JPH05297402A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH05297402A
JPH05297402A JP10490492A JP10490492A JPH05297402A JP H05297402 A JPH05297402 A JP H05297402A JP 10490492 A JP10490492 A JP 10490492A JP 10490492 A JP10490492 A JP 10490492A JP H05297402 A JPH05297402 A JP H05297402A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
display device
crystal layer
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10490492A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
信行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10490492A priority Critical patent/JPH05297402A/en
Publication of JPH05297402A publication Critical patent/JPH05297402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an afterimage-free display of superior display quality which has a small difference in rise and fall characteristics by compensating a polarization state caused by the liquid crystal cell of a 1st layer by the liquid crystal cell of a 2nd layer. CONSTITUTION:The angle formed by the axis of polarization of an incidenceside polarizing plate 6 and the liquid crystal molecule long axis of the 1st liquid crystal layer is denoted as phi1 and the angle formed by the axis of polarization of the incidence-side polarizing plate 6 and the liquid crystal molecule long axis of the 2nd liquid crystal layer is denoted as phi2. Then a complete dark visual field is obtained in an initial state by setting phi1 and phi2 so that the polarization state caused by the incidence-side polarizing plate 6 and 1st liquid crystal layer is canceled by the 2nd liquid crystal layer and linear polarized light is cut by a projection-side polarizing plate 6, Then when liquid crystal molecules are oriented perpendicularly to a substrate by applying an electric field to the 2nd liquid crystal layer, the 2nd liquid crystal layer becomes isotropic in the travel direction of light, so the light reaches the projection-side polarizing plate 6 by passing through the 1st liquid crystal layer while maintaining the polarization state, and consequently a light visual field can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置に関す
る。さらに詳しくは、ネマティック液晶を用いた表示装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device. More specifically, it relates to a display device using a nematic liquid crystal.

【0002】[0002]

【従来の技術】典型的なネマティック液晶を用いた液晶
表示装置としては、ツイステッドネマティック型(Twist
ed Nematic,TN と略) 液晶表示装置、スーパーツイステ
ッド型(Supertwisted Birefringence Effect,SBEと略)
液晶表示装置、電界制御複屈折型(Electrically Contro
lled Birefrengence,ECBと略) 液晶表示装置がある。こ
れらの表示モードはいずれも、液晶セルに電界を印加し
た時、液晶の誘電異方性により、液晶分子配列が変化
し、その結果、セル中の複屈折が変化することを利用す
るものである。これらの液晶セルを2枚の偏光板の間に
置くと、この複屈折の変化が光透過率の変化として現
れ、この効果により表示を行うことができる。TN型及
びSBE型液晶は誘電異方性が正のNp型ネマティック
液晶を用いるものであるが、ECB型液晶は誘電異方性
が負のNn型ネマティック液晶を液晶分子の長軸を基板
に対して垂直に配向させホメオトロピック配向としたセ
ルを用いるDAP型、Np型ネマティック液晶を分子長
軸を基板に平行に配向させたセルを用いるホモジニアス
型及び、液晶分子の配向が一方の基板面で垂直で、他方
で平行であり、両基板間で分子配列が連続的に変化して
いるハイブリッド配列セルを用いるHAN型がある。H
AN型はNn型、Np型のどちらでも用いることができ
る。
2. Description of the Related Art As a typical liquid crystal display device using nematic liquid crystal, a twisted nematic type (Twist
ed Nematic, TN) Liquid crystal display device, super twisted type (abbreviated as SBE)
Liquid crystal display, electric field controlled birefringence type
lled Birefrengence, ECB) There is a liquid crystal display device. All of these display modes utilize the fact that when an electric field is applied to a liquid crystal cell, the liquid crystal molecular alignment changes due to the dielectric anisotropy of the liquid crystal, and as a result, the birefringence in the cell changes. . When these liquid crystal cells are placed between two polarizing plates, this change in birefringence appears as a change in light transmittance, and display can be performed by this effect. The TN type and SBE type liquid crystals use Np type nematic liquid crystals with positive dielectric anisotropy, while the ECB type liquid crystals use Nn type nematic liquid crystals with negative dielectric anisotropy with respect to the substrate with the long axis of the liquid crystal molecules. DAP type that uses homeotropically aligned cells that are vertically aligned with each other, homogeneous type that uses cells that have Np type nematic liquid crystals aligned with their long axes parallel to the substrate, and liquid crystal molecules are aligned vertically on one substrate surface. On the other hand, there is a HAN type that uses a hybrid array cell which is parallel on the other hand and whose molecular array continuously changes between both substrates. H
Either AN type or Np type can be used as the AN type.

【0003】TN型及びSBE型液晶の動作効果を完全
に解析的に説明する事は非常に困難であるが、ECB型
液晶、特にホモジニアス型とDAP型については解析的
に説明することができる。光の進行方向に対して一様な
屈折率異方性△nを持つ厚さdのセルを図1のように2
枚の偏光板とがなす角をそれぞれψ、χとなるように配
置する。光がセル中を通過する間に生じる異常光と正常
光のリタデーションRならびに、位相差δはそれぞれ、
光の波長をλとすると、 R=△n・d (1) δ=2πR/λ=2π△n・d/λ (2) で表される。セルに垂直に入射する光の透過光強度は J=A2 {COS2 (ψ−χ)−sin2χsin2 (δ/2)} (3) で表されれる。2枚の偏光板が互いに直交しており(χ
−ψ=π/2)、かつψ=π/4であるとき、透過光強
度J⊥は J⊥=A2 sin2 (δ/2)=A2 sin2 (π△nd/λ) (4) と表される。セルの屈折率異方性△nは液晶分子の屈折
率を長軸方向n‖、それと垂直方向n⊥とすると、 で決定される。但しθは液晶分子の長軸が基板となす角
度である。これらの関係より、ホモジニアス型及び、D
AP型の電界印加による透過光強度の変化を記述する事
ができる。
Although it is very difficult to completely explain analytically the operation effects of TN type and SBE type liquid crystals, it is possible to analytically explain ECB type liquid crystals, particularly homogeneous type and DAP type. As shown in FIG. 1, a cell with a thickness d having a uniform refractive index anisotropy Δn with respect to the traveling direction of light is
The angles formed by the polarizing plates are ψ and χ, respectively. The retardation R of the extraordinary light and the normal light generated while the light passes through the cell, and the phase difference δ are
When the wavelength of light is λ, R = Δn · d (1) δ = 2πR / λ = 2πΔn · d / λ (2) The transmitted light intensity of light vertically incident on the cell is expressed by J = A 2 {COS 2 (ψ-χ) -sin2χsin 2 (δ / 2)} (3). Two polarizing plates are orthogonal to each other (χ
-Ψ = π / 2) and ψ = π / 4, the transmitted light intensity J⊥ is J⊥ = A 2 sin 2 (δ / 2) = A 2 sin 2 (πΔnd / λ) (4 ). If the refractive index anisotropy Δn of the cell is the refractive index of the liquid crystal molecules in the long axis direction n‖ and in the vertical direction n⊥, Is determined by. However, θ is an angle formed by the long axis of the liquid crystal molecule and the substrate. From these relationships, homogeneous type and D
It is possible to describe the change in transmitted light intensity due to application of an AP type electric field.

【0004】これらのネマティック液晶を用いた表示装
置は、一般に多く用いられる液晶材料を用いて、ラビン
グ法や斜方蒸着法などの通常の配向処理法により簡単な
セル構成により実現できることから、広く利用されてい
る。
A display device using these nematic liquid crystals is widely used because it can be realized with a simple cell structure by using a commonly used liquid crystal material and an ordinary alignment treatment method such as a rubbing method or an oblique evaporation method. Has been done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
ネマティック液晶を用いた液晶表示装置は液晶分子の誘
電異方性に基づく運動を利用しているため、初期配向状
態に電界を印加して光学状態を変化させる、いわゆる光
学的立ち上がり特性の急峻性、しきい値の低電圧化等が
問題とされている。実際、これらの特性は駆動マージン
の拡大、消費電力の低減等に大きく係わるので重要であ
る。しかしながら、表示装置の性能を決定する上ではそ
の立ち下がり特性も重要である。特に、立ち下がり時間
があまり長いと、電界を除去した後も表示絵素の像が速
やかに消去されず、残像となってしまう。
However, since the liquid crystal display device using these nematic liquid crystals utilizes the motion based on the dielectric anisotropy of liquid crystal molecules, an electric field is applied to the initial alignment state to change the optical state. There are problems such as steepness of so-called optical rising characteristics and lowering of threshold voltage, which are changed. In fact, these characteristics are important because they greatly affect the expansion of the driving margin and the reduction of power consumption. However, the fall characteristic is also important in determining the performance of the display device. In particular, if the fall time is too long, the image of the display picture element is not rapidly erased even after the electric field is removed, resulting in an afterimage.

【0006】この問題を解決するために、その誘電率異
方性がある周波数により正から負に逆転する液晶を用
い、立ち下がり時に、ある周波数より高い高周波電界を
印加して立ち下がり特性を改善する二周波駆動方式が考
えられている(K.Saitoh,H.Aoki, K. Fujimuro,and A.Ma
watare:Digest SID'86, 17(1986)262.) 。しかし、二周
波駆動方式では高周波を用いて駆動するために、消費電
力が大きく、また周波数特性が温度によって大きく変化
するため、温度制御が難しいなどの欠点を持っており、
現在のところでは一部の用途を除いてほとんど実用化さ
れていない(日本学術振興協会第142委員会編「液晶
デバイスハンドブック」、p410 日刊工業新聞社
(1989).)。
In order to solve this problem, a liquid crystal whose dielectric anisotropy is inverted from positive to negative depending on a certain frequency is used, and at the time of falling, a high frequency electric field higher than a certain frequency is applied to improve the falling characteristic. A dual frequency drive system is being considered (K. Saitoh, H. Aoki, K. Fujimuro, and A. Ma.
watare: Digest SID'86, 17 (1986) 262.). However, the dual-frequency drive method has a drawback that it is difficult to control the temperature because it consumes a large amount of power because it is driven by high frequency and the frequency characteristics greatly change with temperature.
At present, it has not been practically used except for some applications ("Liquid Crystal Device Handbook" edited by Japan Society for the Promotion of Science, 142nd Committee, p410 Nikkan Kogyo Shimbun (1989).).

【0007】また、立ち上がり特性と立ち下がり特性に
差が無いという意味で、強誘電性液晶を用いた液晶表示
装置が挙げられる(特開昭56−107216号公報;
米国特許請求の範囲第4367924号)。この液晶表
示装置は自発分極の電界応答を利用するために、従来の
ネマティック液晶に比較して約1000倍以上の高速応
答性を持ち、またメモリー効果も合わせ持っているため
高精細、大表示容量の液晶表示装置として期待されてい
る。しかしながらこの素子は一様に液晶を配向させる事
が難しい、理想とする特性が得にくい等の様々な問題点
により現在まだ本格的な実用化には至っていない。ま
た、この素子は基本的に2値表示であるため、画素分
割、周波数分割等の方法をもちいなければ階調表示が難
しく、無限階調については非常に困難であるという問題
点を持っている。
Further, a liquid crystal display device using a ferroelectric liquid crystal is mentioned in the sense that there is no difference between the rising characteristics and the falling characteristics (Japanese Patent Laid-Open No. 56-107216;
U.S. Patent No. 4,367,924). Since this liquid crystal display device uses the electric field response of spontaneous polarization, it has a high-speed response of about 1000 times or more compared with the conventional nematic liquid crystal, and also has a memory effect. Is expected as a liquid crystal display device. However, this device has not yet been put into full-scale practical use due to various problems such as difficulty in uniformly aligning liquid crystals and difficulty in obtaining ideal characteristics. Further, since this element is basically a binary display, there is a problem that gradation display is difficult unless a method such as pixel division or frequency division is used and infinite gradation is very difficult. ..

【0008】本発明では、この様な状況のもとで、一般
に広く利用されているネマティック液晶を用いて、立ち
下がり特性の改善された表示品位の優れた液晶表示装置
を提供するものである。
Under such circumstances, the present invention provides a liquid crystal display device having an improved fall characteristic and excellent display quality by using a nematic liquid crystal which is generally widely used.

【0009】[0009]

【課題を解決するための手段】かくして、本発明によれ
ば、少なくとも表面に電極が選択的に形成され、その上
に配向制御層が形成された一対の基板が対向して配置さ
れ、これらの基板間にネマテイック相を示す誘電異方性
が正の液晶が介在され、前記電極に選択的に電圧を印加
されることによって液晶の光軸を切り替える駆動手段
と、光軸の切り替えを光学的に識別する手段を有する液
晶セルにおいて、前記配向制御層が一軸配向処理を施さ
れ、その処理の方向が対向基板において、略平行または
略反平行であり、または、前記配向制御層のうち1つが
一軸配向処理を施され、他方が処理を施されず、前記液
晶のセルを、2層に重ねた配置とし、第1層の液晶セル
により生じる偏光状態を、第2層の液晶セルで補償する
構造とすることを特徴とする液晶表示装置を提供する。
Thus, according to the present invention, a pair of substrates, on which electrodes are selectively formed on at least the surface and on which an alignment control layer is formed, are arranged so as to face each other. A liquid crystal having a positive dielectric anisotropy showing a nematic phase is interposed between the substrates, and a driving means for switching the optical axis of the liquid crystal by selectively applying a voltage to the electrode, and an optical axis for optically switching the optical axis. In a liquid crystal cell having a means for identifying, the alignment control layer is subjected to a uniaxial alignment treatment, and the direction of the treatment is substantially parallel or antiparallel to the counter substrate, or one of the alignment control layers is uniaxial. A structure in which the liquid crystal cell is aligned in two layers and the other is not, and the polarization state caused by the liquid crystal cell in the first layer is compensated by the liquid crystal cell in the second layer. Special to To provide a liquid crystal display device according to.

【0010】さらに、第1層の液晶セルおよび/または
第2層の液晶セルを駆動することにより、光学変化の立
ち上がり特性と立ち下がり特性の間に遅れを生じること
なく表示を行う液晶表示装置を提供する。図2に本発明
の液晶表示装置9の構造を説明するための断面図を示
す。1は基板、2は透明電極、3は配向制御層、4は誘
電異方性が正のNp型ネマティック液晶であり、これら
が図に示すように2層構造となっている。6は偏光板で
ある。偏光板の配置はクロスニコルとする。
Further, by driving the liquid crystal cell of the first layer and / or the liquid crystal cell of the second layer, there is provided a liquid crystal display device which displays without causing a delay between the rising characteristic and the falling characteristic of the optical change. provide. FIG. 2 shows a sectional view for explaining the structure of the liquid crystal display device 9 of the present invention. Reference numeral 1 is a substrate, 2 is a transparent electrode, 3 is an orientation control layer, 4 is an Np type nematic liquid crystal having a positive dielectric anisotropy, and these have a two-layer structure as shown in the figure. Reference numeral 6 is a polarizing plate. The polarizers are arranged in crossed Nicols.

【0011】更に7は第1層の液晶セル、8は第2層の
液晶セルであり、その構成は次のようになっている。基
板としては透光性の基板が用いられ、通常ガラス基板が
使われる。基板にはそれぞれIn03,SnO2,ITO
(Indium Tin Oxide)などの導電性薄
膜からなる所定の透明電極が形成される。
Further, 7 is a liquid crystal cell of the first layer and 8 is a liquid crystal cell of the second layer, and the constitution thereof is as follows. A transparent substrate is used as the substrate, and a glass substrate is usually used. InO 3, SnO 2, and ITO are used for the substrate, respectively.
A predetermined transparent electrode made of a conductive thin film such as (Indium Tin Oxide) is formed.

【0012】その上に通常、絶縁性膜が形成されるが、
これは場合によっては省略できる。絶縁性膜は例えば、
SiO2,SiNx,Al23などの無機系薄膜、ポリイ
ミド、フォトレジスト樹脂、高分子液晶などの有機系薄
膜などを用いることができる。絶縁性膜が無機系薄膜の
場合には蒸着法、スパッタ法、CVD(Chemical Vapor
Deposition)法、あるいは溶液塗布法などによって形成
出来る。また、絶縁性膜が有機系薄膜の場合には有機物
質を溶かした溶液またはその前駆体溶液を用いて、スピ
ンナー塗布法、浸せき塗布法、スクリーン印刷法、ロー
ル塗布法、などで塗布し、所定の硬化条件(加熱、光照
射など)で硬化させ形成する方法、あるいは蒸着法、ス
パッタ法、CVD法などで形成したり、LB(Langumui
r-Blodgett)法などで形成することもできる。
An insulating film is usually formed thereon,
This can be omitted in some cases. The insulating film is, for example,
Inorganic thin films such as SiO 2, SiNx and Al 2 O 3 , organic thin films such as polyimide, photoresist resin and polymer liquid crystal can be used. When the insulating film is an inorganic thin film, vapor deposition, sputtering, CVD (Chemical Vapor)
It can be formed by the Deposition method or the solution coating method. When the insulating film is an organic thin film, a solution in which an organic substance is dissolved or a precursor solution thereof is used and applied by a spinner coating method, a dip coating method, a screen printing method, a roll coating method, or the like. Curing method (heating, light irradiation, etc.) to form, or evaporation method, sputtering method, CVD method, or LB (Langumui
It can also be formed by the r-Blodgett method or the like.

【0013】絶縁性膜の上には配向制御層が形成され
る。ただし、絶縁性膜が省略された場合には透明電極の
上に直接配向制御層が形成される。配向制御層には無機
系の層を用いる場合と有機系の層を用いる場合とがあ
る。無機系の配向制御層を用いる場合、よく用いられる
方法としては酸化ケイ素の斜め蒸着がある。また、回転
蒸着などの方法も用いることもできる。有機系の配向制
御層を用いる場合、ナイロン、ポリビニルアルコール、
ポリイミド,ポリ尿素等を用いることができ、通常この
上をラビングする。また、高分子液晶、LB膜を用いて
配向させたり、磁場による配向、スペーサエッジ法によ
る配向なども可能である。また、SiO2,SiNxなど
を蒸着法、その上をラビングする方法も可能である。
An orientation control layer is formed on the insulating film. However, when the insulating film is omitted, the orientation control layer is directly formed on the transparent electrode. The orientation control layer may be an inorganic layer or an organic layer. When an inorganic orientation control layer is used, a method often used is oblique vapor deposition of silicon oxide. A method such as rotary evaporation can also be used. When using an organic orientation control layer, nylon, polyvinyl alcohol,
Polyimide, polyurea, or the like can be used, and usually, rubbing is performed thereon. Further, alignment using a polymer liquid crystal or LB film, alignment by a magnetic field, alignment by a spacer edge method, and the like are also possible. Further, it is also possible to use a vapor deposition method of SiO 2, SiNx or the like and a method of rubbing the same.

【0014】配向制御層には一軸配向処理を施す必要が
ある。一対の基板の両方に一軸配向処理を施す場合に
は、その一軸配向処理の方向が平行、または反平行とな
るとように一対の基板を貼り合わせる。平行のときの分
子配列状態を図7(a)に、反平行のときの分子配列状
態を図7(b)に示す。また、一対の基板の一方にのみ
一軸配向処理を施したときの分子配列状態を図7(c)
に示す。これらいずれの場合にはホモジニアス配向が得
られる。
The orientation control layer needs to be uniaxially oriented. When both the pair of substrates are subjected to the uniaxial orientation treatment, the pair of substrates are bonded so that the directions of the uniaxial orientation treatment are parallel or antiparallel. FIG. 7 (a) shows the molecular arrangement state in the parallel state, and FIG. 7 (b) shows the molecular arrangement state in the anti-parallel state. In addition, FIG. 7C shows the molecular alignment state when the uniaxial orientation treatment is applied to only one of the pair of substrates.
Shown in. In any of these cases, homogeneous orientation is obtained.

【0015】紫外線硬化樹脂で周囲をシールし貼り合わ
せ、液晶材料が前記配向膜間に注入された後、封止され
る。本発明に適用されるp型(誘電異方性が正)のネマ
テイック液晶は公知の液晶であるビフェニル系、PCH
系、CCH系などが挙げられ、好適には市販のZLI−
1565(メルク社製)、ZLI−2788(メルク社
製)などが利用される。液晶はホモジニアス配向させ
る。
The periphery is sealed with an ultraviolet curable resin and bonded together, and a liquid crystal material is injected between the alignment films and then sealed. The p-type (positive dielectric anisotropy) nematic liquid crystal applied to the present invention is a known liquid crystal such as biphenyl-based or PCH.
System, CCH system, etc., and preferably commercially available ZLI-
1565 (manufactured by Merck Ltd.) and ZLI-2788 (manufactured by Merck Ltd.) are used. The liquid crystal is homogeneously aligned.

【0016】かくして、図2における第1層の液晶セル
7および第2層の液晶セル8が作製される。これら液晶
セルの最外部に偏光板が配置されて液晶表示装置となっ
ている。偏光板は偏光ガラス、偏光プラスチックフィル
ムなどが用いられ、クロスニコルとなるように配置され
ている。
Thus, the first layer liquid crystal cell 7 and the second layer liquid crystal cell 8 in FIG. 2 are produced. A polarizing plate is arranged at the outermost part of these liquid crystal cells to form a liquid crystal display device. A polarizing glass, a polarizing plastic film, or the like is used as the polarizing plate, and the polarizing plates are arranged so as to form a crossed Nicols.

【0017】次に2層に重ねた配置としたときに、第1
層の液晶セルにより生じる偏光状態を第2層の液晶セル
により補償する方法を説明する。第1層の液晶セルを透
過した入射光は液晶層により偏光され、これを第2層の
液晶セルを通過させることにより、打ち消して直線偏光
とする。これを図により説明する。
Next, when the two layers are stacked, the first
A method of compensating for the polarization state caused by the liquid crystal cell of the layer by the liquid crystal cell of the second layer will be described. Incident light that has passed through the liquid crystal cell of the first layer is polarized by the liquid crystal layer, and is passed through the liquid crystal cell of the second layer to cancel and become linearly polarized light. This will be described with reference to the drawings.

【0018】発明においては、図3に示すように、入射
側偏光板の偏光軸と第1液晶層の液晶分子長軸とのなす
角度をφ1 とし、入射側偏光板の偏光軸と第2液晶層の
液晶分子長軸とのなす角度をφ2 とする。ここで楕円は
液晶分子を模式的に示すものである。入射側偏光板と第
1液晶層とにより生じる偏光状態を第2液晶層により打
ち消して、直線偏光とし、出射側偏光板によりカットす
るようにをφ1 、φ2を配置すれば初期状態において完
全な暗視野が得られる(図4(a))。
In the invention, as shown in FIG. 3, the angle formed by the polarization axis of the incident side polarization plate and the long axis of the liquid crystal molecules of the first liquid crystal layer is φ 1, and the polarization axis of the incidence side polarization plate and the second axis The angle formed by the liquid crystal molecule major axis of the liquid crystal layer is φ 2 . Here, the ellipse schematically shows liquid crystal molecules. If the polarization state generated by the incident side polarization plate and the first liquid crystal layer is canceled by the second liquid crystal layer to make linearly polarized light, and φ 1 and φ 2 are arranged so as to be cut by the emission side polarization plate, it will be perfect in the initial state. A dark field is obtained (FIG. 4 (a)).

【0019】次に図4(b)のように第2液晶層のみに
電界を印加し液晶分子を基板に垂直配向とすると、第2
液晶層は光の進行方向に対して等方性となるので、光は
第1液晶層を通過した偏光状態を保ったまま出射側偏光
板に達し、その結果明視野を得ることができる。この場
合、印加する電圧をしきい値電圧以上、飽和電圧以下に
制御することにより、第2層液晶の分子配向を初期のホ
モジニアス配向と垂直配向の中間状態とする事ができ、
この事により無限階調表示が可能である。
Next, as shown in FIG. 4B, when an electric field is applied only to the second liquid crystal layer so that the liquid crystal molecules are vertically aligned with the substrate, the second liquid crystal layer is formed.
Since the liquid crystal layer is isotropic with respect to the traveling direction of light, the light reaches the polarizing plate on the emission side while maintaining the polarization state after passing through the first liquid crystal layer, and as a result, a bright field can be obtained. In this case, by controlling the applied voltage to be equal to or higher than the threshold voltage and equal to or lower than the saturation voltage, the molecular orientation of the second-layer liquid crystal can be brought into an intermediate state between the initial homogeneous orientation and the vertical orientation,
In this way, infinite gradation display is possible.

【0020】次に図5(a)のように第2液晶層を垂直
配向としたまま第1液晶層にも電界を印加し液晶分子を
基板に垂直配向とすると、入射光は何ら変調を受けるこ
となく通過し、暗視野となる。この場合も図4(b)の
説明と同様の方法により無限階調表示が可能である。図
4(b)の状態において階調表示が行われていれば、第
1層液晶を駆動するのと同時に第2層液晶を完全な垂直
配向にすればよい。
Next, as shown in FIG. 5A, when an electric field is applied to the first liquid crystal layer while the second liquid crystal layer is vertically aligned and liquid crystal molecules are vertically aligned with the substrate, the incident light undergoes any modulation. Without passing, it becomes a dark field. In this case as well, infinite gradation display is possible by the same method as described with reference to FIG. If gradation display is performed in the state of FIG. 4B, it is sufficient to drive the first-layer liquid crystal and simultaneously make the second-layer liquid crystal have a completely vertical alignment.

【0021】さらに、この状態で両液晶層の電界を除去
しても、(図5(b))同じ弾性的特性、屈折率異方性
を持つ液晶であれば、第1液晶層の液晶と第2液晶層の
液晶は同じ時間経過をたどって変形し、常に偏光状態を
補償するので図4(a)の初期状態とおなじように常に
暗視野となる。なお、この図5(b)でθ1 (t)、θ
2 (t)、φ1 (t)、φ2 (t)、は任意時間tにお
いて第1液晶層および第2液晶層の液晶分子が基板とな
す角度、および入射側偏光板の偏光軸となす角である。
この場合も図5(a)の状態において階調表示が行われ
ていれば、第1液晶層と第2液晶層の偏光状態の補償関
係が保たれるまで、つまり、第1液晶層が完全に初期配
向に戻ってしまうまで階調が保たれる。一般にネマティ
ック液晶の立ち下がり特性は非常に遅いので、実用的に
は十分である(図5(b))。任意時間におけるこの状
態から、さらに書き込みを行うには、第1液晶層の配向
が完全に初期状態に戻っていれば、図4(b)の説明と
同様に駆動する事ができる(図6)。第1液晶層の配向
が完全に初期状態に戻っていなければ、液晶の立ち下が
り特性の立ち上がり特性に対する遅さを利用し、第1液
晶層の立ち下がり特性にタイミングを合わせて初期配向
状態に戻るまで、図4(b)と同様の補償効果及び階調
効果が得られるよう、第1液晶層が初期配向状態に戻る
まで、第2液晶層を立ち上げていく(図6)。
Further, even if the electric fields of both liquid crystal layers are removed in this state (FIG. 5 (b)), if the liquid crystal has the same elastic characteristics and refractive index anisotropy, it is regarded as the liquid crystal of the first liquid crystal layer. The liquid crystal of the second liquid crystal layer deforms after the same time elapses and always compensates for the polarization state, so that it always has a dark field as in the initial state of FIG. In addition, in FIG. 5B, θ 1 (t), θ
2 (t), φ 1 (t) and φ 2 (t) are the angles formed by the liquid crystal molecules of the first liquid crystal layer and the second liquid crystal layer with the substrate and the polarization axis of the incident side polarization plate at an arbitrary time t. It is a horn.
Also in this case, if gradation display is performed in the state of FIG. 5A, until the compensation relationship of the polarization states of the first liquid crystal layer and the second liquid crystal layer is maintained, that is, the first liquid crystal layer is completely The gradation is maintained until the initial orientation is restored. In general, the fall characteristic of nematic liquid crystal is very slow, so that it is practically sufficient (FIG. 5B). In order to perform further writing from this state at an arbitrary time, if the alignment of the first liquid crystal layer is completely returned to the initial state, the driving can be performed in the same manner as described in FIG. 4B (FIG. 6). .. If the orientation of the first liquid crystal layer is not completely returned to the initial state, the slowness of the falling characteristic of the liquid crystal with respect to the rising characteristic is used to return to the initial aligned state in time with the falling characteristic of the first liquid crystal layer. Until then, the second liquid crystal layer is activated until the first liquid crystal layer returns to the initial alignment state so that the same compensation effect and gradation effect as in FIG. 4B can be obtained (FIG. 6).

【0022】以上のサイクルを繰り返す事により立ち上
がり特性と立ち下がり特性に差の無いシャープな表示を
行うことができる。なお、第1液晶層と第2液晶層の駆
動を逆にしても、光学的にはまったく同じ効果が得られ
る。液晶分子長軸と偏光子のなす角φ1 、φ2 は第1液
晶層と第2液晶層の光学的補償関係により決定される
が、特にφ1 、φ2 =π/4のときが明状態の透過光が
最大になり好ましい。
By repeating the above cycle, it is possible to perform a sharp display with no difference between the rising characteristic and the falling characteristic. Even if the driving of the first liquid crystal layer and the driving of the second liquid crystal layer are reversed, the same optical effect can be obtained. The angles φ 1 and φ 2 formed by the long axis of the liquid crystal molecule and the polarizer are determined by the optical compensation relationship between the first liquid crystal layer and the second liquid crystal layer, and especially when φ 1 and φ 2 = π / 4, it is clear. It is preferable because the transmitted light in the state becomes maximum.

【0023】[0023]

【実施例】以下図に示す実施例に基づいてこの発明を詳
述する。なお、これによってこの発明は限定されない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the embodiments shown in the drawings. The present invention is not limited to this.

【0024】実施例1 図2に示す液晶表示装置を作製した。一対の基板1にス
パッタにより2000ÅのITO膜2を形成し、厚さ3
00ÅのPVA膜3を塗布し、レーヨン系の布を用いて
ラビングにより一軸配向処理を行った。ついで、これら
2枚の基板を5μmの間隔を隔ててシリカスペーサを介
してエポキシ樹脂製のシール部材5で貼り合わせた。こ
れらの基板間に、真空注入法により市販のネマティック
液晶4〔E−7(メルク社製)〕を注入した後アクリル
系のUV硬化型の樹脂で注入口を硬化して液晶セル7を
作製した。セル7と同じ様にして作製したセル8をIT
O電極部が重なり、一軸配向処理の方向が互いに90°
の角度をなす様に位置を合わせて貼り合わせ、更に、こ
の2層セルの上下に偏光軸を直交させた偏光板6を配置
した。偏光板の一方の偏光軸とセルの液晶光軸のなす角
度を45°になるように配置して本発明の液晶表示装置
9とした。
Example 1 A liquid crystal display device shown in FIG. 2 was produced. A 2000 Å ITO film 2 is formed on a pair of substrates 1 by sputtering and has a thickness of 3
00 Å PVA film 3 was applied, and uniaxial orientation treatment was performed by rubbing using a rayon-based cloth. Then, these two substrates were attached to each other with a sealing member 5 made of an epoxy resin at a distance of 5 μm with a silica spacer interposed therebetween. A liquid crystal cell 7 was prepared by injecting a commercially available nematic liquid crystal 4 [E-7 (manufactured by Merck)] between these substrates by a vacuum injection method and then curing the injection port with an acrylic UV curable resin. .. Cell 8 made in the same manner as cell 7
O-electrodes overlap each other, and the uniaxial orientation directions are 90 ° to each other.
The two layers of cells were aligned and bonded to each other so as to form an angle, and polarizing plates 6 having polarization axes orthogonal to each other were arranged above and below the two-layer cell. The liquid crystal display device 9 of the present invention was prepared by arranging one polarization axis of the polarizing plate and the liquid crystal optical axis of the cell at an angle of 45 °.

【0025】この液晶表示装置9を前に記載した方法に
より駆動した結果、図9に示す立ち上がり、立ち下がり
特性を示し、残像の無いシャープな表示が得られた。
As a result of driving this liquid crystal display device 9 by the method described above, a sharp display with no afterimage was obtained with the rising and falling characteristics shown in FIG.

【0026】実施例2 図8に示す液晶表示装置10を作製した。全体の構造は
実施例1の液晶表示装置9と同様であるが、基板は3枚
とし、第1液晶層と第2液晶層を隔てる基板について
は、ITO膜3を両面に形成した。この液晶表示装置1
0を前に記載した方法により駆動した結果、図9に示す
立ち上がり、立ち下がりに差のない特性を示し、残像の
無いシャープな表示が得られた。さらに、第1液晶層と
第2液晶層を隔てる基板を1枚とし透明電極を形成した
ことにより、位置ずれ、視角特性が改善され、より表示
品位が優れたものとすることができた。
Example 2 A liquid crystal display device 10 shown in FIG. 8 was produced. The overall structure is the same as that of the liquid crystal display device 9 of Example 1, but the number of substrates is three, and the ITO film 3 is formed on both surfaces of the substrate separating the first liquid crystal layer and the second liquid crystal layer. This liquid crystal display device 1
As a result of driving 0 by the method described above, a characteristic that there is no difference between the rising edge and the falling edge shown in FIG. 9 and a sharp display without an afterimage was obtained. Furthermore, by forming the transparent electrode with one substrate separating the first liquid crystal layer and the second liquid crystal layer, the positional deviation and the viewing angle characteristics were improved, and the display quality could be further improved.

【0027】比較例 比較例として、従来構造のECB液晶表示装置を実施例
と同じ配向膜、配向処理、液晶材料、セル厚で作製し、
その立ち上がり、立ち下がり特性を測定したところ、図
10のような結果となり、立ち下がり時間の遅れが大き
く目立って。この結果、残像の目立つ表示しか得られな
かった。
Comparative Example As a comparative example, an ECB liquid crystal display device having a conventional structure was prepared with the same alignment film, alignment treatment, liquid crystal material, and cell thickness as those of the examples.
When the rising and falling characteristics were measured, the results shown in Fig. 10 were obtained, and the delay of the falling time was noticeable. As a result, only a conspicuous display of afterimage was obtained.

【0028】図9、図10における応答速度は、E−7
を用いたところ、30V印加時に透過光量の10%−9
0%変化で速い方が25msec、遅い方が310msecであ
った。
The response speed in FIGS. 9 and 10 is E-7.
When using 30V, 10% of the amount of transmitted light-9%
With 0% change, the faster one was 25 msec and the slower one was 310 msec.

【0029】実施例3 図11に示す液晶表示装置11を作製した。全体の構造
は実施例1と同様であるが、各透明電極は複数本のライ
ンがフォトリソグラフィーによりストライプ状にパター
ニングしてあり、各液晶層でドットマトリスクを構成し
ている。この液晶表示装置11を前に記載した方法によ
り駆動した結果、残像の無いシャープな画像を表示する
ことができた。
Example 3 A liquid crystal display device 11 shown in FIG. 11 was produced. The overall structure is the same as that of the first embodiment, but each transparent electrode has a plurality of lines patterned by photolithography into stripes, and each liquid crystal layer forms a dot matrix. As a result of driving this liquid crystal display device 11 by the method described above, it was possible to display a sharp image with no afterimage.

【0030】実施例4 図12に示す液晶表示装置12を作製した。全体の構造
は実施例3と同様であるが、基板は3枚とし、第1液晶
層と第2液晶層を隔てる基板については、ITO電極2
を両面に形成した。この液晶表示装置12を前に記載し
た方法により駆動した結果、残像の無いシャープな画像
を表示することができた。さらに、第1層液晶と第2層
液晶を隔てる基板を1枚としたことにより、位置ずれ、
視角特性が改善され、より表示品位が優れたものとする
ことができた。
Example 4 A liquid crystal display device 12 shown in FIG. 12 was produced. The overall structure is the same as that of the third embodiment, but the number of substrates is three, and the ITO electrode 2 is used for the substrate separating the first liquid crystal layer and the second liquid crystal layer.
Was formed on both sides. As a result of driving this liquid crystal display device 12 by the method described above, it was possible to display a sharp image with no afterimage. Furthermore, by using only one substrate that separates the first-layer liquid crystal and the second-layer liquid crystal, the position shift
The viewing angle characteristics were improved, and the display quality could be further improved.

【0031】実施例5 図13に示す液晶表示装置13を作製した。全体の構造
は実施例4と同様であるが、第1液晶層と第2液晶層を
隔てる基板については、両面同一パターンのITO電極
2を形成した。この液晶表示装置13を前に記載した方
法により駆動した結果、残像の無いシャープな画像を表
示することができた。さらに、第1層液晶と第2層液晶
を隔てる基板を1枚としたことにより、位置ずれ、視角
特性が改善され、より表示品位が優れたものとすること
ができた。また、この構成は両面に透明電極パターンを
形成する際に、両面同一形状であるため、一度のフォト
リソグラフィーにて形成できる利点がある。
Example 5 A liquid crystal display device 13 shown in FIG. 13 was produced. The entire structure is similar to that of Example 4, but the ITO electrodes 2 having the same pattern on both surfaces were formed on the substrate separating the first liquid crystal layer and the second liquid crystal layer. As a result of driving this liquid crystal display device 13 by the method described above, it was possible to display a sharp image with no afterimage. Furthermore, by using a single substrate that separates the first-layer liquid crystal and the second-layer liquid crystal, the positional deviation and the viewing angle characteristics were improved, and the display quality could be further improved. Further, this structure has an advantage that it can be formed by one-time photolithography since the transparent electrode patterns are formed on both sides and have the same shape on both sides.

【0032】[0032]

【発明の効果】本発明によれば、一般に広く用いられて
いるネマティック液晶を用いて、立ち上がり、立ち下が
り特性に差が少ない液晶表示装置を実現することがで
き、残像のない表示品位の優れた表示を達成することが
できた。
According to the present invention, it is possible to realize a liquid crystal display device having a small difference in rising and falling characteristics by using a nematic liquid crystal which is generally widely used, and is excellent in display quality with no afterimage. The display could be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】電界制御複屈折型液晶表示の原理を説明する
図。
FIG. 1 is a diagram illustrating the principle of an electric field control birefringence type liquid crystal display.

【図2】本発明の実施例の液晶表示装置の断面図。FIG. 2 is a sectional view of a liquid crystal display device according to an embodiment of the present invention.

【図3】本発明の液晶表示装置の光学的硬化を説明する
模式図。
FIG. 3 is a schematic diagram illustrating optical curing of the liquid crystal display device of the present invention.

【図4】(a),(b)は本発明の液晶表示装置の駆動
方法を説明する図。
4A and 4B are diagrams illustrating a driving method of a liquid crystal display device of the present invention.

【図5】(a),(b)は本発明の別の液晶表示装置の
駆動方法を説明する図。
5A and 5B are diagrams illustrating a driving method of another liquid crystal display device of the present invention.

【図6】本発明の別の液晶表示装置の駆動方法を説明す
る図。
FIG. 6 is a diagram illustrating a driving method of another liquid crystal display device of the present invention.

【図7】(a),(b),(c)は本発明の液晶表示装
置における液晶分子配列を説明する図。
7A, 7B, and 7C are views for explaining liquid crystal molecule alignment in the liquid crystal display device of the present invention.

【図8】本発明の他の実施例の液晶表示装置の断面図。FIG. 8 is a sectional view of a liquid crystal display device according to another embodiment of the present invention.

【図9】本発明の実施例の液晶表示装置の立ち上がり、
立ち下がり特性を示す図。
FIG. 9 shows the rise of the liquid crystal display device according to the embodiment of the present invention.
The figure which shows a fall characteristic.

【図10】従来例(比較例)の液晶表示装置の立ち上が
り、立ち下がり特性を示す図。
FIG. 10 is a diagram showing rising and falling characteristics of a liquid crystal display device of a conventional example (comparative example).

【図11】本発明の他の実施例の液晶表示装置の断面
図。
FIG. 11 is a sectional view of a liquid crystal display device according to another embodiment of the present invention.

【図12】本発明の他の実施例の液晶表示装置の断面
図。
FIG. 12 is a cross-sectional view of a liquid crystal display device according to another embodiment of the present invention.

【図13】本発明の他の実施例の液晶表示装置の断面
図。
FIG. 13 is a sectional view of a liquid crystal display device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 配向膜 4 ネマティック液晶 5 シール部材 6 偏光板 7,8,9,10,11,12,13, 液晶セル 1 Glass Substrate 2 Transparent Electrode 3 Alignment Film 4 Nematic Liquid Crystal 5 Sealing Member 6 Polarizing Plate 7, 8, 9, 10, 11, 12, 13, Liquid Crystal Cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一対の基板が対向して配置され、少なく
とも表面に電極が形成され、その上に配向制御層が形成
され、前記配向制御層が一軸配向処理を施され、その処
理の方向が対向基板において、略平行または略反平行で
あり、これらの基板間にネマテイック相を示す誘電異方
性が正の液晶が介在され、前記電極に選択的に電圧が印
加されることによって液晶の光軸を切り替える駆動手段
と、光軸の切り替えを光学的に識別する手段を有する液
晶セルにおいて、 前記液晶のセルを、2層に重ねた配置とし、第1層の液
晶セルにより生じる偏光状態を、第2層の液晶セルで補
償する構造とすることを特徴とする液晶表示装置。
1. A pair of substrates are arranged so as to face each other, an electrode is formed on at least a surface thereof, an orientation control layer is formed thereon, and the orientation control layer is subjected to a uniaxial orientation treatment. On the opposite substrate, a liquid crystal having a substantially parallel or anti-parallel structure and having a positive dielectric anisotropy exhibiting a nematic phase is interposed between these substrates, and a voltage is selectively applied to the electrodes to cause the light of the liquid crystal to be emitted. In a liquid crystal cell having a driving means for switching the axes and a means for optically discriminating the switching of the optical axes, the cells of the liquid crystal are arranged in two layers, and the polarization state caused by the liquid crystal cell of the first layer is A liquid crystal display device having a structure in which compensation is performed by a liquid crystal cell of the second layer.
【請求項2】 一対の基板が対向して配置され、少なく
とも表面に電極が形成され、その上に配向制御層が形成
され、前記配向制御層のうち一方が一軸配向処理を施さ
れ、他方が処理を施されず、これらの基板間にネマテイ
ック相を示す誘電異方性が正の液晶が介在され、前記電
極に選択的に電圧が印加されることによって液晶の光軸
を切り替える駆動手段と、光軸の切り替えを光学的に識
別する手段を有する液晶セルにおいて、 前記液晶のセルを、2層に重ねた配置とし、第1層の液
晶セルにより生じる偏光状態を、第2層の液晶セルで補
償する構造とすることを特徴とする液晶表示装置。
2. A pair of substrates are arranged so as to face each other, an electrode is formed on at least a surface thereof, an alignment control layer is formed thereon, one of the alignment control layers is subjected to a uniaxial alignment treatment, and the other is A liquid crystal having a positive dielectric anisotropy exhibiting a nematic phase is interposed between these substrates without being processed, and a driving means for switching the optical axis of the liquid crystal by selectively applying a voltage to the electrode, In a liquid crystal cell having means for optically discriminating optical axis switching, the liquid crystal cells are arranged in two layers, and the polarization state caused by the first layer liquid crystal cell is changed by the second layer liquid crystal cell. A liquid crystal display device having a compensation structure.
【請求項3】 第1層の液晶セルおよび/または第2層
の液晶セルを駆動することにより、光学変化の立ち上が
り特性と立ち下がり特性の間に遅れを生じることなく表
示を行う請求項1または2項のいずれかの項に記載の液
晶表示装置。
3. The display is performed by driving the liquid crystal cell of the first layer and / or the liquid crystal cell of the second layer without causing a delay between the rising characteristic and the falling characteristic of the optical change. The liquid crystal display device according to any one of item 2.
JP10490492A 1992-04-23 1992-04-23 Liquid crystal display device Pending JPH05297402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10490492A JPH05297402A (en) 1992-04-23 1992-04-23 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10490492A JPH05297402A (en) 1992-04-23 1992-04-23 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH05297402A true JPH05297402A (en) 1993-11-12

Family

ID=14393120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10490492A Pending JPH05297402A (en) 1992-04-23 1992-04-23 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH05297402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619204B2 (en) 2009-06-19 2013-12-31 Nec Corporation Liquid crystal shutter and liquid crystal shutter eyeglass
JP2014509756A (en) * 2011-03-30 2014-04-21 コミトブ,ラヒェザー Double-cell liquid crystal device with rapid switching
JP2021503624A (en) * 2017-11-17 2021-02-12 ディー シャープ、ゲイリー Self-compensated liquid crystal retardation switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619204B2 (en) 2009-06-19 2013-12-31 Nec Corporation Liquid crystal shutter and liquid crystal shutter eyeglass
JP2014509756A (en) * 2011-03-30 2014-04-21 コミトブ,ラヒェザー Double-cell liquid crystal device with rapid switching
JP2021503624A (en) * 2017-11-17 2021-02-12 ディー シャープ、ゲイリー Self-compensated liquid crystal retardation switch

Similar Documents

Publication Publication Date Title
US5392142A (en) Display apparatus with chiral smectic and polymer liquid crystal films, each having birefringent first state and not birefringent second state
JP3142739B2 (en) Liquid crystal display device and manufacturing method thereof
JP2008020771A (en) Liquid crystal display
JPH05297402A (en) Liquid crystal display device
JP2945572B2 (en) Liquid crystal display device and manufacturing method thereof
JPS61290420A (en) Liquid crystal display element
JPH0743476B2 (en) Liquid crystal light modulator
JPH0720468A (en) Liquid crystal display device
JP2813222B2 (en) Liquid crystal display device
JP3522845B2 (en) LCD panel
JPH0933906A (en) Liquid crystal element and liquid crystal device
JP2001051277A (en) Liquid crystal device, production thereof, liquid crystal display device and method of driving the same
JPH11311788A (en) Liquid crystal display device and its manufacture
JPS62161122A (en) Ferroelectric liquid crystal element
JPH0519231A (en) Stn type liquid crystal display device
JP2831520B2 (en) Liquid crystal display
JP2649389B2 (en) Phase compensator
JP2002258306A (en) Liquid crystal display device
JPH0210323A (en) Ferroelectric liquid crystal display element
JPH0229630A (en) Liquid crystal element
KR20120072193A (en) Polarizing plate, manufacturing method thereof, and liquid crystal display device including the same
JPH08136915A (en) Ferroelectric liquid crystal display element
JPH04149519A (en) Optical modulating element and display device using the same
JPS6381324A (en) Liquid crystal electrooptic element
JPH07181495A (en) Ferroelectric liquid crystal element