands such as bismuth, and their salts. Among these ruthenium compounds, ruthenium oxide, ruthenium halide, ruthenium carbonyl, ruthenium acetylacetonate,
Alternatively, a ruthenium complex in which at least some of the carbon monoxide ligands of ruthenium carbol are replaced with other ligands is preferable. In addition to metal cobalt, cobalt compounds include cobalt oxide, cobalt hydroxide, cobalt mineral salts such as cobalt chloride, cobalt iodide, and cobalt nitrate, cobalt acetate, cobalt benzoate, and cobalt naphthenate. There are organic acid salts of cobalt. In addition, coordination compounds can also be used, such as cobalt carbonyl, such as dicobalt octacarbonyl, tetracobalt dodecacarbonyl, cyclopentanedienyl cobalt dicarbonyl, and cobalt with oxygen. Examples include cobalt complexes coordinated with ligands containing sulfur, halogen, nitrogen, phosphorus, arsenic, antimony, bismuth, etc., and their salts. Among these cobalt compounds, at least some of the carbon monoxide ligands of cobalt oxide, cobalt halide, cobalt carbonyl, cobalt organic acid salt, cobalt acetylacetonate, or cobalt carbonyl are replaced with other ligands. Cobalt complexes and the like are preferred. The amount of the ruthenium compound used in the method of the present invention in the liquid medium is 0.1 to 300 parts by weight of the liquid medium in terms of ruthenium metal.
Parts by weight range. The amount of the cobalt compound to be used is in the range of 1:0.1 to 1:100, preferably 1:0.3 to 1:10, as an atomic ratio of ruthenium to cobalt. Further, in the method of the present invention, it is necessary to use a halogen compound as a promoter for the ruthenium compound and the cobalt compound. In the absence of these halogen compounds, ethanol activity and selectivity are significantly lower. These halogen compounds include metal salts such as alkali metal salts and alkaline earth metal salts having halogen ions such as chloride ions, bromide ions, and iodine ions as anions constituting the salts;
Examples include salts such as ammonium salts, quaternary phosphonium salts, and iminium salts, and hydrocarbon halides such as alkyl halides and aryl halides. Further, hydrogen halides, acid halides, transition metal halides, and the like can also be used. More specifically, examples of metal salts include lithium chloride, lithium bromide, lithium iodide, sodium chloride, potassium bromide, cesium iodide, magnesium chloride, lanthanum iodide, etc.
Examples of ammonium salts include trimethylammonium chloride, trimethylammonium bromide, trimethylammonium iodide,
Examples of quaternary phosphonium salts include dimethylethylammonium chloride, methyldiethylammonium iodide, tetramethylammonium chloride, tetramethylammonium iodide, tetraphenyl ammonium chloride, and cetyltriethylammonium bromide. n-butylphosphonium bromide, n-heptyltriphenylphosphonium bromide, benzyltriphenylphosphonium iodide,
Examples of iminium salts such as methyltriphenylphosphonium chloride include bis(triphenylphosphine)iminium chloride, bis(triphenylphosphine)iminium bromide, bis(triphenylphosphine)iminium iodide, and these iminium salts. Examples of alkyl halides include iminium salts in which at least a portion of the phenyl group of the compound is substituted with a methyl group or ethyl group, and examples of alkyl halides include methyl chloride, methylene chloride, chloroform, carbon tetrachloride, methyl iodide, ethyl iodide, benzyl chloride, benzyl iodide, etc.
Examples of hydrogen halides are hydrogen chloride, hydrogen bromide,
Examples of acid halides include acetyl chloride and acetyl bromide. Examples of transition metal halides include nickel chloride, ruthenium chloride, and copper iodide. Moreover, iodine, chlorine gas, and bromine gas can also be used. These halogen compounds can be used alone or in combination of two or more. In the method of the present invention, the amount of these halogen compounds used per gram atom of ruthenium is:
The halogen atoms range from 0.1 to 200 gram atoms, more preferably from 1 to 20 gram atoms. The method of the invention can be carried out in a liquid medium. The liquid medium used is preferably an aprotic liquid solvent. For example, saturated and aromatic hydrocarbons such as heptane, octane, cyclohexane, decalin, tetralin, kerosene, benzene, toluene, xylene, diylene, hexamethylbenzene,
Halogenated hydrocarbons such as chloropentane, o-dichlorobenzene, p-chlorotoluene, fluorobenzene, dioxane, tetrahydrofuran,
Ethers such as ethyl ether, anisole, phenyl ether, diglyme, tetraglyme, and 18-crown-6, esters such as methyl acetate, ethyl butyrate, methyl benzoate, and γ-butyrolactone, and ketones such as acetone, acetophenone, and benzophenone. N-methylpyrrolidin-2-one, N-ethylpyrrolidin-2-one,
N-substituted amides such as N,N-dimethylacetamide, N-methylpiperidone, and hexamethylphosphoric triamide, tertiary amines such as N,N-diethylaniline, N-methylmorpholine, pyridine, and quinoline, and sulfolane. Examples include sulfones, sulfoxides such as dimethylsulfoxide, urea derivatives such as 1,3-dimethyl-2-imidazolidinone, phosphine oxides such as tributylphosphine oxide, and silicone oil. . Among these, phosphine oxides are particularly preferred liquid solvents. These liquid solvents can be used alone or in combination of two or more. Further, if the liquid solvent used in the method of the present invention is liquid at least under the reaction conditions,
It can be used even if it is solid at room temperature and pressure. In the method of the present invention, acetic acid and/or
Or supply acetate ester. Forms of acetic acid include, in addition to acetic acid, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and the like. It is also possible to use acetates such as ammonium acetate, calcium acetate, cobalt acetate, and the like. Among these compounds, acetic acid and methyl acetate are particularly preferred. These compounds can be used alone or in combination of two or more. The supply of acetic acid, acetate ester, and/or acetate to the reaction system is such that the net production amount of acetic acid is 0.
It is preferable to do so. Such a supply is advantageous in industrial processes where the recovered acetic acid and acetate are recycled back to the reactor. As the amount supplied to the reaction system increases, the net amount of acetic acid produced decreases, and the amount supplied is adjusted so that it becomes zero. However, if too large a quantity is supplied, the activity of the catalyst will decrease, which is not preferable. Here, the net amount of acetic acid produced is calculated from the total amount of acetic acid after the reaction and the amount of acetic acid esters converted to acetic acid, the amount of acetic acid supplied, and when using acetate esters or acetates, , excluding the total amount converted into acetic acid. The range of molar ratios of carbon monoxide and hydrogen used as synthetic raw materials in the method of the present invention is usually
The ratio is 1:10 to 10:1, preferably 1:3 to 2:1. It is also possible to use other inert components such as methane and nitrogen in the synthesis gas. In the method of the present invention, the reaction temperature is in the range of 160 to 300°C, preferably in the range of 180 to 260°C. At reaction temperatures below 160°C, the reaction between carbon monoxide and hydrogen is extremely slow. Also, if the reaction temperature exceeds 300℃,
Methane by-product increases significantly and ethanol selectivity decreases. Further, the reaction pressure is in the range of 150 to 800 Kg/cm 2 , preferably in the range of 300 to 500 Kg/cm 2 . The higher the reaction pressure is, the more preferable it is for the reaction of carbon monoxide and hydrogen, but the practical pressure is preferably 800 Kg/cm 2 or less. The method of the present invention can be carried out in a batch, semi-continuous or continuous manner. In the method of the invention, acetic acid and/or
Alternatively, the esters of acetic acid may be initially added to the reactor in batch mode or may be fed semi-continuously or continuously. (Function) In the present invention, in a method for producing ethanol by bringing a raw material synthesis gas into contact with a catalyst containing a ruthenium compound and a cobalt compound, a binary system of ruthenium and cobalt in which the atomic ratio of ruthenium and cobalt is within a specific range is used. By using phosphine oxides as a solvent and supplying acetic acid and/or esters of acetic acid to the reaction system in the presence of a catalyst, the net amount of acetic acid produced is reduced, and the The proportion of ethanol can be relatively increased. According to this method, the selectivity of ethanol is improved while suppressing the amount of methane by-product, which is an advantage of ruthenium and cobalt catalysts. Industrially, the amount of waste material synthesis gas can be reduced compared to conventional methods. That is, the method of the present invention improves C 1 chemistry technology to an industrial level compared to conventional methods. (Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 In a stainless steel autoclave with a capacity of 50ml
0.28 mg atoms of triruthenium dodecacarbonyl [Ru 3 (CO) 12 ], 0.84 mg atoms of dicobalt octacarbonyl [CO 2 (CO) 8 ], 3.5 mmoles of bis(triphenylphosphine)iminium chloride [(φ 3 p) 2 NCl], 0.84 mmole of phosphoric acid, 2 g of acetic acid, and 10 g of tri-n-butylphosphine oxide (Bu 3 po), and the synthesis gas (CO:H 2 molar ratio 1:1) was heated to room temperature. It was press-fitted to 340Kg/ cm2 . The autoclave was heated with stirring to maintain the internal temperature at 240°C to carry out the reaction. During this time, the internal pressure of the autoclave changed from 460 to 350 Kg/ cm2 . Next, the heating of the autoclave was stopped, and after cooling to room temperature, the pressure was released, and the contents were taken out and analyzed by gas chromatography. The results are shown in Table 1. Examples 2 to 7 In the method of Example 1, the amount of acetic acid added and
The molar ratio of CO and H2 was changed. The results are shown in Example 1.
They are shown in Table 1. Comparative Examples 1 to 4 Table 1 shows the results obtained by not adding acetic acid or a cobalt compound and acetic acid in the method of Example 1.

【表】 実施例8〜10、12〜18、22〜23および比較例5〜
6、9〜12、15〜16 実施例1と同様の方法によりルテニウム化合物
濃度、コバルト化合物濃度、酢酸または酢酸メチ
ルの供給量、ハロゲン化合物の種類、添加剤の種
類、溶媒の種類、反応温度を表2〜表4のように
変えて反応を行つた。これらの結果を表2〜表4
に示す。
[Table] Examples 8-10, 12-18, 22-23 and Comparative Examples 5-
6, 9-12, 15-16 The ruthenium compound concentration, cobalt compound concentration, amount of acetic acid or methyl acetate supplied, type of halogen compound, type of additive, type of solvent, and reaction temperature were determined in the same manner as in Example 1. The reaction was carried out with changes as shown in Tables 2 to 4. These results are shown in Tables 2 to 4.
Shown below.

【表】【table】

【表】【table】

【表】【table】

【表】 尚、表1〜表4において、各記号は次の化合物
を示す。 1) 各記号は次の化合物を示す。 Ru:トリルテニウムドデカカルボニル Co:ジコバルトオクタカルボニル PPNCl:ビス(トリフエニルホスフイン)イ
ミニウムクロライド PPNBr:ビス(トリフエニルホスフイン)イ
ミニウムブロマイド LiCl:リチウムクロライド LiBr:リチウムブロマイド H3PO4:リン酸 Bu3PO:トリ―n―ブチルホスフインオキサ
イド Pr3PO:トリ―n―プロピルホスフインオキサ
イド 2) 生成物(mmol)欄に示したMeOH、
EtOHおよびAcOHは、生成するエステルを対
応するそれぞれのメタノール、エタノールおよ
び酢酸に換算し加算した値である。 3) AcOHは正味の生成量である。 (効 果) 第1表の比較例2は、コバルト化合物を用いな
い結果であるが、メタンの割合は29.8%と大き
い。その結果、エタノールの割合は20.9%であつ
た。 比較例1はルテニウム化合物とコバルト化合物
を含有した触媒を用いた結果である。メタンの割
合は9.5%と少いが酢酸の割合45.9%と大きい。
その結果、エタノールの割合は24.1%にとどまつ
ている。 一方、実施例1〜3は酢酸を添加した結果であ
る。酢酸の添加量を増加させるに伴い、酢酸およ
びメタンの割合が共に減少したことを示してい
る。実施例3では酢酸の正味の生成量が0となつ
ている。この時のメタンの割合は2.4%であり、
コバルト化合物を用いない比較例2に比べ1/10以
下に抑制された。その結果、エタノールの割合は
35.7%まで向上した。 実施例4および5はCO:H2(モル比)1:1.3
の条件下においても酢酸を供給することにより酢
酸の正味の生成量の減少が観察され、実施例5で
はほぼ0となつている。この時のメタンの割合は
5.9%に抑制されている。 実施例6および7はCO:H2(モル比)1:2.5
の条件下における結果である。これらの実施例に
おいても酢酸の正味の生成量は減少している。こ
の時のメタンの割合は比較例4に比べ増加してい
るが、コバルト化合物を用いない場合(たとえば
比較例2)に比べメタンの副生量は大きく抑制さ
れている。 実施例8〜10、12〜18、22〜23においても対応
する比較例5〜6、9〜12、15〜16に比べ前述と
同様の効果が確認された。 このように本発明の方法を用いれば、メタンの
副生量を抑制したままエタノールの割合を高める
ことができる。
[Table] In Tables 1 to 4, each symbol represents the following compound. 1) Each symbol represents the following compound. Ru: Triruthenium dodecacarbonyl Co: Dicobalt octacarbonyl PPNCl: Bis(triphenylphosphine)iminium chloride PPNBr: Bis(triphenylphosphine)iminium bromide LiCl: Lithium chloride LiBr: Lithium bromide H 3 PO 4 : Phosphorus Acid Bu 3 PO: Tri-n-butylphosphine oxide Pr 3 PO: Tri-n-propylphosphine oxide 2) MeOH shown in the product (mmol) column,
EtOH and AcOH are values obtained by converting the generated ester into the corresponding methanol, ethanol, and acetic acid and adding them. 3) AcOH is the net production amount. (Effect) Comparative Example 2 in Table 1 is a result in which no cobalt compound was used, but the proportion of methane was as high as 29.8%. As a result, the percentage of ethanol was 20.9%. Comparative Example 1 is the result of using a catalyst containing a ruthenium compound and a cobalt compound. The proportion of methane is small at 9.5%, but the proportion of acetic acid is large at 45.9%.
As a result, the percentage of ethanol remains at 24.1%. On the other hand, Examples 1 to 3 are the results of adding acetic acid. It is shown that as the amount of acetic acid added increased, both the proportions of acetic acid and methane decreased. In Example 3, the net amount of acetic acid produced was zero. The percentage of methane at this time was 2.4%,
This was suppressed to 1/10 or less compared to Comparative Example 2, which did not use a cobalt compound. As a result, the proportion of ethanol is
This improved to 35.7%. Examples 4 and 5 are CO:H 2 (molar ratio) 1:1.3
Even under these conditions, a decrease in the net amount of acetic acid produced was observed by supplying acetic acid, and in Example 5 it was almost zero. The proportion of methane at this time is
It has been suppressed to 5.9%. Examples 6 and 7 were CO:H 2 (molar ratio) 1:2.5
These are the results under the following conditions. The net production of acetic acid is also reduced in these examples. Although the proportion of methane at this time is increased compared to Comparative Example 4, the amount of methane by-product is greatly suppressed compared to when no cobalt compound is used (for example, Comparative Example 2). In Examples 8-10, 12-18, and 22-23, the same effects as described above were confirmed compared to the corresponding Comparative Examples 5-6, 9-12, and 15-16. As described above, by using the method of the present invention, the proportion of ethanol can be increased while suppressing the amount of methane by-product.

Claims (1)

【特許請求の範囲】 1 ルテニウム化合物、コバルト化合物およびハ
ロゲン化合物を主成分とする触媒に、一酸化炭素
および水素を高温、高圧下で接触させてエタノー
ルを選択的に製造する方法において、 ルテニウムとコバルトの比率が原子比で1:
0.3〜1:10の範囲であること 反応をホスフインオキシド類溶媒中で行うこ
と 酢酸および/または酢酸のエステル類を反応
系に供給することを特徴とするエタノールの選
択的製造方法。
[Claims] 1. A method for selectively producing ethanol by contacting a catalyst containing a ruthenium compound, a cobalt compound, and a halogen compound as main components with carbon monoxide and hydrogen at high temperature and high pressure, The ratio of atomic ratio is 1:
A method for selectively producing ethanol, characterized in that the ratio is in the range of 0.3 to 1:10; the reaction is carried out in a phosphine oxide solvent; and acetic acid and/or esters of acetic acid are supplied to the reaction system.
JP60203372A 1985-09-17 1985-09-17 Selective production of ethanol Granted JPS6263536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203372A JPS6263536A (en) 1985-09-17 1985-09-17 Selective production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203372A JPS6263536A (en) 1985-09-17 1985-09-17 Selective production of ethanol

Publications (2)

Publication Number Publication Date
JPS6263536A JPS6263536A (en) 1987-03-20
JPS6361293B2 true JPS6361293B2 (en) 1988-11-28

Family

ID=16472941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203372A Granted JPS6263536A (en) 1985-09-17 1985-09-17 Selective production of ethanol

Country Status (1)

Country Link
JP (1) JPS6263536A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664046B2 (en) * 1994-10-03 1997-10-15 通商産業省基礎産業局長 Method for producing alcohols from carbon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782328A (en) * 1980-09-26 1982-05-22 Union Carbide Corp Ethylene glycol continuous manufacture
JPS58172331A (en) * 1982-04-02 1983-10-11 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS60166633A (en) * 1984-02-08 1985-08-29 Agency Of Ind Science & Technol Production of ethanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782328A (en) * 1980-09-26 1982-05-22 Union Carbide Corp Ethylene glycol continuous manufacture
JPS58172331A (en) * 1982-04-02 1983-10-11 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS60166633A (en) * 1984-02-08 1985-08-29 Agency Of Ind Science & Technol Production of ethanol

Also Published As

Publication number Publication date
JPS6263536A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
US5032618A (en) Process for producing methanol form synthesis gas, in the liquid phase
JPS6230179B2 (en)
JPS6226242A (en) Catalyst for directly manufacturing ethanol or mixture of ethanol and other alkanols having carbon atoms within three from synthetic gas
JPS60120837A (en) Manufacture of carboxylic acid ester of ethylene glycol
JPS6344135B2 (en)
JPS6245854B2 (en)
JPS6361293B2 (en)
JPS6324982B2 (en)
JPS588026A (en) Manufacture of alkanol from synthetic gas
JPS6341894B2 (en)
JPS6158454B2 (en)
JPS6033413B2 (en) Ethanol manufacturing method
JPH0123452B2 (en)
JPS58172331A (en) Production of oxygen-containing compound
JPS59190936A (en) Production of monohydric alcohol
JPS6121930B2 (en)
JP2664046B2 (en) Method for producing alcohols from carbon dioxide
JPS632941B2 (en)
JPS61218538A (en) Production of monohydric alcohol
JPS645012B2 (en)
JPS59222440A (en) Manufacture of alpha-haloalkyl ester
JPS6346052B2 (en)
JPS61218539A (en) Production of ethanol
JPH0432815B2 (en)
JPS6158457B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term