JPS6346052B2 - - Google Patents

Info

Publication number
JPS6346052B2
JPS6346052B2 JP61050634A JP5063486A JPS6346052B2 JP S6346052 B2 JPS6346052 B2 JP S6346052B2 JP 61050634 A JP61050634 A JP 61050634A JP 5063486 A JP5063486 A JP 5063486A JP S6346052 B2 JPS6346052 B2 JP S6346052B2
Authority
JP
Japan
Prior art keywords
ruthenium
vanadium
compound
ethanol
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61050634A
Other languages
Japanese (ja)
Other versions
JPS62209032A (en
Inventor
Kyokichi Watabe
Yoshihiro Fujita
Kenji Fujiwara
Hiroshi Ono
Kenji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61050634A priority Critical patent/JPS62209032A/en
Publication of JPS62209032A publication Critical patent/JPS62209032A/en
Publication of JPS6346052B2 publication Critical patent/JPS6346052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、一酸化炭素と水素から一価アルコー
ル、特にメタノールおよびエタノールを直接製造
する方法に関する。 アルコールは工業的に重要な物質であり、多く
の化学物質の製造のための中間体や溶媒等として
の用途のほか、多様な目的に利用されている。 (従来の技術) ルテニウム含有触媒存在下で、メタノールおよ
び/またはエタノールを製造する方法は公知であ
る。例えば、特開昭55−9088号および同55−
104217号の方法では、カルボン酸含有液体溶媒
中、ルテニウムおよび/またはオスミウムからな
る触媒を用いることにより、アルコール類をカル
ボン酸溶媒とのエステルとして製造する方法を開
示している。また、特開昭57−123128号、同58−
921号、同58−922号、同58−8026号およびU.S.
P.4436838号公報には、ルテニウムと他の金属を
含有するルテニウム系二元触媒を用いたアルコー
ルの製造法が開示された。この中で、U.S.
P.4436838号公報の方法は、ルテニウムを主触媒
として用い、第二金属としてバナジウム化合物を
用いる方法を開示しているが、溶融塩である第四
級ホスホニウム塩の存在が必須である特殊な触媒
系であり、またバナジウム化合物の添加による顕
著な効果は認められていない。さらに、第四級ホ
スホニウム塩は熱的に不安定と考えられ、工業的
な見地からも好ましい触媒系とは言えない。ま
た、特開昭55−115834号および同56−166133号公
報の方法は、ルテニウム触媒によるアルコールお
よびアセトアルデヒドの製造法であり、助触媒と
してハロゲン塩、溶媒としてエーテル類または非
プロトン性有機アミド類が好ましく用いられ、さ
らに、特開昭57−82837号公報では、液体触媒と
して有機ホスフインオキサイド類が用いられてい
る。 (発明が解決しようとする問題点) 現在までに知られている一酸化炭素と水素から
直接メタノールおよびエタノールを製造する方法
は、選択率および活性ともに十分ではなく、未だ
工業化されるに至つていない。 (問題点を解決するための手段) 本発明者らは、一酸化炭素および水素から直接
アルコールを工業的に製造する方法を鋭意検討し
た結果、ルテニウム化合物、ハロゲン化水素およ
びバナジウム化合物を含有する非プロトン性極性
溶媒中で反応させることにより、メタノールおよ
びエタノールが選択的かつ効率よく得られること
を見出し、本発明を完成した。 すなわち、本発明は一酸化炭素と水素をルテニ
ウム化合物、ハロゲン化水素およびバナジウム化
合物を含有する非プロトン性極性溶媒中、加圧下
で反応させることを特徴とする一価アルコールの
製造方法である。 本発明の方法によれば、熱的に不安定と考えら
れる第四級オニウム塩等の助触媒を用いる必要が
ないため、工業的観点からも安定で優れた方法と
考えられる。 本発明の方法に用いられるバナジウム化合物の
例としては、無機化合物、有機化合物および錯体
等の化合物から選択することができる。 すなわち、無機化合物の例としては、三酸化バ
ナジウム()、五酸化バナジウム()などの
バナジウム酸化物、硫酸バナジル、硝酸バナジ
ル、三塩化バナジウム、四塩化バナジウム、二塩
化バナジル、三塩化バナジル、三臭化バナジウ
ム、三ヨウ化バナジウムなどの鉱酸塩などが挙げ
られる。さらにバナジン酸ナトリウム、バナジン
酸アンモニウムなどのバナジン酸塩が挙げられ
る。また、有機化合物の例としては、シユウ酸バ
ナジルなどの有機酸塩、トリエトキサイドバナジ
ルなどのアルコキサイドなどが利用できる。ま
た、錯体の例としては、バナジウムアセチルアセ
トネート、バナジルアセチルアセトネート、ビス
(シクロペンタジエニル)バナジウム、ビス(シ
クロペンタジエニル)バナジウムクロライド、シ
クロペンタジエニルバナジウムテトラカルボニ
ル、バナジウムヘキサカルボニルなどのほか、バ
ナジウムに種々の配位子を配位させたバナジウム
錯体などが挙げられる。 これらのバナジウム化合物の中でもバナジウム
酸化物、バナジウムハロゲン化物、バナジウムカ
ルボニル、バナジウム有機酸塩、バナジン酸塩、
バナジウムアセチルアセトネート、バナジルアセ
チルアセトネートまたはバナジルカルボニルの少
なくとも一部の一酸化炭素配位子を、他の配位子
でおきかえたバナジウム錯体などが好ましい。 バナジウム化合物の使用量は、ルテニウムに対
する原子比で0.01〜50倍、好ましくは0.1〜20倍、
さらに好ましくは0.1〜10倍の範囲である。 本発明で用いられるルテニウム化合物は、反応
条件において一酸化炭素を配位子として有するル
テニウム錯体を生成し得る化合物を広く用いるこ
とができる。例えば、金属ルテニウムのほかに、
二酸化ルテニウムや四酸化ルテニウムなどのルテ
ニウム酸化物、これらの水和物、塩化ルテニウ
ム、ヨウ化ルテニウム、硝酸ルテニウムのような
ルテニウムの鉱酸塩、酢酸ルテニウム、プロピオ
ン酸ルテニウムなどのルテニウムの有機酸塩など
がある。また、ルテニウム化合物は、配位化合物
の形のものでも直接用いることができ、これらの
例としては、トリルテニウムドデカカルボニルの
ようなルテニウムカルボニルや、ルテニウムに酸
素、硫黄、ハロゲン、窒素、リン、ヒ素、アンチ
モニー、ビスマスなどを含む配位子などを配位さ
せたルテニウム錯体やその塩類等が挙げられる。 これらのルテニウム化合物の中でも、ルテニウ
ム酸化物、ルテニウムハロゲン化物、ルテニウム
カルボニル、ルテニウムアセチルアセトネート、
あるいは、ルテニウムカルボニルの少なくとも一
部の一酸化炭素配位子を、他の配位子でおきかえ
たルテニウム錯体などが好ましい。 本発明の方法において使用するルテニウム化合
物の液体媒体中の濃度は、ルテニウム金属に換算
した重量として、液体媒体1000重量部あたり0.1
〜100重量部の範囲である。 本発明で用いられるハロゲン化水素とは、反応
条件下においてハロゲン化水素(HCl、HBrおよ
びHI)を生成しうるものであればよく、次のよ
うなものが例示される。 (1) ハロゲンおよび酸:Cl2、Br2、I2などのハロ
ゲン、HCl、HBr、HIなどのハロゲン化水素、
HClO、HClO2、HClO3、HBrO3、HIO3
HClO4などのオキシ酸などが挙げられる。こ
れらのうち、ハロゲンおよびハロゲン化水素
が、通常、好ましく用いられる。 (2) 有機ハロゲン化物:塩化メチル、臭化メチ
ル、ヨウ化メチル、二塩化メタン、二臭化メタ
ン、クロロホルム、四塩化炭素、二臭化エタ
ン、ヨウ化ブタンなどのハロゲン化アルキル、
塩化アセチル、臭化アセチル、ヨウ化アセチ
ル、臭化ベンゾイルなどのハロゲン化アシル、
塩化ベンジル、臭化ベンジル、ヨウ化ベンゼン
などの芳香族ハロゲン化物、そのほか塩化ベン
ゼンスルホニル、臭化フクロイミドなどのよう
な種々のハロゲン化物が用いられる。通常、ハ
ロゲン化アルキル、ハロゲン化アシルおよびハ
ロゲン化ベンジルなどで好適に実施できる。 ハロゲン化水素の添加量は、ルテニウムのグラ
ム原子数に対して、ハロゲン原子として0.01〜20
倍、好ましくは0.1〜10倍、さらに好ましくは、
0.1〜5倍の原子比の範囲である。 本発明の方法で用いられる非プロトン性極性溶
媒は、N−置換アミド、尿素誘導体、ホスフイン
オキサイド類が好ましい。このような例として
は、N−メチルピロリジン−2−オン、N−エチ
ルピロリジン−2−オン、N,N−ジメチルアセ
トアミド、N−メチルピロリドン、ヘキサメチル
ホスホリツクトリアミドなどのN−置換アミド
類、テトラメチル尿素、テトラエチル尿素、1,
3−ジメチル−2−イミダゾリジノンなどの尿素
誘導体、トリエチルホスフインオキサイド、トリ
プロピルホスフインオキサイド、トリブチルホス
フインオキサイド、トリヘキシルホスフインオキ
サイド、トリオクチルホスフインオキサイド、ト
リフエニルホスフインオキサイドなどのホスフイ
ンオキサイド類などが挙げられる。これらの溶媒
は単独で使用しても、混合溶媒としても使用でき
る。さらに、本発明の方法の反応生成物であるア
ルコール類、カルボン酸類などを混合した溶媒も
使用できる。したがつて、反応器から取り出され
た反応液を、液体触媒として再び反応器へ循環し
て供給することもできる。 本発明の方法は、反応温度が150〜350℃、好ま
しくは170〜300℃の温度範囲、反応圧力が通常30
〜1000Kg/cm2ゲージ、好ましくは80〜600Kg/cm2
ゲージの範囲で十分実施できる。 原料として使用する一酸化炭素と水素のモル比
は1:10〜10:1の範囲が好ましい。また、原料
合成ガスには、反応に不活性な他の成分、例え
ば、メタン、窒素などが存在していても差支えは
ない。 本発明の方法は、バツチ方式、半連続方式のい
ずれの方式によつても実施することができる。ル
テニウム化合物、ハロゲン化水素、バナジウム化
合物および溶媒などは、反応器にバツチ方式で加
えてもよく、半連続方式または半連続方式により
供給することもできる。生成物は公知の方法、例
えば、蒸留、ストリツピングなどの方法で取り出
すことができる。また、必要に応じてルテニウム
化合物、ハロゲン化水素、バナジウム化合物およ
び溶媒などを含む液体媒体は再び反応器へ循環さ
せて使用できる。 (作用) 本発明の方法において、一酸化炭素と水素とを
バナジウム化合物とルテニウム化合物とハロゲン
化水素からなる触媒系に添加して反応させるこ
と、エタノールおよび/またはエタノールの生成
速度を増大させるとともに全液体生成物の対する
メタノールおよびエタノールの選択率を増大させ
る効果がある。 したがつて、従来技術においては、ルテニウム
化合物を主触媒として含有する系では熱的に不安
定な第4級オニウム塩等の助触媒を用いなくては
ならなかつたが、本発明の方法によればその必要
がなく、工業的に安定で優れた方法である。 (実施例) 以下、実施例によつて、本発明の方法をさらに
具体的に説明する。実施例において、特記しない
かぎりルテニウム化合物としては、トリルテニウ
ムドデカカルボニルを用い、ルテニウムの使用量
はミリグラム原子で表示し、ハロゲン化水素およ
びバナジウム化合物の使用量は、使用したルテニ
ウムの量に対するモル比(または原子比)で表示
する。さらに、溶媒としては、特記しないかぎり
トリブチルホスフインオキサイド(7.0g)を用
い、反応は特記しないかぎり220℃で行つた。ま
た生成物の生成速度は、ターンオーバー数
(TONと示す)〔mol−CO/Ru(g−原子)/hr〕
で示し、選択性は〔TON(メタノール)+TON
(エタノール)/液体生成物の全−TON〕×100で
示す。さらに、表において生成物はカルボン酸エ
ステルおよびジメチルエーテルとして生成したも
のも含めて、メタノール、エタノールおよびプロ
パノールとして表示する。また表において、各記
号は以下の化合物を示す。 acac:アセチルアセトン、Bu3PO:トリブチ
ルホスフインオキサイド、(Oct)3PO:トリオク
チルホスフインオキサイド、DMI:1,3−ジ
メチル−2−イミダゾリジノン、NMP:N−メ
チルピロリジン−2−オン、V(acac)3:バナジ
ウムアセチルアセトネート、VO(acac)2:バナ
ジルアセチルアセトネート、NaVO3:バナジン
酸ナトリウム、V2O3:三酸化バナジウム()、
VO(C2O4):シユウ酸バナジル、NH4VO3:バナ
ジン酸アンモニウム、Ru3(CO)12:ドデカカルボ
ニルトリルテニウム、Ru(acac)3:ルテニウムア
セチルアセトネート、HBr:臭化水素、I2:ヨウ
素。 実施例 1 内容積50mlのステンレス製オートクレーブに、
ルテニウムカルボニル0.15g(Ruとして0.70ミリ
グラム原子)、47%臭化水素水溶液0.120.70ミリ
モル)、バナジウムアセチルアセトネート0.24g
(Vとして0.7ミリグラム原子)およびトリ−n−
ブチルホスフインオキサイド7.0gを装入し、合
成ガス(CO:H2=1:1)を導入してオートク
レーブ中の空気と置換した後、合成ガスを340
Kg/cm2ゲージ(室温)まで仕込んだ。次に、オー
トクレーブを加熱し、内温が80℃に達したところ
で撹拌を開始し、さらに内温が220℃に達したと
ころで一定温度に保持し反応させた。オートクレ
ーブの内圧が最高圧より100Kg/cm2ゲージ降下し
た時点で加熱を止め室温まで冷却した。次に内容
物を取り出して、ガスクロマトグラフにより分析
した。液相中には、メタノール6.5ミリモル、エ
タノール7.9ミリモル、プロパノール0.8ミリモ
ル、ブタノール0.1ミリモル、アセトアルデヒド
0.1ミリモル、ギ酸メチル0.1ミリモル、ギ酸エチ
ル0.1ミリモル、酢酸メチル0.3ミリモル、ジメチ
ルエーテル0.2ミリモル、ジエチルエーテル0.1ミ
リモルが検出され、気相中には、二酸化炭素と
12.0ミリモルのメタンが検出された。反応条件お
よび結果をまとめて第1表に示す。 実施例2〜19および比較例1〜3 実施例1において、ルテニウム化合物、ハロゲ
ン化水素、バナジウム化合物および溶媒の種類を
第1表のように変えて反応を行つた。これらの結
果を第1表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for producing monohydric alcohols, particularly methanol and ethanol, directly from carbon monoxide and hydrogen. Alcohol is an industrially important substance and is used for a variety of purposes, including as an intermediate and solvent for the production of many chemical substances. (Prior Art) Methods for producing methanol and/or ethanol in the presence of a ruthenium-containing catalyst are known. For example, JP-A-55-9088 and JP-A No. 55-9088
The method of No. 104217 discloses a method for producing alcohols as esters with a carboxylic acid solvent by using a catalyst consisting of ruthenium and/or osmium in a carboxylic acid-containing liquid solvent. Also, JP-A No. 57-123128, No. 58-
No. 921, No. 58-922, No. 58-8026 and US
P.4436838 discloses a method for producing alcohol using a ruthenium-based binary catalyst containing ruthenium and other metals. Among these, US
The method in P.4436838 discloses a method using ruthenium as the main catalyst and a vanadium compound as the second metal, but the method uses a special catalyst that requires the presence of a quaternary phosphonium salt as a molten salt. system, and no significant effect has been observed by adding vanadium compounds. Furthermore, quaternary phosphonium salts are considered to be thermally unstable and cannot be said to be a preferable catalyst system from an industrial standpoint. Furthermore, the methods disclosed in JP-A-55-115834 and JP-A-56-166133 are methods for producing alcohol and acetaldehyde using ruthenium catalysts, in which a halogen salt is used as a cocatalyst and ethers or aprotic organic amides are used as a solvent. Organic phosphine oxides are preferably used as liquid catalysts in JP-A-57-82837. (Problems to be Solved by the Invention) The methods known to date for producing methanol and ethanol directly from carbon monoxide and hydrogen do not have sufficient selectivity and activity, and have yet to be industrialized. do not have. (Means for Solving the Problems) As a result of intensive study on a method for industrially producing alcohol directly from carbon monoxide and hydrogen, the present inventors found that The present invention was completed based on the discovery that methanol and ethanol can be obtained selectively and efficiently by reacting in a protic polar solvent. That is, the present invention is a method for producing a monohydric alcohol, which is characterized by reacting carbon monoxide and hydrogen under pressure in an aprotic polar solvent containing a ruthenium compound, a hydrogen halide, and a vanadium compound. According to the method of the present invention, there is no need to use a promoter such as a quaternary onium salt, which is considered to be thermally unstable, and therefore it is considered to be a stable and excellent method from an industrial viewpoint. Examples of vanadium compounds used in the method of the invention can be selected from compounds such as inorganic compounds, organic compounds and complexes. That is, examples of inorganic compounds include vanadium oxides such as vanadium trioxide () and vanadium pentoxide (), vanadyl sulfate, vanadyl nitrate, vanadium trichloride, vanadium tetrachloride, vanadyl dichloride, vanadyl trichloride, and vanadium trichloride. Examples include mineral acid salts such as vanadium oxide and vanadium triiodide. Further examples include vanadate salts such as sodium vanadate and ammonium vanadate. Examples of organic compounds that can be used include organic acid salts such as vanadyl oxalate, and alkoxides such as vanadyl triethoxide. Examples of complexes include vanadium acetylacetonate, vanadyl acetylacetonate, bis(cyclopentadienyl)vanadium, bis(cyclopentadienyl)vanadium chloride, cyclopentadienylvanadium tetracarbonyl, vanadium hexacarbonyl, etc. Other examples include vanadium complexes in which vanadium is coordinated with various ligands. Among these vanadium compounds, vanadium oxide, vanadium halide, vanadium carbonyl, vanadium organic acid salt, vanadate,
Preferable examples include vanadium complexes in which at least some of the carbon monoxide ligands of vanadium acetylacetonate, vanadyl acetylacetonate, or vanadyl carbonyl are replaced with other ligands. The amount of vanadium compound used is 0.01 to 50 times, preferably 0.1 to 20 times, in atomic ratio to ruthenium.
More preferably, it is in the range of 0.1 to 10 times. As the ruthenium compound used in the present invention, a wide variety of compounds can be used that can generate a ruthenium complex having carbon monoxide as a ligand under reaction conditions. For example, in addition to metal ruthenium,
Ruthenium oxides such as ruthenium dioxide and ruthenium tetroxide, their hydrates, mineral acid salts of ruthenium such as ruthenium chloride, ruthenium iodide, and ruthenium nitrate, organic acid salts of ruthenium such as ruthenium acetate and ruthenium propionate, etc. There is. Ruthenium compounds can also be used directly in the form of coordination compounds, examples of which include ruthenium carbonyl, such as triruthenium dodecacarbonyl, and ruthenium combined with oxygen, sulfur, halogens, nitrogen, phosphorous, arsenic, etc. Examples include ruthenium complexes coordinated with ligands containing , antimony, bismuth, etc., and salts thereof. Among these ruthenium compounds, ruthenium oxide, ruthenium halide, ruthenium carbonyl, ruthenium acetylacetonate,
Alternatively, a ruthenium complex in which at least some of the carbon monoxide ligands of ruthenium carbonyl are replaced with other ligands is preferable. The concentration of the ruthenium compound used in the method of the present invention in the liquid medium is 0.1 parts by weight per 1000 parts by weight of the liquid medium, expressed as ruthenium metal.
~100 parts by weight. The hydrogen halide used in the present invention may be any hydrogen halide as long as it can generate hydrogen halide (HCl, HBr, and HI) under the reaction conditions, and examples thereof include the following. (1) Halogens and acids: halogens such as Cl 2 , Br 2 , I 2 , hydrogen halides such as HCl, HBr, HI,
HClO, HClO2 , HClO3 , HBrO3 , HIO3 ,
Examples include oxyacids such as HClO4 . Among these, halogen and hydrogen halide are usually preferably used. (2) Organic halides: alkyl halides such as methyl chloride, methyl bromide, methyl iodide, methane dichloride, methane dibromide, chloroform, carbon tetrachloride, ethane dibromide, butane iodide,
Acyl halides such as acetyl chloride, acetyl bromide, acetyl iodide, benzoyl bromide,
Aromatic halides such as benzyl chloride, benzyl bromide, and benzene iodide, as well as various halides such as benzenesulfonyl chloride and fucurimide bromide are used. Usually, alkyl halides, acyl halides, benzyl halides, etc. can be suitably used. The amount of hydrogen halide added is 0.01 to 20 halogen atoms based on the number of gram atoms of ruthenium.
times, preferably 0.1 to 10 times, more preferably,
The atomic ratio ranges from 0.1 to 5 times. The aprotic polar solvent used in the method of the present invention is preferably an N-substituted amide, a urea derivative, or a phosphine oxide. Examples of such include N-substituted amides such as N-methylpyrrolidin-2-one, N-ethylpyrrolidin-2-one, N,N-dimethylacetamide, N-methylpyrrolidone, and hexamethylphosphorictriamide. , tetramethylurea, tetraethylurea, 1,
Urea derivatives such as 3-dimethyl-2-imidazolidinone, phosphine oxides such as triethylphosphine oxide, tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide, triphenylphosphine oxide, etc. Examples include inoxides. These solvents can be used alone or as a mixed solvent. Furthermore, a solvent mixed with alcohols, carboxylic acids, etc., which are reaction products of the method of the present invention, can also be used. Therefore, the reaction liquid taken out from the reactor can be circulated and supplied to the reactor again as a liquid catalyst. In the method of the present invention, the reaction temperature is in the range of 150 to 350°C, preferably 170 to 300°C, and the reaction pressure is usually in the range of 30°C.
~1000Kg/ cm2 gauge, preferably 80-600Kg/ cm2
It can be fully implemented within the gauge range. The molar ratio of carbon monoxide and hydrogen used as raw materials is preferably in the range of 1:10 to 10:1. Furthermore, there is no problem even if other components inactive to the reaction, such as methane, nitrogen, etc., are present in the raw material synthesis gas. The method of the present invention can be carried out either batchwise or semi-continuously. The ruthenium compound, hydrogen halide, vanadium compound, solvent, etc. may be added to the reactor in batch mode, or may be fed in semi-continuous mode or semi-continuous mode. The product can be removed by known methods such as distillation, stripping, etc. Further, if necessary, the liquid medium containing the ruthenium compound, hydrogen halide, vanadium compound, solvent, etc. can be recycled to the reactor and used again. (Function) In the method of the present invention, carbon monoxide and hydrogen are added to a catalyst system consisting of a vanadium compound, a ruthenium compound, and a hydrogen halide to cause a reaction, which increases the production rate of ethanol and/or ethanol and increases the total production rate of ethanol. It has the effect of increasing the selectivity of methanol and ethanol to liquid products. Therefore, in the prior art, it was necessary to use a co-catalyst such as a thermally unstable quaternary onium salt in a system containing a ruthenium compound as the main catalyst, but with the method of the present invention, This is an excellent and industrially stable method, as there is no need for it. (Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples. In the examples, unless otherwise specified, triruthenium dodecacarbonyl is used as the ruthenium compound, the amount of ruthenium used is expressed in milligram atoms, and the amount of hydrogen halide and vanadium compound used is the molar ratio ( or atomic ratio). Further, as a solvent, tributylphosphine oxide (7.0 g) was used unless otherwise specified, and the reaction was carried out at 220°C unless otherwise specified. In addition, the production rate of the product is expressed as the turnover number (expressed as TON) [mol-CO/Ru (g-atoms)/hr]
The selectivity is [TON (methanol) + TON
(ethanol)/total liquid product - TON] x 100. Furthermore, in the table the products are designated as methanol, ethanol and propanol, including those produced as carboxylic esters and dimethyl ethers. Moreover, in the table, each symbol represents the following compound. acac: acetylacetone, Bu 3 PO: tributylphosphine oxide, (Oct) 3 PO: trioctylphosphine oxide, DMI: 1,3-dimethyl-2-imidazolidinone, NMP: N-methylpyrrolidin-2-one, V (acac) 3 : vanadium acetylacetonate, VO (acac) 2 : vanadyl acetylacetonate, NaVO 3 : sodium vanadate, V 2 O 3 : vanadium trioxide (),
VO ( C2O4 ) : vanadyl oxalate, NH4VO3 : ammonium vanadate, Ru3 (CO) 12 : dodecacarbonyl triruthenium, Ru(acac) 3 : ruthenium acetylacetonate, HBr: hydrogen bromide, I2 : Iodine. Example 1 In a stainless steel autoclave with an internal volume of 50ml,
Ruthenium carbonyl 0.15 g (0.70 milligram atom as Ru), 47% hydrogen bromide aqueous solution 0.12 to 0.70 mmol), vanadium acetylacetonate 0.24 g
(0.7 milligram atom as V) and tri-n-
After charging 7.0 g of butylphosphine oxide and introducing synthesis gas (CO:H 2 = 1:1) to replace the air in the autoclave, the synthesis gas was
It was charged up to Kg/cm 2 gauge (room temperature). Next, the autoclave was heated, and when the internal temperature reached 80°C, stirring was started, and when the internal temperature reached 220°C, the temperature was maintained at a constant temperature to allow reaction. When the internal pressure of the autoclave dropped by 100 kg/cm 2 gauge from the maximum pressure, heating was stopped and the autoclave was cooled to room temperature. The contents were then removed and analyzed by gas chromatography. The liquid phase contains 6.5 mmol of methanol, 7.9 mmol of ethanol, 0.8 mmol of propanol, 0.1 mmol of butanol, and acetaldehyde.
0.1 mmol of methyl formate, 0.1 mmol of ethyl formate, 0.3 mmol of methyl acetate, 0.2 mmol of dimethyl ether, and 0.1 mmol of diethyl ether were detected in the gas phase.
12.0 mmol of methane was detected. The reaction conditions and results are summarized in Table 1. Examples 2 to 19 and Comparative Examples 1 to 3 In Example 1, the reaction was carried out by changing the types of ruthenium compound, hydrogen halide, vanadium compound, and solvent as shown in Table 1. These results are shown in Table 1.

【表】【table】

【表】 (発明の効果) ルテニウム−ハロゲン化水素−トリブチルホス
フインオキサイド触媒(比較例1)に、バナジウ
ムアセチルアセトネート、バナジルアセチルアセ
トネートを加えると(実施例1〜4)、メタノー
ル、エタノール生成速度およびメタノールとエタ
ノールの選択性が向上することがわかる。比較例
2、3はアセチルアセトンの影響を示したが、バ
ナジウムアセチルアセトネート又はバナジルアセ
チルアセトネートの場合と比較すると効果は非常
に小さい。 実施例5〜15には、種々のバナジウム化合物の
効果を示した。比較例1と比較して、バナジウム
化合物の添加によるメタノール、エタノール生成
速度およびメタノールとエタノールの選択性が向
上することがわかる。 実施例16〜19は、ハロゲン化水素の種類ならび
に溶媒の種類を第1表に示すように変更した結果
であるが、このような条件下においても、メタノ
ール、エタノールの高い生成速度および高選択性
が達成出来ることを示している。 上に示したように、一酸化炭素と水素を、ルテ
ニウム化合物とハロゲン化水素を含有する非プロ
トン性極性溶媒中、加熱、加圧下において反応さ
せるにあたり、バナジウム化合物を添加剤として
用いることにより、メタノール、エタノールの高
い生成速度および選択性が得られることが示され
た。
[Table] (Effects of the invention) When vanadium acetylacetonate and vanadyl acetylacetonate are added to the ruthenium-hydrogen halide-tributylphosphine oxide catalyst (Comparative Example 1) (Examples 1 to 4), methanol and ethanol are produced. It can be seen that the speed and selectivity between methanol and ethanol are improved. Comparative Examples 2 and 3 showed the influence of acetylacetone, but the effect was very small compared to the case of vanadium acetylacetonate or vanadyl acetylacetonate. Examples 5 to 15 show the effects of various vanadium compounds. It can be seen that, compared to Comparative Example 1, the addition of the vanadium compound improves the methanol and ethanol production rate and the selectivity between methanol and ethanol. Examples 16 to 19 are the results of changing the type of hydrogen halide and the type of solvent as shown in Table 1, but even under these conditions, high production rate and high selectivity of methanol and ethanol were achieved. shows that it can be achieved. As shown above, when carbon monoxide and hydrogen are reacted under heat and pressure in an aprotic polar solvent containing a ruthenium compound and hydrogen halide, methanol can be produced by using a vanadium compound as an additive. , it was shown that a high production rate and selectivity of ethanol could be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素と水素を、ルテニウム化合物とハ
ロゲン化水素およびバナジウム化合物を含有する
非プロトン性極性溶媒中、加圧下で反応させるこ
とを特徴とする一価アルコールの製造方法。
1. A method for producing a monohydric alcohol, which comprises reacting carbon monoxide and hydrogen under pressure in an aprotic polar solvent containing a ruthenium compound, a hydrogen halide, and a vanadium compound.
JP61050634A 1986-03-10 1986-03-10 Production of monohydric alcohol Granted JPS62209032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050634A JPS62209032A (en) 1986-03-10 1986-03-10 Production of monohydric alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050634A JPS62209032A (en) 1986-03-10 1986-03-10 Production of monohydric alcohol

Publications (2)

Publication Number Publication Date
JPS62209032A JPS62209032A (en) 1987-09-14
JPS6346052B2 true JPS6346052B2 (en) 1988-09-13

Family

ID=12864392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050634A Granted JPS62209032A (en) 1986-03-10 1986-03-10 Production of monohydric alcohol

Country Status (1)

Country Link
JP (1) JPS62209032A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420093B2 (en) 2006-09-29 2008-09-02 Eastman Chemical Company Process for the preparation of glycolaldehyde
US7301054B1 (en) 2006-09-29 2007-11-27 Eastman Chemical Company Process for the preparation of glycolaldehyde

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161933A (en) * 1984-01-31 1985-08-23 Agency Of Ind Science & Technol Preparation of oxygen-containing hydrocarbon compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161933A (en) * 1984-01-31 1985-08-23 Agency Of Ind Science & Technol Preparation of oxygen-containing hydrocarbon compound

Also Published As

Publication number Publication date
JPS62209032A (en) 1987-09-14

Similar Documents

Publication Publication Date Title
SA98190163B1 (en) CARBONYLATION PLANT IRIDIUM CATALYSED FOR ACETIC ACID PRODUCTION
JPS6230179B2 (en)
US5610202A (en) Catalyst system and process for the liquid-phase production of methanol from synthesis gas
JP3084107B2 (en) Method for simultaneously and continuously producing acetic acid and acetic anhydride
JPS6346052B2 (en)
JPS6245854B2 (en)
NL7905114A (en) PROCESS FOR THE SIMULTANEOUS PREPARATION OF ALCOHOL AND VICINAL GLYCOL ESTERS.
JPH0148889B2 (en)
JPH0733349B2 (en) Method for producing ethylidene diacetate
JPS6326090B2 (en)
JPS588026A (en) Manufacture of alkanol from synthetic gas
US4810821A (en) Preparation of alkylidene diesters
NL8105843A (en) PROCESS FOR PREPARING ETHYLIDENE DIACETATE.
JPS61218538A (en) Production of monohydric alcohol
EP0075335B1 (en) Process for the co-production of carboxylic acids and carboxylic acid esters
JPS5867645A (en) Manufacture of alkylidene diester
JPS6263536A (en) Selective production of ethanol
JP2664046B2 (en) Method for producing alcohols from carbon dioxide
US4595701A (en) Process for producing aliphatic alcohols
JP4959163B2 (en) Catalytic carbonylation in microflow systems.
JPS6121930B2 (en)
JPH10245359A (en) Production of carboxylic acid and ester
JPS6055047B2 (en) Method for producing aliphatic alcohols
JPS59190936A (en) Production of monohydric alcohol
JPH0123452B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term