JPS6360805B2 - - Google Patents

Info

Publication number
JPS6360805B2
JPS6360805B2 JP57178057A JP17805782A JPS6360805B2 JP S6360805 B2 JPS6360805 B2 JP S6360805B2 JP 57178057 A JP57178057 A JP 57178057A JP 17805782 A JP17805782 A JP 17805782A JP S6360805 B2 JPS6360805 B2 JP S6360805B2
Authority
JP
Japan
Prior art keywords
pressure
rollers
roller
parts
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57178057A
Other languages
Japanese (ja)
Other versions
JPS5967312A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17805782A priority Critical patent/JPS5967312A/en
Publication of JPS5967312A publication Critical patent/JPS5967312A/en
Publication of JPS6360805B2 publication Critical patent/JPS6360805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はローリングプレス焼入装置に関する
ものである。 ローリングプレス焼入は、被処理品を外方から
加圧した状態で焼入を行なう方法であるため焼入
時の歪を小さくできることから、ピンやシヤフト
等の軸対称部品及び他の軸対象部分を有する部品
の焼入に比較的多用されている焼入法である。ま
ず、この焼入装置についてその概略を説明する
と、第1図に示すように、この装置は互いに平行
に配設された加圧ローラ1と一対の受ローラ2,
3とを有しており、加熱された被処理品Aはこれ
らローラ1,2,3間に配設される。ローラ1,
2,3としては、第2図に示すように、シヤフト
部4,5,6と、このシヤフト部4,5,6より
も径大に形成され被処理品A表面に接触して圧力
を加える加圧部7,8,9とを有する所謂円筒状
溝切りローラを用いているが、第3図に示すよう
な、シヤフト部4,5,6に対して加圧部7,
8,9が螺旋状に配設された所謂螺旋状溝切りロ
ーラを用いることもある。そして被処理品Aはロ
ーラ1,2,3によつて回転を受けると共にその
外方から加圧され、この状態で各ローラ1,2,
3の間に配設された水スプレーノズル10,1
0,10から噴出される水によつてその表面の焼
入が行なわれる。このように被処理品Aを外方か
ら加圧した状態で焼入を行なうため、軸方向の曲
りが処理中に矯正され、前記のように焼入時の歪
をきわめて小さくすることができる。 ところで上記した従来の焼入装置においては、
焼入性の悪い材料を焼入した場合に、焼入処理品
の軸方向に沿う表面硬度分布が不均一になるとい
う問題点のあることが知られている。例えば、表
1に示すような成分を有する炭素鋼より成る試験
片で、従来の円筒状溝切りローラを用いて焼入を
行なつた場合の軸方向表面硬度分布を第4図に、
また加圧ローラとして円筒状溝切りローラを、受
ローラとして互いに逆向きの螺旋状溝切りローラ
を用いて焼入を行なつた場合の同様な硬度分布を
第5図にそれぞれ示すが、硬度は前者の場合には
HRC52〜63と、また後者の場合HRC57〜64と大
きくばらついていることが明らかである。
This invention relates to a rolling press hardening device. Rolling press hardening is a method of hardening the workpiece under pressure from the outside, so it can reduce distortion during hardening, so it is suitable for axially symmetrical parts such as pins and shafts, and other axially symmetrical parts. This is a quenching method that is relatively frequently used for quenching parts with . First, to explain the outline of this hardening device, as shown in FIG.
3, and the heated workpiece A is placed between these rollers 1, 2, and 3. roller 1,
As shown in FIG. 2, 2 and 3 include shaft parts 4, 5, and 6, which are formed to have a larger diameter than the shaft parts 4, 5, and 6, and which apply pressure by contacting the surface of the workpiece A. A so-called cylindrical grooving roller having pressurizing parts 7, 8, and 9 is used; however, as shown in FIG.
A so-called spiral groove cutting roller in which rollers 8 and 9 are arranged in a spiral may be used. The workpiece A is rotated by the rollers 1, 2, and 3, and is also pressurized from the outside.
Water spray nozzle 10,1 disposed between 3
The surface is quenched by the water jetted from 0 and 10. Since the workpiece A is hardened while being pressurized from the outside in this way, the bend in the axial direction is corrected during the process, and as described above, the distortion during hardening can be made extremely small. By the way, in the conventional hardening equipment mentioned above,
It is known that when a material with poor hardenability is hardened, there is a problem in that the surface hardness distribution along the axial direction of the hardened product becomes non-uniform. For example, Fig. 4 shows the axial surface hardness distribution of a specimen made of carbon steel having the components shown in Table 1, which was hardened using a conventional cylindrical groove roller.
Figure 5 shows a similar hardness distribution when hardening is carried out using a cylindrical grooving roller as the pressure roller and a spiral grooving roller oriented in opposite directions as the receiving roller. In the former case
It is clear that there is a large variation between HRC52 and 63, and in the latter case HRC57 and 64.

【表】 このように表面硬度に大きなばらつきを有する
部品を使用した場合には、表面硬度の低い部分か
ら選択的に摩耗を受けたり、表面圧縮残留応力や
強度が部分的に減少することになり、その結果、
製品の耐久性は著しく低下してしまうという問題
が生じる。 この発明は上記に鑑みなされたもので、その目
的は、材質の焼入性が悪い場合にでも、焼入処理
品の表面硬度が高く、かつその軸方向に沿う表面
硬度分布を均一にすることのできるローリングプ
レス焼入装置を提供することにある。 本発明者等は、円筒状溝切りローラを用いた場
合と螺旋状溝切りローラを用いた場合との硬度分
布を比較し、螺旋状溝切りローラを用いた場合に
はその硬度分布がやや改善される傾向のあること
に着目し、種々検討を重ねた結果、上記のように
軸方向に沿う表面硬度分布にばらつきが生じるの
は、被処理品の処理中にその表面がローラ1,
2,3の加圧部7,8,9に接触する頻度が異な
るためであることを知見するに至つた。すなわち
被処理品表面に冷却水が吹き付けられる間に、頻
繁にローラ1,2,3の加圧部7,8,9に接触
する部分では急速な冷却が行なわれず、完全な焼
入が行なえていないということである。上記のよ
うに螺旋状溝切りローラを用いた場合にその硬度
分布が改善されるのも、被処理品表面がローラ
1,2,3の加圧部7,8,9に接触する頻度が
少なくなつているためであると推察される。 したがつて上記知見に基づく本発明のローリン
グプレス焼入装置は、加圧ローラと、一組の受ロ
ーラとを有し、これら各ローラには、鋼製被処理
品外周へ接触する加圧部を間隔をおいて形成し、
回転する各ローラ間に被処理品を配設して加圧状
態で回転させながら焼入を行うローリングプレス
焼入装置において、3個のローラから任意に選択
される1組のローラ間においては、一のローラの
加圧部による被処理品外周への接触部分と、他の
ローラの加圧部による被処理品外周への接触部分
とが相互に重複する重複部分を有し、この重複部
分の軸方向長さが約4mm以下になるように各ロー
ラの加圧部を配設したことを特徴とするものであ
る。 ここでいう、4mmという数値は本発明の目的を
達し得る値として、実験的にもまた理論的にも確
認された値である。 次にこの発明の具体的な実施例を図面を参照し
つつ詳細に説明する。 まず第6図a,bに本発明の第1の実施例を示
すが、このローリングプレス焼入装置も加圧ロー
ラ1と一対の受ローラ2,3とを有しており、ロ
ーラ1,2,3の形状以外の部分は前記した公知
の装置と略同様である。この場合にも加圧ローラ
1及び両受ローラ2,3はいずれもシヤフト部
4,5,6と、シヤフト部4,5,6より径大で
かつシヤフト部4,5,6に対して等間隔に配設
された加圧部7,8,9とを有している。これら
加圧部7,8,9はいずれも被処理品A外周に接
触する部分であるが、この場合、各加圧部7,
8,9の幅Wは各加圧部の配設ピツチPの3分の
1よりも大きく形成されている。そして各ローラ
1,2,3の各加圧部7,8,9は同一ピツチ
で、しかもその軸方向に3分の1ピツチずつずら
せた状態で配設されている。したがつて、これを
軸方向に直交する側面から見た場合(第6図a)
各加圧部7,8,9は交互に、その一部が上下方
向に互いに重なつた状態で配設されることにな
り、被処理品Aの周側部にはいずれか1つのロー
ラの加圧部7,8,9にのみ接触する部分aと、
いずれか2つのローラの加圧部7,8,9に接触
する部分bとが混在することになる。 この発明においては被処理品の上記2つのロー
ラの加圧部7,8,9に接触する部分bの幅、す
なわち各加圧部7,8,9の上下方向の重なり幅
が重要な因子となる。そこでこの部分bの幅を
種々変化させた各種実験を行なつた。例えば、加
圧ローラ1の加圧部7の直径を75mm、受ローラ
2,3の加圧部8,9の直径を115mm、各加圧部
7,8,9の幅を15mmとした場合、直径20〜70mm
の被処理品Aを用いて加圧部7,8,9のピツチ
Pを種々変化させてテストを行なつた。その結
果、いずれのテストにおいても、加圧部7,8,
9の上下方向の重なり幅が4mm以下の場合には被
処理品の表面硬度が高く、しかも軸方向に沿う表
面硬度分布にもばらつきがなく、重なり幅が4mm
を超えると急激に硬度分布にばらつきが生じるこ
とが明らかになつた。例えば、上記のような各加
圧部7,8,9の上下方向の重なり幅が4mmの場
合の軸方向に沿う表面硬度分布は第7図に示すよ
うにきわめて良好なものになる(鋼材成分は表1
に示すものと同じ)。 そこで次に、このようにいずれの場合にも、硬
度分布にばらつきの生ずる重なり幅の限界値が4
mmであることの理由についての検討を行なつた。
第8図には、850℃に加熱した鋼材表面を水にて
急速に冷却した場合の、冷却端面から所定距離だ
け離れた位置での冷却曲線(計算値)を示してい
るが、この図から、冷却開始後、1秒経過する
と、冷却端面では約120℃に、冷却端面から2mm
離れた位置では約430℃また冷却端面から4mm離
れた位置では約680℃にそれぞれ温度が低下する
ことが明らかである。ところで炭素鋼における
CCT図のノーズは通常、冷却開始約1秒後、約
450℃付近にあり、冷却速度がこれよりも速い場
合には完全なマルテンサイト組織が得られるが、
冷却速度がこれよりも遅い場合には一部にベーナ
イト組織を含み、完全な焼入を行なうことができ
ないとされている。このことと、上記の冷却曲線
から、冷却端面からの距離が約2mm以内であれば
熱伝導によつて完全な焼入を行なえることが判
る。ところで、いまこれを被処理品Aのうち、2
つの加圧部7,8,9に接触する部分bについて
考えると、この部分bは、もし仮に冷却水が有効
に作用しない場合にでも、加圧部7,8,9端面
から約2mm、すなわち両端面を考慮すると約4mm
以内の範囲は、加圧部7,8,9端面部からの熱
伝導によつて有効な焼入が行なえることになる。
以上のことから被処理品Aが2つのローラの加圧
部7,8,9に接触する部分bの幅が4mmを超え
た場合に急激に硬度分布のばらつきが生じるの
は、冷却水が有効に作用し得ない場合に、上記の
ような加圧部7,8,9端面側からの熱伝導によ
る冷却作用がその中央部まで作用しないためであ
ると考えられる。 また第6図に示すように、2つのローラの加圧
部7,8,9が上下方向に重なるような配置を採
用すると、被処理品表面にローラ面当り傷が生じ
るのを防止することが可能となる。 この発明のローリングプレス焼入装置は以上の
ように構成されたものであり、したがつてこの装
置によれば、材質の焼入性が悪い場合にでも、焼
入処理品の硬度が高く、かつその軸方向に沿う表
面硬度分布をばらつきのない均一なものとするこ
とができる。また加圧部による被処理品への接触
部同士が相互に重複する構成としたので、加圧力
が大きいような場合にも、ローラ面当り傷が生ず
るのを防止することが可能となる。
[Table] When parts with large variations in surface hardness are used, parts with low surface hardness may be selectively abraded, and surface compressive residual stress and strength may be partially reduced. ,the result,
A problem arises in that the durability of the product is significantly reduced. This invention was made in view of the above, and its purpose is to provide a hardened product with high surface hardness and a uniform surface hardness distribution along the axial direction even if the material has poor hardenability. The purpose of the present invention is to provide a rolling press hardening device that can perform the following steps. The present inventors compared the hardness distribution when using a cylindrical grooving roller and when using a helical grooving roller, and found that the hardness distribution was slightly improved when the helical grooving roller was used. After focusing on the fact that there is a tendency to
It has been found that this is because the frequency of contact with the second and third pressurizing parts 7, 8, and 9 is different. In other words, while the cooling water is sprayed onto the surface of the workpiece, the parts of the rollers 1, 2, and 3 that frequently come into contact with the pressurizing parts 7, 8, and 9 are not cooled rapidly and complete hardening is not performed. That means no. The reason why the hardness distribution is improved when using the spiral grooving roller as described above is that the surface of the workpiece comes into contact with the pressure parts 7, 8, and 9 of the rollers 1, 2, and 3 less frequently. It is assumed that this is because they are getting used to it. Therefore, the rolling press hardening apparatus of the present invention based on the above knowledge has a pressure roller and a set of receiving rollers, and each of these rollers has a pressure section that contacts the outer periphery of the steel workpiece. formed at intervals,
In a rolling press hardening device in which a workpiece is placed between rotating rollers and hardened while rotating under pressure, between one set of rollers arbitrarily selected from three rollers, There is an overlapping part where the contact part of the pressure part of one roller to the outer periphery of the workpiece and the part of the contact part of the pressure part of the other roller to the outer periphery of the workpiece overlap each other. The pressing part of each roller is arranged so that the length in the axial direction is about 4 mm or less. The numerical value of 4 mm here is a value that has been experimentally and theoretically confirmed as a value that can achieve the purpose of the present invention. Next, specific embodiments of the present invention will be described in detail with reference to the drawings. First, a first embodiment of the present invention is shown in FIGS. , 3 is substantially the same as the known device described above. In this case, the pressure roller 1 and both receiving rollers 2 and 3 are both connected to the shaft portions 4, 5, and 6, and have diameters larger than the shaft portions 4, 5, and 6, and are equally spaced relative to the shaft portions 4, 5, and 6. It has pressurizing parts 7, 8, and 9 arranged at intervals. These pressurizing parts 7, 8, and 9 are all parts that come into contact with the outer periphery of the workpiece A, but in this case, each pressurizing part 7,
The width W of 8 and 9 is larger than one-third of the arrangement pitch P of each pressure section. The pressing portions 7, 8, and 9 of the rollers 1, 2, and 3 are arranged at the same pitch and offset by one-third of a pitch in the axial direction. Therefore, when viewed from the side perpendicular to the axial direction (Fig. 6a)
The pressure units 7, 8, and 9 are arranged alternately so that some of them overlap each other in the vertical direction, and one roller is attached to the peripheral side of the workpiece A. a portion a that contacts only the pressurizing parts 7, 8, and 9;
The portion b that contacts the pressing portions 7, 8, and 9 of any two rollers coexists. In this invention, the width of the portion b of the workpiece that contacts the pressure parts 7, 8, and 9 of the two rollers, that is, the vertical overlap width of each pressure part 7, 8, and 9 is an important factor. Become. Therefore, various experiments were conducted in which the width of this portion b was varied. For example, if the diameter of the pressure part 7 of the pressure roller 1 is 75 mm, the diameter of the pressure parts 8, 9 of the receiving rollers 2, 3 is 115 mm, and the width of each pressure part 7, 8, 9 is 15 mm, Diameter 20~70mm
Tests were conducted using the processed article A while varying the pitches P of the pressurizing parts 7, 8, and 9. As a result, in all tests, the pressurizing parts 7, 8,
If the overlap width in the vertical direction of 9 is 4 mm or less, the surface hardness of the processed product is high, and there is no variation in surface hardness distribution along the axial direction, and the overlap width is 4 mm.
It has become clear that when the hardness exceeds this value, the hardness distribution suddenly fluctuates. For example, when the vertical overlap width of each of the pressurizing parts 7, 8, and 9 is 4 mm, the surface hardness distribution along the axial direction is extremely good as shown in Fig. 7 (steel material composition is table 1
(same as shown in ). Therefore, in both cases, the limit value of the overlap width at which variations in hardness distribution occur is 4.
We investigated the reason why it is mm.
Figure 8 shows the cooling curve (calculated value) at a predetermined distance from the cooled end surface when the steel surface heated to 850°C is rapidly cooled with water. , 1 second after the start of cooling, the temperature at the cooled end surface is approximately 120℃, and the temperature is 2 mm from the cooled end surface.
It is clear that the temperature decreases to about 430°C at a distant position and to about 680°C at a position 4 mm away from the cooling end face. By the way, in carbon steel
The nose of the CCT diagram usually shows about 1 second after the start of cooling.
If the temperature is around 450℃ and the cooling rate is faster than this, a complete martensitic structure can be obtained, but
It is said that if the cooling rate is slower than this, a part of the steel will contain a bainitic structure and complete hardening will not be possible. From this and the above cooling curve, it can be seen that complete hardening can be achieved by heat conduction if the distance from the cooled end face is within about 2 mm. By the way, this is 2 of the items to be processed A.
Considering the part b that contacts the two pressurizing parts 7, 8, and 9, even if the cooling water does not work effectively, this part b should be approximately 2 mm from the end surface of the pressurizing parts 7, 8, and 9, i.e. Approximately 4mm considering both end faces
Within this range, effective hardening can be performed by heat conduction from the end surfaces of the pressurizing parts 7, 8, and 9.
From the above, when the width of the part b where the processed product A contacts the pressure parts 7, 8, and 9 of the two rollers exceeds 4 mm, the sudden variation in hardness distribution occurs because cooling water is effective. It is thought that this is because when the cooling effect cannot be applied to the pressurizing parts 7, 8, 9, the cooling effect due to heat conduction from the end surfaces of the pressurizing parts 7, 8, 9 does not reach the central part thereof. Furthermore, as shown in FIG. 6, if the pressure parts 7, 8, and 9 of the two rollers are arranged so that they overlap in the vertical direction, it is possible to prevent scratches from occurring on the surface of the processed product due to contact with the roller surfaces. It becomes possible. The rolling press hardening device of the present invention is constructed as described above. Accordingly, even if the material has poor hardenability, the hardened product can be hardened and The surface hardness distribution along the axial direction can be made uniform without variation. Further, since the contact portions of the pressurizing portions on the workpiece are overlapped with each other, it is possible to prevent scratches caused by contact with the roller surface even when the pressurizing force is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は公知技術を示す図で、第
1図はローリングプレス焼入装置の原理図、第2
図及び第3図はそれぞれローラ形状を示す説明
図、第4図及び第5図はそれぞれ従来装置による
焼入硬度分布を示すグラフ、第6図ないし第8図
は本発明を説明するための図で、第6図a,bは
加圧部配置の一実施例の説明図、第7図は前記加
圧部配置による焼入硬度分布を示すグラフ、第8
図は焼入時の経過時間と温度との関係を示すグラ
フである。 A…被処理品、1…加圧ローラ、2,3…受ロ
ーラ、7,8,9…加圧部。
Figures 1 to 5 are diagrams showing known techniques, in which Figure 1 is a principle diagram of a rolling press hardening device, and Figure 2 is a diagram showing the principle of a rolling press hardening device.
3 and 3 are explanatory diagrams each showing the roller shape, FIGS. 4 and 5 are graphs each showing the quenching hardness distribution by a conventional device, and FIGS. 6 to 8 are diagrams for explaining the present invention. FIGS. 6a and 6b are explanatory diagrams of an example of the arrangement of pressure parts, FIG. 7 is a graph showing the quenching hardness distribution according to the arrangement of the pressure parts, and FIG.
The figure is a graph showing the relationship between elapsed time and temperature during quenching. A... Workpiece, 1... Pressure roller, 2, 3... Receiving roller, 7, 8, 9... Pressure section.

Claims (1)

【特許請求の範囲】[Claims] 1 加圧ローラと、一組の受ローラとを有し、こ
れら各ローラには、鋼製被処理品外周へ接触する
加圧部を間隔をおいて形成し、回転する各ローラ
間に被処理品を配設して加圧状態で回転させなが
ら焼入を行うローリングプレス焼入装置におい
て、3個のローラから任意に選択される1組のロ
ーラ間においては、一のローラの加圧部による被
処理品外周への接触部分と、他のローラの加圧部
による被処理品外周への接触部分とが相互に重複
する重複部分を有し、この重複部分の軸方向長さ
が約4mm以下になるように各ローラの加圧部を配
設したことを特徴とするローリングプレス焼入装
置。
1 It has a pressure roller and a set of receiving rollers, and each of these rollers is formed with a pressure part that contacts the outer periphery of the steel workpiece at intervals, and the workpiece is placed between the rotating rollers. In a rolling press hardening device that hardens a product while rotating it under pressure, between one set of rollers arbitrarily selected from three rollers, the pressure part of one roller is used to harden the product. There is an overlapping part where the contact part to the outer periphery of the processed product and the contact part to the outer periphery of the processed product by the pressure part of another roller overlap each other, and the length in the axial direction of this overlap part is about 4 mm or less A rolling press quenching device characterized in that the pressure section of each roller is arranged so that
JP17805782A 1982-10-09 1982-10-09 Rolling press hardening device Granted JPS5967312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17805782A JPS5967312A (en) 1982-10-09 1982-10-09 Rolling press hardening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17805782A JPS5967312A (en) 1982-10-09 1982-10-09 Rolling press hardening device

Publications (2)

Publication Number Publication Date
JPS5967312A JPS5967312A (en) 1984-04-17
JPS6360805B2 true JPS6360805B2 (en) 1988-11-25

Family

ID=16041847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17805782A Granted JPS5967312A (en) 1982-10-09 1982-10-09 Rolling press hardening device

Country Status (1)

Country Link
JP (1) JPS5967312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641315U (en) * 1987-06-20 1989-01-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184320A (en) * 1984-10-01 1986-04-28 Kawasaki Steel Corp Revolving type quenching apparatus
US6434992B1 (en) * 2001-02-05 2002-08-20 Hegenscheidt-Mfd Corporation Fillet rolling support roller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467504A (en) * 1977-11-09 1979-05-31 Hitachi Metals Ltd Method and apparatus for quenching round rod material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467504A (en) * 1977-11-09 1979-05-31 Hitachi Metals Ltd Method and apparatus for quenching round rod material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641315U (en) * 1987-06-20 1989-01-06

Also Published As

Publication number Publication date
JPS5967312A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US3294599A (en) Method and apparatus for heat treating low carbon steel
JPS6360805B2 (en)
US20060144112A1 (en) Method of manufacturing metal ring for endless metal belt
JPH079042B2 (en) Induction hardening method for thin annular parts and induction hardening apparatus therefor
JP3880086B2 (en) Heat treatment method for cylindrical workpiece
JP3238085B2 (en) Method of quenching a member having a perfect circular part and a deformed part
JPH02104421A (en) Warm spinning methods for metastable austenitic stainless steel
CN108676971A (en) A kind of bearing roller autoloader roller stick repair after surface treatment method
US1265944A (en) Process of and apparatus for heat treatment of metal objects.
JPH0417921A (en) Correcting method for improving fatigue resistance of rail
EP0760720A1 (en) Process for producing sturdy, wear-resistant rotating wire, rope and/or cable running surfaces, especially surfaces of wire drawing drums of wire drawing machines or similar conveyor rollers or drums
SU1504070A1 (en) Method of applying metal coatings
RU1808572C (en) Method of applying-coating on parts
JPS63243223A (en) Method for leveling band saw
JPH0123529B2 (en)
JP3669547B2 (en) Induction hardening method
SU1159681A1 (en) Apparatus for cold straightening of shaft-type work
JPH0635617B2 (en) How to insert a band saw
JPS6237691B2 (en)
JPS5923819A (en) Cooling method of pipe material
RU2146996C1 (en) Method of shot-preening of seamless railway wheels
JPH07268481A (en) High-frequency hardening method of rack shaft
JPS5952211B2 (en) Heat treatment method for metal annular body
JPS6050851B2 (en) Direct current quenching method and device using high frequency on two longitudinal sides of a relatively thin metal plate
JPS6364487B2 (en)