JPS6360254B2 - - Google Patents

Info

Publication number
JPS6360254B2
JPS6360254B2 JP21055382A JP21055382A JPS6360254B2 JP S6360254 B2 JPS6360254 B2 JP S6360254B2 JP 21055382 A JP21055382 A JP 21055382A JP 21055382 A JP21055382 A JP 21055382A JP S6360254 B2 JPS6360254 B2 JP S6360254B2
Authority
JP
Japan
Prior art keywords
damper
dynamic vibration
plates
vibration absorber
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21055382A
Other languages
Japanese (ja)
Other versions
JPS59103048A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21055382A priority Critical patent/JPS59103048A/en
Publication of JPS59103048A publication Critical patent/JPS59103048A/en
Publication of JPS6360254B2 publication Critical patent/JPS6360254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 本発明は塔状構造物の風などによる水平振動を
抑えるための振り子式動吸振器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pendulum-type dynamic vibration absorber for suppressing horizontal vibrations caused by wind or the like in a tower-like structure.

塔状構造物例えば工事中に独立状態となる長大
橋の主塔などは、比較的低風速の風によつてカル
マン振動を発生し、塔工事の作業上或いは塔構造
強度上有害となる。(以下長大橋の主塔を例とし
て説明する。) 上記の振動を抑えるために、従来は塔から索を
張り出してその先端部に減衰器を取付ける方式が
主として採用されていた。この方式には例えば(1)
ブロツクとすべり台の間のクーロン摩擦により減
衰性を振動系に付加するスライデイングブロツク
方式、(2)油圧減衰器を用い、油の造渦抵抗により
減衰性を振動系に付加する油圧減衰方式等があ
る。然し、これらの方式は、(1)の場合減衰効果の
定量的な信頼性に乏しく、ブロツクの作動性に問
題があり、(2)に場合(1)の有する問題は解消する
が、工事中とはいえ索を張ることは海域、減衰器
設置場所の確保に少なからず支障を来すという大
きな問題点を有するものである。従つて、索を張
らない制振方式がもとめられる。
Tower-shaped structures, such as the main tower of a long bridge that becomes independent during construction, generate Karman vibrations due to relatively low wind speeds, which is harmful to the tower construction work and to the strength of the tower structure. (The main tower of a long bridge will be explained below as an example.) In order to suppress the above-mentioned vibrations, the conventional method has been to extend a cable from the tower and attach a damper to the tip of the cable. For example, (1)
The sliding block method uses Coulomb friction between the block and the slide to add damping properties to the vibration system, and (2) the hydraulic damping method uses a hydraulic damper to add damping properties to the vibration system using the vortex resistance of oil. be. However, in case (1), these methods lack quantitative reliability of the damping effect and there is a problem with the operability of the block, and in case (2), although the problem of (1) is solved, However, stringing a cable poses a major problem in that it poses a considerable problem in securing the sea area and the location for installing the attenuator. Therefore, there is a need for a vibration damping method that does not require ropes.

索を張らない方式としては、空力学的な対策、
動吸振器による制振等が考えられる。空力学的対
策にはa仕切板、ネツによる方式(文献:橋梁と
基礎1974−3、「架設時の吊橋主塔の耐風安定性
と制振方式」)、(b)カウリング方式(文献:三菱重
工技報vol−14、No.3 1977−5、「長大つり橋主
塔架設時の耐風安定性」)等があるが、いづれも
実験の域を出ず、実際に使用された例はない。
又、これらの装置の取付け方について種々の問題
がある。
As a method without stringing cables, aerodynamic measures,
Vibration damping using a dynamic vibration absorber can be considered. Aerodynamic measures include a partition plate, the method by Netsu (Reference: Bridges and Foundations 1974-3, "Wind stability and vibration damping method of suspension bridge towers during construction"), and (b) cowling method (Reference: Mitsubishi Heavy Industries Technical Report vol-14, No. 3 1977-5, ``Wind resistance stability when constructing a main tower of a long suspension bridge,'' etc., but all of them are beyond the realm of experimentation and there are no examples of actual use.
Additionally, there are various problems with how these devices are installed.

次に、動吸振器による制振方式も索を張らない
方式で、本発明もこの方式に含まれるものである
から、まずその基本的な原理の説明を行なう。
Next, since the vibration damping method using a dynamic vibration reducer is also a method that does not involve stringing ropes, and the present invention is also included in this method, we will first explain its basic principle.

(尚、動吸振器はT.M.D「Tuned Mass
Damper」などと呼ばれることがある。) 構造物の大きさ(質量と剛性等)と対象とする
振動のモード形がわかると、この振動の性状をあ
らわすのに十分な次の3つの特性値が決まる。こ
れをモデル的に示せば第1図のようになる。図に
おいて、MTは構造物の等価質量(ts2/m)、KT
は構造物の等価バネ(t/m)、CTは構造物の等
価減衰(ts/m)を示す。この構造物に質量Md
バネKd、減衰Cdの振動特性値を有する動吸振器
を取付けた状態をモデル的に示せば第2図のよう
になる。然して、この動吸振器を取付けた構造物
の共振曲線の変化(動吸振器の減衰係数Cdをパ
ラメーターにとつたときの)を同様モデル的に示
すと第3図のようになる。第3図において、縦軸
は応答倍率、横軸は外力振動数ωp/固有振動数
ωTである。第3図のCd=Oの曲線は動吸振器の
減衰がない状態、Cd=∞の曲線は動吸振器の質
量Mdが構造物の質量MTに固着した状態の場合
で、共に応答振幅は大きい。Cd=Cd・iの曲線
は動吸振器を取付けたときの状態を示し構造物の
応答振幅は低下し、Cd=Cd
(The dynamic vibration absorber is TMD “Tuned Mass
It is sometimes called "Damper." ) Once the size of the structure (mass, rigidity, etc.) and the mode shape of the target vibration are known, the following three characteristic values are determined that are sufficient to express the properties of this vibration. This can be shown as a model as shown in Figure 1. In the figure, M T is the equivalent mass of the structure (ts 2 /m), K T
is the equivalent spring of the structure (t/m), and C T is the equivalent damping of the structure (ts/m). This structure has a mass M d ,
A model of a dynamic vibration reducer with vibration characteristic values of spring K d and damping C d is shown in FIG. 2. However, if the change in the resonance curve of a structure to which this dynamic vibration absorber is installed (when the damping coefficient C d of the dynamic vibration absorber is taken as a parameter) is similarly shown in a model, it becomes as shown in Fig. 3. In FIG. 3, the vertical axis is the response magnification, and the horizontal axis is the external force frequency ω p /natural frequency ω T . In Figure 3, the curve C d = O is for a state in which there is no damping of the dynamic vibration absorber, and the curve for C d = ∞ is for a state in which the mass M d of the dynamic vibration absorber is fixed to the mass M T of the structure, both of which are The response amplitude is large. The curve C d = C d・i shows the state when a dynamic vibration absorber is installed, and the response amplitude of the structure decreases, and C d = C d

Claims (1)

【特許請求の範囲】 1 制振すべき構造物の頂部又はその近傍に固定
された支持フレームと、上端部を線ヒンジによつ
て、制御すべき振動方向に直角な面上において該
支持フレームに取付けられ、揺動可能に吊り下げ
られた互に対向する2枚以上の上下方向に長い形
状の板と、該対向する2枚以上の板の下部に夫々
取付けられた重錘と、該対向する2枚以上の板の
相隣れる2枚の板の間に介在して両者と連結する
減衰器とよりなることを特徴とする振り子式動吸
振器。 2 前記減衰器として粘弾性体又は粘性体ダンパ
ーを使用したことを特徴とする特許請求の範囲第
1項記載の振り子式動吸振器。 3 前記減衰器として油圧ダンパーを使用したこ
とを特徴とする特許請求の範囲第1項記載の振り
子式動吸振器。
[Scope of Claims] 1. A support frame fixed at or near the top of a structure to be damped, and the upper end of the structure fixed to the support frame on a plane perpendicular to the direction of vibration to be controlled by a line hinge. Two or more vertically elongated plates that are attached and swingably suspended and facing each other, and weights that are respectively attached to the lower part of the two or more opposing plates; A pendulum-type dynamic vibration absorber comprising a damper interposed between two or more adjacent plates and connected to the two or more plates. 2. The pendulum type dynamic vibration absorber according to claim 1, characterized in that a viscoelastic body or a viscous body damper is used as the damper. 3. The pendulum type dynamic vibration reducer according to claim 1, wherein a hydraulic damper is used as the damper.
JP21055382A 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber Granted JPS59103048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21055382A JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21055382A JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPS59103048A JPS59103048A (en) 1984-06-14
JPS6360254B2 true JPS6360254B2 (en) 1988-11-24

Family

ID=16591223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21055382A Granted JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JPS59103048A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246042A (en) * 1985-08-22 1987-02-27 Nippon Kokan Kk <Nkk> Spring loaded pendulum-type dynamic vibration reducer
JP6683226B2 (en) * 2018-08-24 2020-04-15 住友ゴム工業株式会社 Vibration control device

Also Published As

Publication number Publication date
JPS59103048A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US8418413B2 (en) Windturbine support tower with pendulum-damping means
US4736701A (en) Dynamic vibration absorber
CA1151256A (en) Subspan oscillation and aeolian vibration absorber for single and bundle conductors
CN112663484A (en) Damping vibration attenuation device for controlling vortex-induced vibration of main beam of long-span bridge
Shum et al. Multiple‐tuned liquid column dampers for torsional vibration control of structures: experimental investigation
JPS5997342A (en) Pendulum-type dynamic vibration absorber
JPS6360254B2 (en)
JPS59110938A (en) Leaf spring type shock absorber using viscous elastic body or viscous body as damper
SU962502A1 (en) Dynamic oscillation dampener
Konishi et al. Earthquake response and earthquake resistant design of long span suspension bridges
JPH0312923Y2 (en)
CN110649551A (en) Inertia amplification type transmission line vibration damping cable
JPS6246042A (en) Spring loaded pendulum-type dynamic vibration reducer
JPH01214608A (en) Damping method for vortex excitation caused in bridge main tower
SU920143A1 (en) Dynamic oscillation dampener
JPS6397703A (en) Vibrationproof structure of tower like structure
JPH06220814A (en) Wind resistant vibration damping structure of cable stayed bridge
SU1702010A1 (en) Dynamic vibration suppressor
JP2005314921A (en) Suspended bridge
JPH04194108A (en) Vibration isolator for link-type cable
JPH1129906A (en) Vibration control method of suspension bridge girder, and the suspension bridge
JPS624939A (en) Two-joint pendulum type vibration absorber
JP3877483B2 (en) Gyro damping device
SU1270252A1 (en) Arrangement for damping oscillation of structure
Amerio et al. Wind induced vibrations of a high tapered obelisk: wind tunnel tests, numerical analysis and design of countermeasures