JPH0743476B2 - Liquid crystal light modulator - Google Patents

Liquid crystal light modulator

Info

Publication number
JPH0743476B2
JPH0743476B2 JP4244525A JP24452592A JPH0743476B2 JP H0743476 B2 JPH0743476 B2 JP H0743476B2 JP 4244525 A JP4244525 A JP 4244525A JP 24452592 A JP24452592 A JP 24452592A JP H0743476 B2 JPH0743476 B2 JP H0743476B2
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
axis direction
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4244525A
Other languages
Japanese (ja)
Other versions
JPH05346584A (en
Inventor
紀四郎 岩崎
正人 磯貝
紳太郎 服部
輝夫 北村
昭夫 向尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP58099325A priority Critical patent/JPS59224823A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4244525A priority patent/JPH0743476B2/en
Publication of JPH05346584A publication Critical patent/JPH05346584A/en
Publication of JPH0743476B2 publication Critical patent/JPH0743476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶を用いた光変調素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light modulator using liquid crystal.

【0002】[0002]

【従来の技術】液晶光変調素子の応答性に関する欠点に
鑑みて強誘電性液晶を用いた素子の報告がある(特開昭
56−107216号公報又は米国特許第4367924 号参照)。こ
の素子における最も重要な技術課題は強誘電性液晶分子
を基板面に平行あるいはほぼ平行なある優先方位に揃え
て配列させることである。上記公開公報によれば強磁場
の印加あるいはずり応力を加えることによって上記配列
が得られるとの報告がされている。しかし、一般に液晶
層が数μmの薄さになるとかなり強い磁場を加えても一
様に配列した素子を得るのが難しく、仮に得られるとし
ても生産プロセス上実用性に乏しいと言える。ずり応力
の場合も同様で、実用性に乏しい。一方、従来のネマチ
ック液晶やコレステリック液晶の配列制御に用いていた
SiO斜方蒸着膜あるいは高分子膜をある特定な方向に
布等でこする(ラビング)方法などでは十分な配列が得
られず、コントラストが悪いといった問題がある。
2. Description of the Related Art A device using a ferroelectric liquid crystal has been reported in view of the shortcomings of the response of a liquid crystal light modulation device (Japanese Patent Laid-Open Publication No. Sho.
56-107216 or U.S. Pat. No. 4,367,924). The most important technical problem in this device is to align the ferroelectric liquid crystal molecules in a certain preferred direction parallel or almost parallel to the substrate surface. According to the above publication, it is reported that the above arrangement can be obtained by applying a strong magnetic field or applying shear stress. However, in general, if the liquid crystal layer is as thin as several μm, it is difficult to obtain uniformly arranged elements even if a fairly strong magnetic field is applied, and even if it is obtained, it can be said that it is not practical in the production process. The same applies to the case of shear stress, which is not practical. On the other hand, a sufficient alignment cannot be obtained by a method of rubbing a SiO oblique vapor deposition film or a polymer film with a cloth or the like in a specific direction, which has been used for the alignment control of the conventional nematic liquid crystal or cholesteric liquid crystal, There is a problem with poor contrast.

【0003】光変調素子の代表例として、液晶表示素子
がある。図1に強誘電性液晶表示素子を示す。二枚のガ
ラス基板2には通称ネサ膜(酸化インジウムと酸化スズ
の薄膜)といわれる透明電極3が形成されており、その
上にポリイミドのような高分子の薄膜をガーゼや布のよ
うな繊維でラビングして、液晶をラビング方向に並べる
配向制御膜4が形成されている。この二枚のガラス基板
2はスペーサ5によって任意の間隔に保たれており、そ
の間に強誘電性液晶1が封入されている。透明電極3か
らはリード線によって外部の電源7に接続されている。
またガラス基板2の外側には偏光板8が貼り合せてあ
る。図1は透過型であるので、光源9を備えている。光
源9から出た入射光I0は液晶素子を透過して透過光I
となり、観察者の目に入る。
A liquid crystal display element is a typical example of the light modulation element. FIG. 1 shows a ferroelectric liquid crystal display device. A transparent electrode 3, which is generally called a Nesa film (a thin film of indium oxide and tin oxide), is formed on the two glass substrates 2, and a thin film of a polymer such as polyimide is formed on the transparent electrode 3 and a fiber such as gauze or cloth. The alignment control film 4 is formed by rubbing the liquid crystal in the rubbing direction. The two glass substrates 2 are kept at an arbitrary interval by a spacer 5, and the ferroelectric liquid crystal 1 is enclosed between them. The transparent electrode 3 is connected to an external power source 7 by a lead wire.
A polarizing plate 8 is attached to the outside of the glass substrate 2. Since FIG. 1 is a transmissive type, a light source 9 is provided. Incident light I0 emitted from the light source 9 passes through the liquid crystal element and is transmitted light I0.
Next, it enters the eyes of the observer.

【0004】図2は図1の液晶1に電圧を印加したとき
の強誘電性液晶分子10の動きを説明する図である。電
極3を通して液晶1に電界Eを印加すると、電界の向き
に応じて状態(A)か状態(B)のような配列構造をと
る。(A)の状態は液晶分子10の長軸方向101が一
方の偏光板8の偏光軸方向81と一致している。(B)
の状態は長軸方向101が偏光軸方向81から離れた状
態で液晶分子101は配列方向12(この場合ラビング
方向)となす角度θ分だけ動く。よって(A)の状態で
は複屈折が起きない。もう一方の偏光板8の偏光軸82
が最初の偏光板8の偏光軸81とほぼ直交するように配
置してあると、観察者に対して透過光Iの強度は弱く、
暗く見える。(B)の状態では長軸方向101が偏光軸
方向81から2θ離れるので、透過光Iは明るく見え
る。このように電界の向きを変える、すなわち(+)、
(−)することによって、表示をする。なおθはπ/8
(22.5°)でコントラストは最大となる。
FIG. 2 is a diagram for explaining the movement of the ferroelectric liquid crystal molecules 10 when a voltage is applied to the liquid crystal 1 of FIG. When an electric field E is applied to the liquid crystal 1 through the electrode 3, an array structure such as a state (A) or a state (B) is taken according to the direction of the electric field. In the state of (A), the major axis direction 101 of the liquid crystal molecule 10 coincides with the polarization axis direction 81 of the one polarizing plate 8. (B)
In this state, the liquid crystal molecules 101 move by an angle θ formed with the alignment direction 12 (rubbing direction in this case) with the long axis direction 101 separated from the polarization axis direction 81. Therefore, in the state of (A), birefringence does not occur. Polarization axis 82 of the other polarizing plate 8
Is arranged so as to be substantially orthogonal to the polarization axis 81 of the first polarizing plate 8, the intensity of the transmitted light I is weak to the observer,
It looks dark. In the state of (B), since the major axis direction 101 is away from the polarization axis direction 81 by 2θ, the transmitted light I looks bright. Thus changing the direction of the electric field, ie (+),
Display by (-). Note that θ is π / 8
The contrast becomes maximum at (22.5 °).

【0005】ところで、液晶が二色性を有している場合
には図3に示した素子構成で光変調機能を持つことはよ
く知られている。この場合通常、偏光板8はどちらか一
方のガラス基板2の外側に設置されている。図4は図3
の液晶1に電圧を印加したときの強誘電性液晶10と二
色性色素11の動きを説明する図である。液晶が強誘電
性と二色性を併せ持つためには、強誘電性液晶分子自体
が二色性を示す場合と、この図のように強誘電性液晶1
0に二色性色素11を混入させる場合とがあるが後者の
方が一般的である。
By the way, it is well known that when the liquid crystal has dichroism, the element structure shown in FIG. 3 has a light modulation function. In this case, usually, the polarizing plate 8 is installed outside one of the glass substrates 2. FIG. 4 is FIG.
FIG. 6 is a diagram for explaining the movements of the ferroelectric liquid crystal 10 and the dichroic dye 11 when a voltage is applied to the liquid crystal 1 of FIG. In order for the liquid crystal to have both ferroelectricity and dichroism, the ferroelectric liquid crystal molecule itself exhibits dichroism and the ferroelectric liquid crystal 1 as shown in this figure.
In some cases, the dichroic dye 11 is mixed with 0, but the latter is more general.

【0006】電極3を通して液晶1に電界Eを印加する
と、電界の向きに応じて状態(A)か状態(B)のよう
な配列構造をとる。(A)の状態は液晶分子10の長軸
方向101が偏光板8の偏光軸方向81と一致してい
る。(B)の状態は長軸方向101が偏光軸方向81か
ら離れた状態で液晶分子101は配列方向12(この場
合ラビング方向)となす角度θ分だけ動く。よって
(A)の状態では長軸方向に吸収を持つ液晶では観察者
に対して透過光Iの強度は弱く、暗く見える。(B)の
状態では長軸方向101が偏光軸方向81から2θ離れ
るので、透過光Iは明るく見える。このように電界の向
きを変える、すなわち(+)、(−)することによっ
て、表示をする。なおθはπ/4(45°)でコントラ
ストは最大となる。
When an electric field E is applied to the liquid crystal 1 through the electrode 3, an array structure such as a state (A) or a state (B) is taken according to the direction of the electric field. In the state of (A), the major axis direction 101 of the liquid crystal molecules 10 matches the polarization axis direction 81 of the polarizing plate 8. In the state of (B), the liquid crystal molecules 101 move by an angle θ formed with the alignment direction 12 (rubbing direction in this case) in a state where the major axis direction 101 is away from the polarization axis direction 81. Therefore, in the state of (A), the intensity of the transmitted light I is weak to the observer and the liquid crystal having absorption in the major axis direction looks dark. In the state of (B), since the major axis direction 101 is away from the polarization axis direction 81 by 2θ, the transmitted light I looks bright. In this way, the display is performed by changing the direction of the electric field, that is, (+) and (-). Note that θ is π / 4 (45 °), and the contrast becomes maximum.

【0007】[0007]

【発明が解決しようとする課題】本発明は生産プロセス
上実用性の高い強誘電性液晶分子の配列制御法を提供
し、その結果として応答性に優れ、かつコントラストの
良い液晶光変調素子を得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for controlling the alignment of ferroelectric liquid crystal molecules, which is highly practical in the production process, and as a result, a liquid crystal light modulation element having excellent responsiveness and good contrast is obtained. The purpose is to

【0008】[0008]

【課題を解決するための手段】本発明は上記のような液
晶光変調素子において、液晶層が強誘電性を有し、かつ
二色性を有し、さらにスメクチックA相及びコレステリ
ック相となる温度領域を有すること、基板に付設する配
列制御手段としてラビングしたポリイミド膜を用いるこ
とを特徴としている。
According to the present invention, in the liquid crystal light modulating element as described above, the temperature at which the liquid crystal layer has ferroelectricity and dichroism and becomes a smectic A phase and a cholesteric phase. It is characterized by having a region and using a rubbed polyimide film as an array control means attached to the substrate.

【0009】[0009]

【作用】コレステリック相となる温度領域に温度を設定
すると、現在実用に供されているラビング法や斜法蒸着
法が液晶分子の配列制御に有効である。また一度一様な
配列が達成され強誘電性を示す温度領域までゆっくり温
度を変化させた時には、液晶がスメクチックA相となる
温度領域を有することから温度降下時に電圧を印加しな
くてもスメクチックA相の状態で一様なレイヤー構造を
得ることができ、さらに配列制御手段がラビングしたポ
リイミド膜であることがあいまって、コレステリック相
→スメクチックA相→スメクチックC* 相と多段階に相
変化しても配列制御手段として例えばPVAを用いる場
合と比較して、一様な配列がそのまま保持される。この
特性を利用すれば現在生産ラインで用いられている配列
制御法がそのまま強誘電性液晶にも適用されるのであ
る。
When the temperature is set in the temperature range of the cholesteric phase, the rubbing method and the oblique vapor deposition method currently put to practical use are effective for controlling the alignment of liquid crystal molecules. Further, when the temperature is slowly changed to the temperature range where the uniform alignment is achieved and the ferroelectricity is exhibited, the liquid crystal has a temperature range in which the liquid crystal is in the smectic A phase. Therefore, the smectic A phase does not have to be applied when the temperature drops. It is possible to obtain a uniform layer structure in the phase state, and further, the arrangement control means is a rubbed polyimide film, and the phase changes in multiple stages of cholesteric phase → smectic A phase → smectic C * phase. Also in comparison with the case where PVA is used as the array control means, a uniform array is maintained as it is. If this characteristic is utilized, the array control method currently used in the production line can be directly applied to the ferroelectric liquid crystal.

【0010】また液晶が二色性を有し図3の素子構成と
することで素子全体にわたって変調特性が均一となる。
図1の構成の素子では複屈折減少を光変調の原理とする
ために、仮に素子内の部分部分でセル厚(液晶層の厚
み)が仮に0.5μm程度違っただけでコントラストは
大巾に変動するし、表示素子として使用した場合は顕著
な色むらとして表示品質を落とすことになる。ところ
が、本発明の構成では、透過光強度の変化は液晶の配列
変化による光吸収の変化に基づく。そのためセル厚の違
いは多少のコントラスト変動を生むことはあっても色相
が変化することは無く、表示品質の高い素子を提供す
る。しかも、セル厚の精密な制御(例えば0.1μm以
下の変動)を必要としないため生産プロセス上も実用性
が高い。
Further, since the liquid crystal has dichroism and has the element structure shown in FIG. 3, the modulation characteristic becomes uniform over the entire element.
In the element having the configuration shown in FIG. 1, since the principle of light modulation is to reduce the birefringence, the contrast is wide even if the cell thickness (thickness of the liquid crystal layer) in the element is different by about 0.5 μm. If it is used as a display element, the display quality deteriorates due to remarkable color unevenness. However, in the configuration of the present invention, the change in transmitted light intensity is based on the change in light absorption due to the change in alignment of the liquid crystal. Therefore, although the difference in cell thickness may cause a slight change in contrast, the hue does not change, and an element with high display quality is provided. In addition, it does not require precise control of the cell thickness (for example, fluctuation of 0.1 μm or less), and thus is highly practical in the production process.

【0011】[0011]

〔実施例1〕[Example 1]

液晶の配列を制御するためにポリイミド−イソ−インド
ロキナゾリンジオン膜を酸化インジウム透明電極が設け
られているガラス基板上に設け、一定方向にガーゼを用
いてラビングした。2枚のガラス基板が平行となるよう
に直径8μmのガラスファイバーをスペーサとして組立
て、シール材で液晶を封入するための入口を除いて周囲
をシールして液晶セルとした。このセルに下記化学式で
表わされるp−オクチルオキシ安息香酸4’−2メチル
ブトキシフェニルエステルを真空封入した。
A polyimide-iso-indoloquinazolinedione film for controlling the alignment of liquid crystals was provided on a glass substrate provided with an indium oxide transparent electrode, and rubbed in a certain direction using gauze. A glass fiber having a diameter of 8 μm was assembled as a spacer so that the two glass substrates were parallel to each other, and the periphery was sealed except for an inlet for enclosing the liquid crystal with a sealing material to form a liquid crystal cell. Into this cell, p-octyloxybenzoic acid 4'-2 methylbutoxyphenyl ester represented by the following chemical formula was vacuum-encapsulated.

【0012】 [0012]

【0013】この化合物は下記のように転移し、強誘電
性液晶相となる温度領域とスメクチックA相及びコレス
テリック相となる温度領域とを有する。
This compound undergoes transitions as described below, and has a temperature region which becomes a ferroelectric liquid crystal phase and a temperature region which becomes a smectic A phase and a cholesteric phase.

【0014】 [0014]

【0015】ここで、Cr:結晶相,SA :スメクチッ
クA相,SC * :スメクチックC*相(強誘電性液晶
相),Ch:コレステリック相,I:等方性液体相を示
す。さて、真空封入は等方性液体相となる温度に昇温し
行い、封入後強誘電性液晶相となる温度領域まで降温さ
せ、液晶の配列状況の観察及び光変調性能についての実
験を行った。
Here, Cr: crystalline phase, S A : smectic A phase, S C * : smectic C * phase (ferroelectric liquid crystal phase), Ch: cholesteric phase, I: isotropic liquid phase. By vacuum encapsulation, the temperature was raised to a temperature at which it became an isotropic liquid phase, and after encapsulation, the temperature was lowered to the temperature range at which it became a ferroelectric liquid crystal phase. Observation of the alignment state of liquid crystals and experiments on light modulation performance were conducted. .

【0016】〔参考例〕 実施例と同様にして作製した液晶セルに強誘電性液晶化
合物であるp−デシロキシベンジリデンp′−アミノ2
−メチルブチルシンナメート
Reference Example A liquid crystal cell prepared in the same manner as in the example was added to a ferroelectric liquid crystal compound, p-decyloxybenzylidene p'-amino-2.
-Methylbutyl cinnamate

【0017】 [0017]

【0018】を真空封入し、強誘電性液晶相となる温度
領域まで降温させ、実施例と同様の実験を行った。上記
化合物は下記のように相転移し、コレステリック相とな
る温度領域を持たない。
[0018] was vacuum-sealed, and the temperature was lowered to a temperature range where a ferroelectric liquid crystal phase was formed, and the same experiment as in the example was conducted. The above compound undergoes a phase transition as described below and does not have a temperature range where it becomes a cholesteric phase.

【0019】 [0019]

【0020】ここで、SH * :スメクチックH* 相を示
す。 上記のように作製した2つの液晶素子を偏光顕微
鏡を用いて観察したところ両者の間に次のような相違が
見られた。 実施例の場合: ら旋構造に伴う一様なすじが見られ
る。顕微鏡視野内では一様なモノドメインとなってい
る。 参考例の場合: 米粒状のドメインが多数見られる。ら
旋構造に伴うすじは1つ1つのドメイン内では一様に揃
っているがドメイン間では方向にバラツキがある。 次に、この素子を直交した偏光子の間に配置し、20
V,50HZの交流矩形波を印加して透過する光量変化
を測定した。その結果、実施例では 10:1のコント
ラストの光量変化が得られたのに対し、参考例ではわず
かに4:1の光量変化しか得られなかった。また、電界
の極性が変化した時の透過光量変化は、いずれの素子に
おいてもIms程度で変化が終了していることが観測さ
れ、従来の液晶素子に比べて、高速で応答することが確
認された。
Here, S H * : Smectic H * phase is shown. When the two liquid crystal elements produced as described above were observed with a polarization microscope, the following differences were observed between them. In the case of Example: A uniform streak associated with the spiral structure is observed. It is a uniform monodomain in the microscope field. In the case of reference example: Many rice grain-like domains are seen. The streaks associated with the spiral structure are uniformly aligned within each domain, but the directions vary among the domains. The element is then placed between orthogonal polarizers,
A change in the amount of light transmitted by applying an AC rectangular wave of V, 50 HZ was measured. As a result, in the embodiment, the light amount change of the contrast of 10: 1 was obtained, whereas in the reference example, only the light amount change of 4: 1 was obtained. In addition, it was observed that the change in the amount of transmitted light when the polarity of the electric field changed was completed in about Ims in all the elements, and it was confirmed that the response was faster than in the conventional liquid crystal element. It was

【0021】以上で明らかなように、コレステリック相
となる温度領域を有する実施例で用いた強誘電性液晶の
場合には、従来ネマチック液晶の配列制御に用いていた
方法がそのまま適用でき、強誘電性液晶の一様に配列し
た状態が実現できるのである。このようなことは、実施
例で用いた液晶化合物のみに適用されるものでなく、ス
メスチックA相及びコレステリック相となる温度領域を
有する全ての強誘電性液晶に適用されるものであり、二
種以上の化合物の混合液晶であっても同様である。
As is clear from the above, in the case of the ferroelectric liquid crystal used in the embodiment having the temperature range of the cholesteric phase, the method conventionally used for controlling the alignment of the nematic liquid crystal can be directly applied, and the ferroelectric liquid crystal can be applied. It is possible to realize a state in which the organic liquid crystals are uniformly arranged. This applies not only to the liquid crystal compounds used in the examples, but also to all ferroelectric liquid crystals having a temperature range of a smectic A phase and a cholesteric phase. The same applies to mixed liquid crystals of the above compounds.

【0022】さて、実施例において、液晶に二色性色素
を混入させても、混合物がコレステリック相となる温度
領域を有すれば上述したのと同様の効果が観測される。
〔発明の概要〕の項で説明したように、図2において、
長軸方向101と偏光軸方向81とが一致するとき二色
性色素11の吸収軸もいわゆるゲスト・ホスト効果によ
り液晶の長軸方向101すなわち偏光軸方向81に一致
し、その結果色素特有の光を吸収し、出射光は着色する
(光強度もトータルとして弱くなる)。これに対し、長
軸方向101と偏光軸方向81とが2θ離れた位置で
は、色素による吸収は少なく、入射した光は減衰せず透
過する。実施例のような一様な配列の素子では理想的な
コントラストが得られる。従って、コントラストは二色
性色素の吸光度及び濃度、分子傾き角θ、色素のオーダ
ーパラメータ(液晶の長軸方向に色素が配列する程度を
表す)、液晶セル厚の関数として与えられる。
In the examples, even if the dichroic dye is mixed in the liquid crystal, the same effect as described above is observed as long as the mixture has a temperature range where it becomes a cholesteric phase.
As described in the [Summary of Invention] section, in FIG.
When the major axis direction 101 and the polarization axis direction 81 coincide with each other, the absorption axis of the dichroic dye 11 also coincides with the major axis direction 101 of the liquid crystal, that is, the polarization axis direction 81 by the so-called guest-host effect, and as a result, the light peculiar to the dye Is absorbed and the emitted light is colored (the light intensity becomes weak as a whole). On the other hand, at a position where the major axis direction 101 and the polarization axis direction 81 are separated from each other by 2θ, the absorption by the dye is small and the incident light is transmitted without being attenuated. An element having a uniform array as in the embodiment can obtain an ideal contrast. Therefore, the contrast is given as a function of the absorbance and concentration of the dichroic dye, the molecular tilt angle θ, the order parameter of the dye (representing the degree of alignment of the dye in the long axis direction of the liquid crystal), and the liquid crystal cell thickness.

【0023】参考例のように多数のドメインが見られる
素子では偏光軸81に対する色素の吸収軸がドメイン毎
にばらつき、結果として光量変化が実施例に比べて大幅
に劣ることとなる。
In the element in which a large number of domains are seen as in the reference example, the absorption axis of the dye with respect to the polarization axis 81 varies from domain to domain, and as a result, the change in the light amount is significantly inferior to that in the example.

【0024】[0024]

【発明の効果】本発明によれば、応答性がよくコントラ
ストの良い液晶光変調素子を得ることができる。
According to the present invention, it is possible to obtain a liquid crystal light modulation element having good response and good contrast.

【図面の簡単な説明】[Brief description of drawings]

【図1】 液晶を用いた光変調素子の概略を示す側断面
図。
FIG. 1 is a side sectional view showing an outline of a light modulation element using liquid crystal.

【図2】 図2(A),(B)は図1の素子に電圧を印
加したときの液晶分子の動きを説明する概略図。
2A and 2B are schematic diagrams for explaining the movement of liquid crystal molecules when a voltage is applied to the device of FIG.

【図3】 二色性を有する液晶を用いた光変調素子の概
略を示す側断面図。
FIG. 3 is a side sectional view showing an outline of a light modulation element using a dichroic liquid crystal.

【図4】 図4(A),(B)は図3の素子に電圧を印
加したときの液晶分子の動きを説明する概略図。
4A and 4B are schematic diagrams for explaining the movement of liquid crystal molecules when a voltage is applied to the device of FIG.

【符号の説明】[Explanation of symbols]

2…基板、3…透明電極、4…配列制御膜、5…スペー
サ、7…電源、8…偏光板、9…光源、10…強誘電性
液晶
2 ... Substrate, 3 ... Transparent electrode, 4 ... Array control film, 5 ... Spacer, 7 ... Power supply, 8 ... Polarizing plate, 9 ... Light source, 10 ... Ferroelectric liquid crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 輝夫 茨城県日立市幸町3丁目1番1号 株式会 社 日立製作所 日立研究所内 (72)発明者 向尾 昭夫 茨城県日立市幸町3丁目1番1号 株式会 社 日立製作所 日立研究所内 (56)参考文献 特開 昭56−107216(JP,A) 特開 昭57−84435(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Teruo Kitamura, 1-1 1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor, Akio Mukai 3-chome, Hitachi City, Ibaraki Prefecture No. 1 No. 1 Hitachi Ltd., Hitachi Research Laboratory (56) References JP-A-56-107216 (JP, A) JP-A-57-84435 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液晶層と、該液晶層を挾持するように配
置し、かつ少なくとも一枚が透明でしかも少なくとも一
枚の偏光子が付設されている複数の基板と、前記液晶層
への電圧印加が可能となるように前記基板に付設した電
圧印加手段と、近接する前記液晶分子を基板に平行ある
いはほぼ平行なある優先方位に配列させるように前記基
板に付設した配列制御手段と、前記液晶層周辺を囲むよ
うに前記基板間に形成したシール部材とを具備してなる
液晶光変調素子において、前記配列制御手段はラビング
したポリイミド膜であって、かつ前記液晶は強誘電性を
有し、かつ二色性を有し、さらにはスメクチックA相及
びコレステリック相となる温度領域を有することを特徴
とする液晶光変調素子。
1. A liquid crystal layer, a plurality of substrates arranged so as to sandwich the liquid crystal layer, at least one of which is transparent and at least one polarizer is attached, and a voltage applied to the liquid crystal layer. A voltage applying means attached to the substrate so that voltage can be applied; an arrangement control means attached to the substrate so as to arrange the liquid crystal molecules adjacent to each other in a certain preferred orientation parallel or substantially parallel to the substrate; In a liquid crystal light modulation element comprising a sealing member formed between the substrates so as to surround a layer periphery, the alignment control means is a rubbed polyimide film, and the liquid crystal has ferroelectricity, A liquid crystal light modulation element having dichroism and further having a temperature range of a smectic A phase and a cholesteric phase.
JP4244525A 1983-06-06 1992-09-14 Liquid crystal light modulator Expired - Lifetime JPH0743476B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58099325A JPS59224823A (en) 1983-06-06 1983-06-06 Liquid-crystal modulating element
JP4244525A JPH0743476B2 (en) 1983-06-06 1992-09-14 Liquid crystal light modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58099325A JPS59224823A (en) 1983-06-06 1983-06-06 Liquid-crystal modulating element
JP4244525A JPH0743476B2 (en) 1983-06-06 1992-09-14 Liquid crystal light modulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58099325A Division JPS59224823A (en) 1983-06-06 1983-06-06 Liquid-crystal modulating element

Publications (2)

Publication Number Publication Date
JPH05346584A JPH05346584A (en) 1993-12-27
JPH0743476B2 true JPH0743476B2 (en) 1995-05-15

Family

ID=26440465

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58099325A Granted JPS59224823A (en) 1983-06-06 1983-06-06 Liquid-crystal modulating element
JP4244525A Expired - Lifetime JPH0743476B2 (en) 1983-06-06 1992-09-14 Liquid crystal light modulator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP58099325A Granted JPS59224823A (en) 1983-06-06 1983-06-06 Liquid-crystal modulating element

Country Status (1)

Country Link
JP (2) JPS59224823A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754382B2 (en) * 1984-12-27 1995-06-07 旭硝子株式会社 Method for manufacturing liquid crystal electro-optical device
JPH0774867B2 (en) * 1985-02-15 1995-08-09 キヤノン株式会社 Liquid crystal element
JPH0750272B2 (en) * 1985-05-02 1995-05-31 旭硝子株式会社 Method for manufacturing ferroelectric smectic liquid crystal electro-optical device
JPH0752263B2 (en) * 1985-07-10 1995-06-05 株式会社日立製作所 Ferroelectric liquid crystal element
JPS62295021A (en) * 1986-06-16 1987-12-22 Canon Inc Liquid crystal element and its production
JPH0766125B2 (en) * 1986-09-02 1995-07-19 キヤノン株式会社 Chiral smectic liquid crystal element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device
JPS5784435A (en) * 1980-11-14 1982-05-26 Casio Comput Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JPS59224823A (en) 1984-12-17
JPH05346584A (en) 1993-12-27
JPH0363725B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JPH0254527B2 (en)
JPS6275418A (en) Liquid crystal element
JPH0618887A (en) Liquid crystal electrooptical device
JP2952122B2 (en) Liquid crystal element and display device using the same
JPS61120119A (en) Liquid-crystal light valve
JPH0743476B2 (en) Liquid crystal light modulator
JPH06105332B2 (en) Ferroelectric liquid crystal optical shutter
JPH03209440A (en) Liquid crystal display element
JPS61290420A (en) Liquid crystal display element
JPS6147930A (en) Liquid crystal electrooptic device
JP2697058B2 (en) Alignment control method of ferroelectric liquid crystal
JP2983724B2 (en) Alignment treatment method for ferroelectric liquid crystal devices
JPS62161122A (en) Ferroelectric liquid crystal element
US5844653A (en) Liquid crystal mixture
JPS61153623A (en) Liquid crystal electrooptical device
KR0161377B1 (en) Ferroelectric liquid crystal display element
JPH05297402A (en) Liquid crystal display device
JP3062978B2 (en) Ferroelectric liquid crystal device
JP2533301B2 (en) Liquid crystal element
JP2614347B2 (en) Liquid crystal element and liquid crystal display
JPH03215831A (en) Liquid crystal display element
JPS6250735A (en) Liquid crystal display device
JPH01140126A (en) Liquid crystal display device
JP2663082B2 (en) Liquid crystal element
JPS6366537A (en) Ferroelectric liquid crystal panel