JPS6361234A - Liquid crystal electro-optical device - Google Patents

Liquid crystal electro-optical device

Info

Publication number
JPS6361234A
JPS6361234A JP20735986A JP20735986A JPS6361234A JP S6361234 A JPS6361234 A JP S6361234A JP 20735986 A JP20735986 A JP 20735986A JP 20735986 A JP20735986 A JP 20735986A JP S6361234 A JPS6361234 A JP S6361234A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
substrates
orientation
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20735986A
Other languages
Japanese (ja)
Inventor
Shiro Miyake
史郎 三宅
Mikio Murakami
幹男 村上
Tatsuo Masumi
増見 達生
Torahiko Ando
虎彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20735986A priority Critical patent/JPS6361234A/en
Publication of JPS6361234A publication Critical patent/JPS6361234A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize an orientation of a liquid crystal molecule between the upper and the lower substrates, and to improve the characteristic of a memory by arranging a dipole of a ferroelectric liquid crystal molecule in the vicinity of both the substrates, in a stable direction against a dipole of the substrate. CONSTITUTION:Transparent substrates 31, 32 on which an electrode and an oriented film such as a polyimide film, etc., have been formed are opposed and placed, and between them, a ferroelectric liquid crystal, a smectic liquid crystal desirably is injected. This liquid crystal molecule 33 is brought to uniaxial parallel orientation, and between one substrate and the other substrate, the molecule 33 is in a twisted orientation, and as for this twist, there exist two kinds which turn to the right and the left on a conical locus 35 on which the molecule 33 can move. However, in any state, in the vicinity of the substrates 31, 32, a dipole 34 of the molecule 33 is arranged in a stable direction against a dipole 37 of the substrate, therefore, the molecule 33 is oriented stably between both the substrates, and a good bistability is shown. Also, when an electric field is applied from the outside, oriented states of a right turn and a left turn is brought to switching, therefore, these two oriented states can be confirmed visually as a color difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、強誘電性液晶を用いた高速応答性の温気光
学装置に関し、特に液晶の初期配向状卯を改善すること
により、均一な配向と安定なメモリー性を有し、情報の
記憶が可能な液晶電気光学装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-speed response temperature optical device using ferroelectric liquid crystal, and in particular, it is possible to achieve uniformity by improving the initial orientation of the liquid crystal. The present invention relates to a liquid crystal electro-optical device that has orientation and stable memory properties and is capable of storing information.

〔従来の技術〕[Conventional technology]

強誘電性液晶はスメクチツクC*(以下SC*で示す)
相においては分子が持つ不斉炭素の効果によシらせん構
造を有する。第6図にSC*相のらせん構造すなわち厚
いセル中の液晶分子の配向状態を模式的に描いたものを
示す0図において、@+1 、(至)は対向配置された
透明基板例えばガラス基板、(至)は両爪板t3+1 
、に)間に注入され介在する強誘電性液晶分子であり、
この液晶分子−は両爪板a1)、(2)間に所定間隔で
配列されているが、この図では分りやすくするためその
一部を示す、μsは液晶分子曽が動き得る円すい状の軌
跡、■は液晶分子Qと垂直方向で円すい状軌跡μsの接
線方向の双極子モーメント、弼は液晶分子−が形成する
層に平行な平面、換言すれば液晶分子間が動き得る円す
い状の軌跡(至)の底面を示す平面、例はこの平面怒の
法線方向、翰は液晶分子關が法線方向国からどれだけ傾
いているかを表わす傾き角である。
Ferroelectric liquid crystal is Smectic C* (hereinafter referred to as SC*)
The phase has a helical structure due to the effect of asymmetric carbon atoms in the molecule. In Figure 6, which schematically depicts the helical structure of the SC* phase, that is, the orientation state of liquid crystal molecules in a thick cell, @+1, (to) is a transparent substrate, such as a glass substrate, placed opposite to each other, (To) is both claw plate t3+1
,) are ferroelectric liquid crystal molecules injected and interposed between the
These liquid crystal molecules are arranged at a predetermined interval between both claw plates a1) and (2), but in this figure, a part of them is shown for ease of understanding. μs is a conical trajectory along which the liquid crystal molecules can move. , ■ is the dipole moment in the tangential direction of the conical locus μs in the direction perpendicular to the liquid crystal molecules Q, and ⑼ is the plane parallel to the layer formed by the liquid crystal molecules, in other words, the conical locus in which the liquid crystal molecules can move ( An example is the normal direction of this plane, and the angle is the angle of inclination that indicates how much the liquid crystal molecules are tilted from the normal direction.

また、この強誘電性液晶を薄いセルに注入すると界面の
影響によシらせんがほどけ、注入した強誘電性液晶の傾
き角をθとすると分子はもとのらせん軸、すなわち層の
法線方向に対して+θ、あるいは−θ傾いた方向を向く
。この時の分子の配向状態を第7図に示す、又、この時
分子の双極子■は分子姫の傾く方向に対応してセル基板
01)に対し、上方向、あるいは下方向を向いている。
Furthermore, when this ferroelectric liquid crystal is injected into a thin cell, the helix unravels due to the influence of the interface, and if the tilt angle of the injected ferroelectric liquid crystal is θ, the molecules return to the original helical axis, that is, the normal direction of the layer. It faces in a direction tilted by +θ or -θ. The orientation state of the molecules at this time is shown in Fig. 7. At this time, the dipole (2) of the molecules is directed upward or downward with respect to the cell substrate 01), corresponding to the direction in which the molecular princess is tilted. .

この状態で外部から電界を印加すると電界の方向により
双極子の向きを反転でき、これは分子の配列方向を十〇
と一部の間で反転できることを意味する。この現象と2
色性色素と1枚の偏光板の組み合わせ、あるいは2枚の
偏光板の組み合わせによシ分子の配列方向が+θと一部
である時の差に明暗のコントラスとを持たせることがで
き、これらにより表示素子全形成することができる。こ
の表示素子の特徴は、スイッチングの速度が従来のネマ
チック液晶を用いた素子に比べ100倍から1000倍
非常に高速であり、また分子の国内方向が+θと一部の
時、それぞれの状態が安定ならば記憶効果すなわちメモ
リー効果があるということである。高いデユーティ−の
マリチブレツクス駆動で表示させる場合、このメモリー
効果が必要不可欠とされている。この表示素子について
は例ば特開昭56−107216号公報に詳しく述べら
れている。
If an electric field is applied from the outside in this state, the direction of the dipole can be reversed depending on the direction of the electric field, which means that the orientation of the molecules can be reversed between 10 and a part. This phenomenon and 2
By combining a chromatic dye and one polarizing plate or two polarizing plates, it is possible to create a contrast between light and dark in the difference when the alignment direction of the molecules is +θ and partially. Accordingly, the entire display element can be formed. The characteristics of this display element are that the switching speed is 100 to 1000 times faster than elements using conventional nematic liquid crystals, and each state is stable when the domestic direction of the molecules is +θ. If so, it means that there is a memory effect. This memory effect is indispensable when displaying with high-duty multi-branch drive. This display element is described in detail in, for example, Japanese Unexamined Patent Publication No. 107216/1983.

第8図は従来の強誘電性液晶を用いた液晶電気光学装置
において電界が下側基板から下側基板の方向に印加され
た時の液晶分子の配向状態を示す模式図である0図にお
いて、引)、(至)はin、 o、や8nO!やITO
等の薄膜の透明電極が形成され、セルラ構成するガラス
基板であり、口ηは基板(a+1 e G埒の双極子の
方向を示す、この図では、セル内のすべての液晶分子鏝
の双極子■が下向きに揃っておシ、これは、下1i11
1基板(至)から下側基板3υの方へ電界が印加されて
いることを示している。
FIG. 8 is a schematic diagram showing the alignment state of liquid crystal molecules when an electric field is applied from the lower substrate to the lower substrate in a conventional liquid crystal electro-optical device using ferroelectric liquid crystal. (to) is in, o, or 8nO! and ITO
It is a glass substrate on which thin film transparent electrodes such as , etc. are formed to form a cellular structure, and η indicates the direction of the dipole of the substrate (a + 1 e G 埒). ■ is aligned downward, this is bottom 1i11
This shows that an electric field is applied from the first substrate (toward) to the lower substrate 3υ.

第9図は第8図において電界の向きを逆転し、上側基板
G1)から下fill基板(2)の方向に電界が印加さ
れている時の液晶分子の配向状塵を示す模式図である。
FIG. 9 is a schematic diagram showing oriented dust of liquid crystal molecules when the direction of the electric field in FIG. 8 is reversed and the electric field is applied in the direction from the upper substrate G1) to the lower fill substrate (2).

液晶電気光学装置がメモリ効果を示すためには、第8図
および第9図に示す両方の配向状態が安定であり、各々
の配向状態において電界を除去してもその配向状態を保
持していなくてはならない。
In order for a liquid crystal electro-optical device to exhibit a memory effect, both of the alignment states shown in FIGS. 8 and 9 must be stable, and each alignment state must not maintain its orientation even when the electric field is removed. must not.

このため、従来装置においては、例えば0.5μmとい
ったギャップ幅の薄膜セルを用い、液晶分子(3四を物
理的に押え込み、電界を印加していない時は第8図の状
態と第9図の状態間の分子の反転が起こらないようにす
ることによシ、第8図および第9図の各状態の安定化を
図ろうとしている。
For this reason, in conventional devices, a thin film cell with a gap width of, for example, 0.5 μm is used to physically press down the liquid crystal molecules (34), and when no electric field is applied, the state shown in Fig. 8 and the state shown in Fig. 9 are shown. An attempt is made to stabilize each state in FIGS. 8 and 9 by preventing molecular inversion between states.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来装置ではまだ充分なメモリ効果は得
られておらず、これは、第8図および第9図において液
晶分子鰻の双極子■と基板口1)・□□□の双極子(3
ηに注目すると、片側の基板界面において双%子■、0
71間の反撥が生じていることによるものであると考え
られる。すなわち、第8図においては下側基板(至)の
双極子−と液晶分子−の双極子■が、第9図においては
下側基板0υの双極子371と液晶分子根の双極子■が
それぞれ相互作用を起こして反撥し、液晶分子曽の配向
の不安定化を引き起こす、そのため、電界を除去すると
不安定化が生じている11111の基板近傍において配
向が乱れ、その結果、強誘電性液晶の特徴であるメモリ
ー効果が出現しにくいため、高い時分割駆動における表
示を充分には行なうことができないという問題点を有し
ている。
However, the conventional device has not yet achieved a sufficient memory effect, and this is due to the dipole ■ of the liquid crystal molecule eel and the dipole (3) of the substrate opening 1) and
Paying attention to η, at the substrate interface on one side, the twin %■, 0
This is thought to be due to the occurrence of repulsion between 71 and 71. That is, in Fig. 8, the dipole - of the lower substrate (to) and the dipole ■ of the liquid crystal molecule -, and in Fig. 9, the dipole 371 of the lower substrate 0υ and the dipole ■ of the liquid crystal molecule root are respectively They interact and repel, causing destabilization of the alignment of the liquid crystal molecules. Therefore, when the electric field is removed, the alignment is disturbed near the destabilized 11111 substrate, and as a result, the alignment of the ferroelectric liquid crystal becomes unstable. Since the characteristic memory effect is difficult to appear, there is a problem in that display cannot be performed satisfactorily in high time division driving.

この発明は上記のような問題点を解消するためになされ
たもので、均一な配向と良好なメモリー効□果を有する
液晶電気光学装置を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a liquid crystal electro-optical device having uniform alignment and good memory effect.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る液晶電気光学装置は、両法板上で、液晶
分子が基板に略平行で分子の長袖方向が一定の方向に揃
った一軸平行配向しており、一方の基板上の一軸平行配
向の軸方向が他方の基板上の一軸平行配向の軸方向と異
なり、上記一方の基板から他方の基板の間で上記液晶分
子がねじれた配向をなし、かつこのねじれの状態は上記
液晶分子が動き得る円すい状の軌跡上を右回りに配向す
る状態と左回りに配向する状態の2種類存在し、外部か
ら電界を印加することにより上記右回りに配向する状態
と左回りに配向する状態とをスイッチングさせるもので
ある。
In the liquid crystal electro-optical device according to the present invention, the liquid crystal molecules are uniaxially parallel aligned on both substrates, with the long sleeve directions of the molecules aligned in a constant direction, and the liquid crystal molecules are uniaxially parallel aligned on one substrate. The axis direction of the liquid crystal molecules is different from the axis direction of the uniaxial parallel alignment on the other substrate, and the liquid crystal molecules have a twisted orientation between the one substrate and the other substrate, and this twisted state is caused by the movement of the liquid crystal molecules. There are two types of orientation: a clockwise orientation state and a counterclockwise orientation state on the conical trajectory to be obtained, and by applying an external electric field, the clockwise orientation state and counterclockwise orientation state can be changed. This is for switching.

〔作用〕[Effect]

この発明における分子配列では、左回りに配向する状態
でも右回りに配向する状態でも上下の基板近傍において
、液晶分子の双極子が基板の双極子に対して安定な方向
に配列しているため、両法板間で液晶分子が安定に配向
し、良好な双安定性を示す、よって、良好なメモリー特
性を示す、また、外部から電界を印加することにより右
回シと左回シの配向状態をスイッチングするので、例え
ば偏光に対する旋光性の違いを利用しこの2種類の配向
状態を色差として視認することができる。
In the molecular alignment in this invention, the dipoles of the liquid crystal molecules are aligned in a stable direction with respect to the dipoles of the substrates in the vicinity of the upper and lower substrates, regardless of whether they are oriented counterclockwise or clockwise. The liquid crystal molecules are stably aligned between the two plates, exhibiting good bistability, and therefore exhibiting good memory properties.Also, by applying an external electric field, the alignment state of right-handed and left-handed can be changed. Since the two types of orientation states are switched, for example, the two types of orientation states can be visually recognized as a color difference by utilizing the difference in optical rotation with respect to polarized light.

〔実施例〕〔Example〕

第1図、第2図はこの発明の一実施例に係る液晶分子の
それぞれ左回りおよび右回りの一軸平行配向状態を示す
模式図、第8図、第4図はそれぞれ第1図およびM2図
の配向状態におけるセルを層の法線方向から見た説明図
である0図において、■は基板(3+)近傍における液
晶分子−の一軸平行配向方向、鏝Zは基板(2)近傍に
おける液晶分子qの一軸平行配向方向を示す。
FIGS. 1 and 2 are schematic diagrams showing counterclockwise and clockwise uniaxially parallel alignment states of liquid crystal molecules according to an embodiment of the present invention, and FIGS. 8 and 4 are FIGS. 1 and M2, respectively. In Figure 0, which is an explanatory diagram of the cell in the orientation state seen from the normal direction of the layer, ■ is the uniaxial parallel alignment direction of liquid crystal molecules near the substrate (3+), and Z is the liquid crystal molecule near the substrate (2). The uniaxial parallel orientation direction of q is shown.

第1図、第2図に示す配向状態は互に双安定な配向状態
の1つであり、この例では上側基板−)上における液晶
分子−の配向方向と下fllll基板(至)上における
液晶分子嬢の配向方向はこの液晶の傾き角θの2倍の値
を挟角として持っている。このような配向状態を得る方
法の一つとして、上側基板fi11の配向処理方向と上
側基板Qの配向処理方向とが液晶分子の傾き角θの2倍
の値を持つように側基板に配向処理を施すとよい、配向
処理法としては、例えば配向処理剤としてポリイミド、
ポリビニルアルコール、ポリアミド、およびシロキサン
4?リイミドのうちの何れか一種の旨分子膿を用いるラ
ビング処理法などが挙げられる。
The orientation state shown in FIGS. 1 and 2 is one of the mutually bistable orientation states, and in this example, the orientation direction of liquid crystal molecules on the upper substrate (-) and the orientation direction of the liquid crystal molecules on the lower substrate (-) The orientation direction of the molecules has an included angle that is twice the tilt angle θ of the liquid crystal. One method for obtaining such an alignment state is to perform alignment treatment on the side substrates so that the alignment treatment direction of the upper substrate fi11 and the alignment treatment direction of the upper substrate Q have a value twice the tilt angle θ of the liquid crystal molecules. As an alignment treatment method, for example, polyimide,
Polyvinyl alcohol, polyamide, and siloxane 4? Examples include a rubbing treatment method using any kind of liimide.

なお、第1図の配向状態と第2図の配向状態とは例えば
パルス状の電界を印加することによシスイツチングさせ
ることができる。
The orientation state shown in FIG. 1 and the orientation state shown in FIG. 2 can be switched, for example, by applying a pulsed electric field.

第5図はこの発明の一実施例による液晶電気光学装置を
示す分解斜視図である1図において、■は例えばITO
電極がバターニングされ、さらにポリイミド配向膜が塗
布されラビング処理が施されたガラス基板であυ、これ
を2枚向い合わせ、例えば2.0μmのスペーサ釦)を
はさんで接層した後、傾き角が21°の強誘電性液晶を
注入し、偏光板(931を組み合わせて液晶電気光学装
置を構成した・矢印例は下側基板−のラビング方向、υ
四は上側基板−のラビング方向を示す、上下基板(支)
のラビング方向a41・(至)のなす角θは液晶の傾き
角の2倍の値すなわち42°である。偏光板−の光軸は
、下側の偏光板は上側基板のラビング方向61141と
同じ方向に、上側の偏光板は上側基板のラビング方向(
至)と直角の方向−に設定した。このセルは、液晶を注
入した初期配向状態では前述第1図の配向状態と第2図
の配向状態が縞状に混在しているが、例えばパルス電界
を印加することによりその何れかの配向状態とすること
ができる。この時、白地に紺の表示が可能な良好な表示
素子を得ることができ、また、この素子は1時間以上0
良好なメモリー効果を示す、これ(てよυ、高い時分割
、駆動による表示が可能となった。
FIG. 5 is an exploded perspective view showing a liquid crystal electro-optical device according to an embodiment of the present invention. In FIG.
The electrodes are patterned, a polyimide alignment film is applied, and a rubbing process is applied to the glass substrates. Two of these substrates are placed facing each other and bonded with a 2.0 μm spacer (for example, a 2.0 μm spacer button) in between, and then tilted. A liquid crystal electro-optical device was constructed by injecting a ferroelectric liquid crystal with an angle of 21° and combining it with a polarizing plate (931).The arrow example shows the rubbing direction of the lower substrate, υ
4 indicates the rubbing direction of the upper board, the upper and lower boards (supports)
The angle θ formed by the rubbing direction a41·(to) is twice the tilt angle of the liquid crystal, that is, 42°. The optical axis of the polarizing plate is the same as the rubbing direction 61141 of the upper substrate for the lower polarizing plate, and the rubbing direction (61141) of the upper substrate for the upper polarizing plate.
(to) and the direction perpendicular to -. In this cell, in the initial alignment state after liquid crystal is injected, the alignment state shown in FIG. 1 and the alignment state shown in FIG. It can be done. At this time, a good display element capable of displaying navy blue on a white background can be obtained, and this element remains free for more than 1 hour.
This exhibits a good memory effect and enables display with high time division and drive.

なお、上記実施例ではセルギャップが2,0μmである
場合について説明したが、注入する液晶によっては良好
な配向を示さない時や、ねじれた配向?とらない時があ
るが、このセルギャップを1.6μmから8μmの間で
1轟に設定することにより解決できる。
In the above embodiment, the case where the cell gap is 2.0 μm was explained, but depending on the liquid crystal to be injected, there may be cases where the liquid crystal does not show good alignment, or may have a twisted alignment. However, this can be solved by setting the cell gap to 1 in the range of 1.6 μm to 8 μm.

また、注入する強調!!注液晶としては、例えばスメク
チック液晶等が好適に用いられ、特にスメクチックC*
相を示す液晶、あるいはスメクチックC*相と♂相を示
す液晶が好ましい。
Also, inject emphasis! ! As the injection liquid crystal, for example, smectic liquid crystal is suitably used, and in particular smectic C*
A liquid crystal exhibiting a phase, or a liquid crystal exhibiting a smectic C* phase and a ♂ phase is preferable.

さらに、両糸板上の液晶分子の一軸平行配向の軸方向は
、液晶分子の傾き角の2倍±10’の範囲の値を挟角と
して持つのが好ましい、これはこの範囲より小さい角度
だと分子がねじれて配向せず、メモリー効果が出現しな
くなシ、また大きい角度だと2T41類以上の多数のね
じれた配向状態が出現し、表示品位が低下してしまい、
好ましくない結果を与えてしまうためである。
Furthermore, it is preferable that the axial direction of the uniaxially parallel alignment of the liquid crystal molecules on both thread plates has a value in the range of twice the tilt angle of the liquid crystal molecules ±10' as an included angle, which is an angle smaller than this range. If the angle is large, many twisted orientation states of 2T41 or higher will appear, resulting in poor display quality.
This is because it gives undesirable results.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、両糸板上で、液晶分
子が基板に略平行で分子の長軸方向が一定の方向に揃っ
た一軸平行配向しており、一方の基板上の一軸平行配向
の軸方向が他方の基板上の一軸平行配向の軸方向と異な
り、上記一方の基板から他方の基板の間で上記液晶分子
がねじれた配向をなし、かつこのねじれの状態は上記液
晶分子が励き得る円すい状の軌跡上を右回りに配向する
状態と左回りに配向する状態の2種類存在し、外部から
電界を印加することによシ上記右回りに配向する状態と
左回りに配向する状態とをスイッチングさせることによ
り、基板近傍では分子が安定に配向するので、均一な配
向と良好なメモリー効果を有する液晶電気光学装置が得
られる。
As described above, according to the present invention, the liquid crystal molecules are uniaxially parallel aligned on both thread plates with the long axis direction of the molecules substantially parallel to the substrates and aligned in a fixed direction, and The axis direction of the parallel alignment is different from the axis direction of the uniaxial parallel alignment on the other substrate, and the liquid crystal molecules have a twisted alignment between the one substrate and the other substrate, and this twisted state is different from the axis direction of the uniaxial parallel alignment on the other substrate. There are two types of states: a clockwise orientation state and a counterclockwise orientation state on a conical trajectory that can be excited, and by applying an external electric field, the above clockwise orientation state and counterclockwise orientation state By switching the alignment state, the molecules are stably aligned in the vicinity of the substrate, so that a liquid crystal electro-optical device having uniform alignment and a good memory effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明の一実施例に係る液晶分子の
それぞれ左回りおよび右回シの一軸平行配向状態を示す
模式図、第8図、第4図はそれぞ九81図および第2図
の配向状態におけるセルを層の法線方向から見た説明図
、第5図はこの発明の一実施例による液晶電気光学装置
を示す分解斜視図、第6図#第7図は従来のそれぞれ厚
いセルおよび薄いセル中の液晶分子の配向状態を示す模
式図、第8図、第9図はそれぞれ電界が下側基板から上
側基板および上側基板から下側基板の方向に印加された
時の液晶分子の配向状態を示す模式図において、fil
l I E 、 ’921は基板、■は液晶分子、(至
)は液晶分子の双嘆子モーメント、田は円すい状軌跡、
!361は法線方向、37)は基板の双極子モーメント
、国は傾き角、@11はスペーサ、瞥は偏光板、041
〜圓は【夜晶分子の配向方向および偏光板の光軸を示す
矢印である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIGS. 1 and 2 are schematic diagrams showing counterclockwise and clockwise uniaxially parallel alignment states of liquid crystal molecules according to an embodiment of the present invention, and FIGS. 8 and 4 are respectively FIG. 981 and FIG. FIG. 2 is an explanatory diagram of the cell in the oriented state viewed from the normal direction of the layers, FIG. 5 is an exploded perspective view showing a liquid crystal electro-optical device according to an embodiment of the present invention, and FIGS. 6 and 7 are conventional Figures 8 and 9 are schematic diagrams showing the alignment states of liquid crystal molecules in thick and thin cells, respectively, when an electric field is applied from the lower substrate to the upper substrate and from the upper substrate to the lower substrate, respectively. In the schematic diagram showing the alignment state of liquid crystal molecules in fil
l I E , '921 is the substrate, ■ is the liquid crystal molecule, (to) is the double lattice moment of the liquid crystal molecule, ta is the conical locus,
! 361 is the normal direction, 37) is the dipole moment of the substrate, country is the tilt angle, @11 is the spacer, line is the polarizing plate, 041
~Round is an arrow indicating the orientation direction of night crystal molecules and the optical axis of the polarizing plate. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)電極を有する透明基板を対向配置し、上記両基板
間に強誘電性液晶を介在した液晶電気光学装置において
、上記両基板上で、上記液晶分子が基板に略平行で分子
の長軸方向が一定の方向に揃つた一軸平行配向しており
、一方の基板上の一軸平行配向の軸方向が他方の基板上
の一軸平行配向の軸方向と異なり、上記一方の基板から
他方の基板の間で上記液晶分子がねじれた配向をなし、
かつこのねじれの状態は上記液晶分子が動き得る円すい
状の軌跡上を右回りに配向する状態と左回りに配向する
状態の2種類存在し、外部から電界を印加することによ
り上記右回りに配向する状態と左回ヤに配向する状態と
をスイッチングさせることを特徴とする液晶電気光学状
態。
(1) In a liquid crystal electro-optical device in which transparent substrates having electrodes are arranged facing each other and a ferroelectric liquid crystal is interposed between the two substrates, the liquid crystal molecules on both substrates are substantially parallel to the substrates and the long axis of the molecule is The uniaxial parallel orientation is aligned in a certain direction, and the axial direction of the uniaxial parallel orientation on one substrate is different from the axial direction of the uniaxial parallel orientation on the other substrate, and the direction of the uniaxial parallel orientation from one substrate to the other substrate is different. The liquid crystal molecules have a twisted orientation between them,
There are two types of twisted states: a state in which the liquid crystal molecules are oriented clockwise on a conical trajectory in which they can move, and a state in which they are oriented counterclockwise. A liquid crystal electro-optical state characterized by switching between a state in which the liquid crystal is oriented in a counterclockwise direction and a state in which it is oriented in a counterclockwise direction.
(2)両基板上の液晶分子の一軸平行配向の軸方向が、
上記液晶分子の傾き角の2倍±10°の範囲を挟角とし
て持つことを特徴とする特許請求の範囲第1項記載の液
晶電気光学装置。
(2) The axis direction of the uniaxial parallel alignment of liquid crystal molecules on both substrates is
2. The liquid crystal electro-optical device according to claim 1, wherein the included angle is within a range of ±10° twice the tilt angle of the liquid crystal molecules.
(3)基板には一軸平行配向処理剤として、ポリイミド
、ポリビニルアルコール、ポリアミド、およびシロキサ
ンポリイミドのうちの何れか一種の高分子膜を用いる特
許請求の範囲第1項または第2項記載の液晶電気光学装
置。
(3) The liquid crystal display according to claim 1 or 2, wherein the substrate is made of a polymer film of any one of polyimide, polyvinyl alcohol, polyamide, and siloxane polyimide as a uniaxial parallel alignment treatment agent. optical equipment.
(4)強誘電性液晶はスメクチツク液晶である特許請求
の範囲第1項ないし第3項の何れかに記載の液晶電気光
学装置。
(4) The liquid crystal electro-optical device according to any one of claims 1 to 3, wherein the ferroelectric liquid crystal is a smectic liquid crystal.
(5)スメクチツク液晶はスメクチツクC^*相を示す
液晶である特許請求の範囲第4項記載の液晶電気光学装
置。
(5) The liquid crystal electro-optical device according to claim 4, wherein the smectic liquid crystal is a liquid crystal exhibiting a smectic C^* phase.
(6)スメクチツク液晶はスメクチツクC^*相を示す
液晶とスメクチツクH^*相を示す液晶である特許請求
の範囲第4項記載の液晶電気光学装置。
(6) The liquid crystal electro-optical device according to claim 4, wherein the smectic liquid crystal is a liquid crystal exhibiting a smectic C^* phase and a liquid crystal exhibiting a smectic H^* phase.
JP20735986A 1986-09-02 1986-09-02 Liquid crystal electro-optical device Pending JPS6361234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20735986A JPS6361234A (en) 1986-09-02 1986-09-02 Liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20735986A JPS6361234A (en) 1986-09-02 1986-09-02 Liquid crystal electro-optical device

Publications (1)

Publication Number Publication Date
JPS6361234A true JPS6361234A (en) 1988-03-17

Family

ID=16538425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20735986A Pending JPS6361234A (en) 1986-09-02 1986-09-02 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JPS6361234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035491A (en) * 1989-04-03 1991-07-30 Canon Kabushiki Kaisha Liquid crystal apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218522A (en) * 1985-07-17 1987-01-27 Canon Inc Liquid crystal element
JPS6236634A (en) * 1985-08-12 1987-02-17 Seikosha Co Ltd Liquid crystal display device
JPS62161123A (en) * 1985-09-04 1987-07-17 Canon Inc Ferroelectric liquid crystal element
JPS62235932A (en) * 1986-04-07 1987-10-16 Canon Inc Liquid crystal element
JPS6353519A (en) * 1986-08-25 1988-03-07 Canon Inc Ferroelectric liquid crystal element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218522A (en) * 1985-07-17 1987-01-27 Canon Inc Liquid crystal element
JPS6236634A (en) * 1985-08-12 1987-02-17 Seikosha Co Ltd Liquid crystal display device
JPS62161123A (en) * 1985-09-04 1987-07-17 Canon Inc Ferroelectric liquid crystal element
JPS62235932A (en) * 1986-04-07 1987-10-16 Canon Inc Liquid crystal element
JPS6353519A (en) * 1986-08-25 1988-03-07 Canon Inc Ferroelectric liquid crystal element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035491A (en) * 1989-04-03 1991-07-30 Canon Kabushiki Kaisha Liquid crystal apparatus

Similar Documents

Publication Publication Date Title
JPH10333171A (en) Liquid crystal display device
JPS63153521A (en) Optical modulation using liquid crystal electro-optical device
JPS60203921A (en) Liquid crystal display
JP2746486B2 (en) Ferroelectric liquid crystal device
US7193667B2 (en) Liquid crystal display panel implementing bistable liquid crystal and method of fabricating the same
JPS6361234A (en) Liquid crystal electro-optical device
JPS62210421A (en) Optical modulating element
JPH08271921A (en) Liquid crystal device and its production
JPH1138417A (en) Liquid crystal display element
JPH06222351A (en) Reflection type liquid crystal display device and its production
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
US5258865A (en) Ferroelectric liquid crystal device
KR0161377B1 (en) Ferroelectric liquid crystal display element
JPS62161122A (en) Ferroelectric liquid crystal element
JP2665331B2 (en) Driving method of ferroelectric liquid crystal display device
JPH05297402A (en) Liquid crystal display device
JPS63109418A (en) Liquid crystal film and its production
KR20000067118A (en) High aperture ratio and high transmittance LCD improved response time
JPH03100520A (en) Ferroelectric liquid crystal element
JP3062978B2 (en) Ferroelectric liquid crystal device
KR20020028518A (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JPH1073799A (en) Liquid crystal display element
JPH07181495A (en) Ferroelectric liquid crystal element
JPH05297374A (en) Liquid crystal display element and its display method
JPH06242419A (en) Method for driving liquid crystal device