JPS5997342A - Pendulum-type dynamic vibration absorber - Google Patents

Pendulum-type dynamic vibration absorber

Info

Publication number
JPS5997342A
JPS5997342A JP57205946A JP20594682A JPS5997342A JP S5997342 A JPS5997342 A JP S5997342A JP 57205946 A JP57205946 A JP 57205946A JP 20594682 A JP20594682 A JP 20594682A JP S5997342 A JPS5997342 A JP S5997342A
Authority
JP
Japan
Prior art keywords
damper
vibration
absorber
dynamic vibration
vibration absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57205946A
Other languages
Japanese (ja)
Inventor
Matsuo Tsuji
辻 松雄
Isamu Kano
勇 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57205946A priority Critical patent/JPS5997342A/en
Publication of JPS5997342A publication Critical patent/JPS5997342A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems

Abstract

PURPOSE:To greatly reduce the frictional force which acts to a weight and to simplify the mechanism of a pendulum-type dyamic vibration absorber, by hanging the weight with a plurality of hangers at or near the top of a structural body and providing a damper which acts in the direction of vibration to be controlled. CONSTITUTION:Hangers 3 are attached to a support frame 1 in such a manner that the upper attached points of the hangers are spread on a plane perpendicular to the direction of that vibration of a structural body, which is to be controlled. As a result, the motion of a weight 2 is provided with a directionality. The natural frequency of a pendulum-type dynamic vibration absorber is set by adjusting the length of the hangers 3. The damping coefficient of the absorber is set by adjusting that of an oil damper 5 or by adjusting the lever ratio of a connecting rod 4. Various properties are thus adjusted to achieve optimal vibratory characteristic values against the vibratory characteristic values of the structural body whose vibration is to be restrained, to provide the dynamic absorber with a desired damping force. Since the frictional force in the absorber and its scale are small, the absorber can be used as a vibration restrainer for a main tower being built.

Description

【発明の詳細な説明】 本発明は塔状構造物の風などによる水平振動を抑えるた
めの振り子穴動吸振器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pendulum hole dynamic vibration absorber for suppressing horizontal vibration caused by wind or the like in a tower-like structure.

塔状構造物例えば工事中に独立状態となる長大橋の主塔
などは、比較的低風速の風によってカルマン振動を発生
し、塔工事の作業上或いは塔構造強度上有害となる。(
以下長大橋の主塔を例として説明する。) 上記の振動を抑えるために、従来は塔から索を張り出し
てその先端部に減衰器を取り付ける方式が主として採用
されていた。この方式には例えば(1)  ブロックと
すべり台の間のクーロン摩擦により減衰性を振動系に付
加するスライディングブロック方式、 (2)油圧減衰器を用い、油の造渦抵抗により減衰性を
振動系に付加する油圧減衰方式、 等がある。然し、これらの方式は、(1)の場合減衰効
果の定量的な信頼性に乏しく、ブロックの作動性に問題
があり、(2)の場合油圧減衰器のストロークに問題が
ある等の外に、工事中とはいえ索を張ることは海域、減
衰器設置場所の確保に少なからず支障を来すという大き
な問題点を有するものである。従って、索を張らない制
振方式がもとめられる。
Tower-shaped structures, such as the main tower of a long bridge that becomes independent during construction, generate Karman vibrations due to relatively low wind speeds, which is harmful to the tower construction work and to the strength of the tower structure. (
The main tower of a long bridge will be explained below as an example. ) In order to suppress the above-mentioned vibrations, the main method used in the past was to extend a cable from the tower and attach a damper to the end of the cable. Examples of this method include (1) a sliding block method that adds damping properties to the vibration system using Coulomb friction between the block and the slide; and (2) a hydraulic damper that adds damping properties to the vibration system using oil vortex resistance. There are additional hydraulic damping methods, etc. However, in the case of (1), these methods lack quantitative reliability of the damping effect and have problems with block operability, and in the case of (2), there are problems with the stroke of the hydraulic damper. However, even though construction is underway, stringing the cables poses a major problem in that it poses a considerable problem in securing the sea area and the location for installing the attenuator. Therefore, there is a need for a vibration damping method that does not require cables.

索を張らない方式としては、空力学的な対策、動吸振器
による制振等が考えられる。空力学的対策には(a)仕
切板、ネットによる方式(文献:橋梁と基礎1974−
3、r架設時の吊橋主塔の耐風安定性と制振方式J )
、(b)カウリング方式(文献:三菱重工技報 vol
 −14,a 31977−5、「長大つり橋主塔架設
時の耐風安定性」)等があるが、いづれも実験の域を出
ず、実際に使用された例はない。又、これらの装置の取
り付は方について種々の問題がある。
Possible methods that do not involve stringing cables include aerodynamic measures and vibration damping using dynamic vibration absorbers. Aerodynamic measures include (a) method using partition plates and nets (Reference: Bridges and Foundations 1974-
3. Wind resistance stability and vibration damping method of suspension bridge main tower during construction J)
, (b) Cowling method (Reference: Mitsubishi Heavy Industries Technical Report vol.
-14, a 31977-5, ``Wind resistance stability when constructing the main tower of a long suspension bridge''), but all of them are beyond the realm of experimentation, and there are no examples of them being actually used. Additionally, there are various problems with the installation of these devices.

次に、動吸振器による制振方式も索を張らない方式で、
本発明もこの方式に含まれるものであるから、まずその
基本的な原理の説明を行なう。(尚、動吸振器はT 、
M 、D rTuned Mass Damper j
などと呼ばれることがある。) 構造物の大きさく質量と剛性等)と対象とする振動のモ
ード形がわかると、その振動の性状をあられすのに十分
な次の3つの特性値が決まる。これをモデル的に示せば
第1図のようになる。図において、MTは構造物の等価
質量(ts2/ m ) 、KTは構造物の等価バネ(
’/m ) 、CTは構造物の等価減衰(ts/m)を
示す。この構造物に質量Md 。
Next, the vibration damping method using a dynamic vibration absorber is also a method that does not require ropes.
Since the present invention is also included in this system, the basic principle thereof will be explained first. (In addition, the dynamic vibration absorber is T,
M, D rTuned Mass Damper j
It is sometimes called. ) Once we know the structure's size, mass, rigidity, etc.) and the mode shape of the target vibration, we can determine the following three characteristic values that are sufficient to determine the nature of the vibration. This can be shown as a model as shown in Figure 1. In the figure, MT is the equivalent mass of the structure (ts2/m), and KT is the equivalent spring of the structure (
'/m), CT indicates the equivalent damping of the structure (ts/m). This structure has a mass Md.

バネKd 、減衰Cdの振動特性値を有する動吸振器を
取り付けた状態をモデル的に示せば第2図のようになる
。然して、この動吸振器を取り付けた構造物の共振曲線
の変化(動吸振器の減衰係数Cdをパラメーターにとっ
たときの)を同様モデル的に示すと第3図のようになる
。第6図において、縦軸は応答倍率、横軸は外力振動数
ω0/固有振動数ωTであム図のCd=0の曲線は動吸
振器の減衰がない状態、Cd =ocの曲線は動吸振器
の質量Mdが構造物の質量MTに固着した状態の場合で
、共に応答振幅は大きい。Cd = Cd−i  の曲
線は動吸振器を取り付けたときの状態を示し構造物の応
答振幅は低下し、Cd : Cd・optの曲線は最適
の値の減衰係数を有する動吸振器を取り付けたときの状
態を示し、構造物の応答振幅は相当に低下する。
If a dynamic vibration absorber having vibration characteristic values of spring Kd and damping Cd is attached, the state is shown in FIG. 2 as a model. However, if the change in the resonance curve of a structure equipped with this dynamic vibration absorber (when the damping coefficient Cd of the dynamic vibration absorber is taken as a parameter) is similarly shown in a model, it becomes as shown in FIG. In Figure 6, the vertical axis is the response magnification, and the horizontal axis is the external force frequency ω0/natural frequency ωT.The curve of Cd = 0 in the diagram shows the state where there is no damping of the dynamic vibration reducer, and the curve of Cd = oc shows the dynamic vibration. This is a case where the mass Md of the vibration absorber is fixed to the mass MT of the structure, and the response amplitude is large in both cases. The curve Cd = Cd-i shows the state when a dynamic vibration absorber is installed, and the response amplitude of the structure decreases, and the curve Cd: Cd・opt shows the state when a dynamic vibration absorber with the optimal value of the damping coefficient is installed. The response amplitude of the structure decreases considerably.

即ち、適当な値のMd 、Kd 、Cdを有する動吸振
器を構造物に取り付けるならば、外力で揺れるその振幅
を相当景仰えることができる。
That is, if a dynamic vibration absorber having appropriate values of Md, Kd, and Cd is attached to a structure, the amplitude of vibration due to external force can be considerably controlled.

構造物のMT 、 KT 、 CTに対して、動吸振器
のMd SKd 、 Cdと制振効率(対数減衰係数と
して表現する)との間には次のような関係がある。
With respect to MT, KT, and CT of the structure, there is the following relationship between Md SKd and Cd of the dynamic vibration absorber and damping efficiency (expressed as a logarithmic damping coefficient).

動吸振器の最適な固有振動数ωd・opt動吸振器の最
適な減衰係数Cd−opt上式の如< Md 、Kd 
、 Cdが設定されたとき、主体の構造物の対数減衰係
数δTは次式のようになる。
Optimal natural frequency ωd・opt of the dynamic vibration absorber Optimal damping coefficient Cd−opt of the dynamic vibration absorber As shown in the above formula < Md , Kd
, Cd are set, the logarithmic damping coefficient δT of the main structure is as follows.

以上述べた理論に従って動吸振器を装置化しようとする
場合、次のような問題が生ずる。
When trying to create a dynamic vibration reducer according to the theory described above, the following problems arise.

(a)装置機構の中に摩擦部が入り、理論通りの効果が
得られない。
(a) A frictional part enters the device mechanism, and the theoretical effect cannot be obtained.

(b)動吸振器を所定の固有振動数・(ωd・opt 
)と減衰係数(Cd=opt )に合わせる調整装置力
1大がかりとなる。
(b) The dynamic vibration absorber is set to a predetermined natural frequency ・(ωd・opt
) and the damping coefficient (Cd=opt) requires a large amount of adjustment device power.

そのため、建築構造物、橋梁構造物への動吸振器の適用
例は非常に少なく、本発明で対象とする振動は水平方向
であるのでこの観点から確かな資料による従来技術とし
て取り上げられるものヲマ、次に示すC1ticorp
 Centerビルの装置位のものである。
Therefore, there are very few examples of application of dynamic vibration absorbers to building structures and bridge structures, and since the vibration targeted by the present invention is in the horizontal direction, from this point of view, only those that can be taken up as prior art based on reliable materials, The following C1ticorp
It is comparable to the equipment in the Center Building.

構i物: 米1i : ! + ヨー りC1tico
rp Centerビル、高さ274m 等髄質量比:1150 振動周期: 6.5 sec 動吸振器:重錘は400tコンクリ一ト塊0油膜スライ
ド面を設ける。ガススプリ ング、油圧制御ダンパー使用0重錘 ストローク±1.37m。
Structure: Rice 1i: ! +Yo RiC1tico
rp Center building, height 274m Isomedullary mass ratio: 1150 Vibration period: 6.5 sec Dynamic vibration absorber: The weight is made of 400t concrete mass and has an oil film sliding surface. Zero weight stroke using gas spring and hydraulically controlled damper ±1.37m.

この装置では、ビルの頂部床上に巨大な重錘を設置し、
油圧ダンパーを介して床上の支点に連結したものである
が、上記(a)の摩擦力を小さくすることに神経を使っ
ており、そのために油膜面をつくり、装置−も大がかり
なものになっている。
In this device, a huge weight is installed on the top floor of a building.
It is connected to a fulcrum on the floor via a hydraulic damper, but care has been taken to reduce the frictional force in (a) above, so an oil film is created and the device becomes large-scale. There is.

この装置が対象とした構造物が巨大なビルであったこと
もあって、このような大メ兄模な装置となったのであろ
うが、工事用の吊橋主塔等には費用の点、規模の点から
採用は出来ない。例えば吊橋主塔の制振用であれば、重
錘の重量は数−となる。
The target structure for this device was a huge building, which is probably why it became such a large-scale device. It cannot be adopted due to scale. For example, if the weight is for vibration damping of a main tower of a suspension bridge, the weight of the weight will be several -.

この重錘をいかに摩擦がかからずに滑動させるかに装置
上の工夫が要るところである。
The device requires some ingenuity in how to slide this weight without causing friction.

本発明は、上記従来の動吸振器の有する問題点を解決し
、重錘に作用する摩擦力を著しく小さくし、機構を簡素
化して、工事用の割振装置として極めて効果的な動吸振
器を提供することを目的とする。
The present invention solves the problems of the conventional dynamic vibration reducer, significantly reduces the frictional force acting on the weight, simplifies the mechanism, and provides a dynamic vibration absorber that is extremely effective as a vibration allocation device for construction work. The purpose is to provide.

本発明の振り子穴動吸振器は、重錘を吊り下げた振り子
形式のもので、制振すべき構造物の頂部又はその近傍に
固定された支持フレームと、該支持フレームに複数の懸
垂部材を介して吊り下げられた重錘と、構造物の制御す
べき振動方向に揺動可能に下端部を該重錘に軸止され上
部を前記支持フレームに軸止された減衰器連結棒と、支
持フレームに固定された減衰器取り付は金具に取り付け
られ前記減衰器連結棒に連結された減衰器と−よりなる
ことを特徴とするものである。以下実施例図によりその
詳細を説明する。
The pendulum hole dynamic vibration absorber of the present invention is of a pendulum type with a weight suspended, and includes a support frame fixed at or near the top of a structure to be damped, and a plurality of suspension members on the support frame. a damper connecting rod whose lower end is pivoted to the weight and whose upper end is pivoted to the support frame so as to be able to swing in the direction of vibration to be controlled of the structure; The attenuator mounting fixed to the frame is characterized in that the attenuator is attached to a metal fitting and connected to the attenuator connecting rod. The details will be explained below with reference to embodiment figures.

第4図は本発明の振り子穴動吸振器の減衰器として油圧
ダンパーを使用した場合の1実施例の構成を示すもので
ある。動吸振器は制振すべき構造物の頂部又はその近傍
の高所に設置される。図において、1は構造物に固定さ
れた支持フレームであるが、構造物自身の構成部材も利
用出来る場合はそれに含めるものとする。2は重錘で、
その上部に取り付けた複数の懸垂部材6によって支持フ
レーム1に取り付けられ吊り下げられている。懸錘部材
3としてはワイヤーロープ或いは取り付は部が揺動可能
なように取り付けられた金属棒等が用いられる。懸垂部
材3は、構造物の制御すべき振動の方向に直角な平面上
で上方取り付は点をひろげるようにして支持フレーム1
に取り付け、重錘2の運動に方向性をもたせるようにす
る。
FIG. 4 shows the structure of an embodiment in which a hydraulic damper is used as the damper of the pendulum hole dynamic vibration absorber of the present invention. A dynamic vibration reducer is installed at a high place at or near the top of the structure to be damped. In the figure, 1 is a support frame fixed to a structure, but if the structural members of the structure itself can be used, they are included. 2 is a weight,
It is attached to and suspended from the support frame 1 by a plurality of suspension members 6 attached to its upper part. As the hanging weight member 3, a wire rope or a metal rod whose attachment part is swingably attached is used. The suspension member 3 is attached to the support frame 1 in such a way that the upper mounting points are spread out on a plane perpendicular to the direction of vibration of the structure to be controlled.
, so that the movement of the weight 2 has directionality.

4は、制振方向に揺動可能なように、その下端部を重錘
2の上部に軸止され、上部を支持フレーム1に軸止され
た減衰器連結棒で、pttpzはその揺動軸である。5
は油圧ダンパーで、支持フレーム1に固定された減衰器
取り付は金具乙に取り付けられ、この場合は減衰器連結
棒の上下の揺動軸の中間に連結されている。(又、工作
の都合によっては上側の揺動軸の上部に連結することも
ある。)取り付は金具は構造物の一部を利用し得る場合
は省略することも出来る。尚、構造物の動吸振器取り付
は位置の構造により、又所望の減衰力が得られる状態に
ある場合は、前記減衰器連結棒を用いずに直接重錘に減
衰器を取り付けることもあり得るが、動吸振器取り付は
工作上及び減衰力調整上から連結棒に取り付ける方が好
ましい。
4 is a damper connecting rod whose lower end is pivoted to the upper part of the weight 2 and its upper end is pivoted to the support frame 1 so as to be able to swing in the damping direction; It is. 5
is a hydraulic damper, and the damper mounting fixed to the support frame 1 is attached to the metal fitting B, and in this case, it is connected to the middle of the upper and lower swing shafts of the damper connecting rod. (Also, depending on the circumstances of the work, it may be connected to the upper part of the upper swing shaft.) The mounting metal fittings can be omitted if a part of the structure can be used. The installation of a dynamic vibration absorber on a structure depends on the structure of the structure, and if the desired damping force can be obtained, the attenuator may be installed directly on the weight without using the above-mentioned attenuator connecting rod. However, it is preferable to attach the dynamic vibration absorber to the connecting rod from the viewpoint of workmanship and damping force adjustment.

第5図及び第6図は本発明の動吸振器の減衰器として粘
弾性体(或いは粘性体)ダンパーを使用した実施例の構
成を示すもので、図において第4図と同一の記号は第4
図と同一の部材を示し、テは粘弾性体ダンパーで、支持
フレーム1に固定された減衰器取り付は金具6と減衰器
連結棒4との間に介在して両者と連結する。第5図は粘
弾性ダンバーチを直接に減衰器連結棒4に連結した場合
を示し、第6図は粘弾性体ダンパーの取り付はアーム7
を介して連結した場合を示す。
5 and 6 show the structure of an embodiment using a viscoelastic (or viscous material) damper as the damper of the dynamic vibration absorber of the present invention. In the figures, the same symbols as in FIG. 4
The same member as in the figure is shown, and Te is a viscoelastic damper, and the damper mounting fixed to the support frame 1 is interposed between the metal fitting 6 and the damper connecting rod 4 and is connected to both. Figure 5 shows the case where the viscoelastic damper is directly connected to the damper connecting rod 4, and Figure 6 shows the case where the viscoelastic damper is attached to the arm 7.
This shows the case where they are connected via .

油圧ダンパー使用の場合、粘弾性体ダンパー使用の場合
共に、制振すべき構造物の振動の特性値に対応して、夫
々最適な振動特性値が得られるように諸元を調整して、
動吸振器に所望の減衰力を与える。装置の固有振動数は
懸垂部材の長さの調整により、減衰係数はオイルダンパ
ーの減衰係数の調整又は減衰器連結棒のテコ比(第4図
、第5図の41と12の比)の調整による。(粘弾性体
ダンパー使用の場合は表−1の粘弾性体寸法以下の諸元
が調整される。) 上記の如き本発明の動吸振器の構成によれば、以下の如
き効果が得られる。
When using a hydraulic damper or a viscoelastic damper, the specifications are adjusted to obtain the optimum vibration characteristic value depending on the vibration characteristic value of the structure to be damped.
Provide the desired damping force to the dynamic vibration reducer. The natural frequency of the device can be adjusted by adjusting the length of the suspension member, and the damping coefficient can be adjusted by adjusting the damping coefficient of the oil damper or the lever ratio of the damper connecting rod (ratio of 41 and 12 in Figures 4 and 5). by. (If a viscoelastic damper is used, the dimensions of the viscoelastic material or less in Table 1 are adjusted.) According to the structure of the dynamic vibration absorber of the present invention as described above, the following effects can be obtained.

(1)摩擦力は懸垂部材の固定点における回転摩擦力と
オイルダンパーの摩擦力がテコ比分だけ縮小された力(
オイルダンパー使用の場合)だけとなり、いずれも小さ
く、少なくともテフロン(静摩擦係数0.06程度)を
重錘の滑動面に使用する場合よりも小さいと推定される
(1) The frictional force is the rotational frictional force at the fixed point of the suspension member and the frictional force of the oil damper reduced by the lever ratio (
(when using an oil damper), both of which are small, and are estimated to be at least smaller than when Teflon (static friction coefficient of about 0.06) is used for the sliding surface of the weight.

(2)装置の規模もそれほど大きくならず、工事中の主
塔の制振装置として採用出来る規模となる。
(2) The scale of the device is not so large that it can be used as a vibration damping device for the main tower under construction.

次に、実際の構造物に対して本発明の動吸振器を適用し
た場合の装置の概略の諸元について述べる。
Next, the general specifications of the device when the dynamic vibration absorber of the present invention is applied to an actual structure will be described.

1)構造物: 吊橋主塔(高さ133m、全型6400m)、1次たわ
み振動の振動特性値 MT  = 209.3 ts2/ 77LKT  =
994.5 t/m 0T=1・452ts/m(対数減衰率0.01相2)
動吸振器: 振動特性値は表−1に示す。
1) Structure: Suspension bridge main tower (height 133m, total type 6400m), vibration characteristic value of primary flexural vibration MT = 209.3 ts2/ 77LKT =
994.5 t/m 0T=1・452ts/m (logarithmic attenuation rate 0.01 phase 2)
Dynamic vibration absorber: Vibration characteristic values are shown in Table-1.

これにより動吸振器の諸元が算出される。This calculates the specifications of the dynamic vibration reducer.

、’、 Md−βMT = 2.09 t s” / 
m、°9重錘重量Wd = MdXg = 20.5 
tに=  −−0,99 1+β 、°、オイルダンパー炒用の場合の減衰係数・・・lt
: Jb=2 : 1としたとき上記動吸振器の振動特
性値よりの計算による装置の概略の諸元をまとめると次
のようになる。
,', Md-βMT = 2.09 t s”/
m, °9 weight weight Wd = MdXg = 20.5
t = −−0,99 1+β, °, damping coefficient for oil damper frying...lt
When Jb=2:1, the general specifications of the device calculated from the vibration characteristic values of the dynamic vibration absorber are summarized as follows.

重錘型ff1Wd:20.5 t =鉄材として2.6
6 m3(1,77X 1. OX 1.5 m )吊
り高さh:2.08m オイhタンバー Cdo : 2.18 ts /m上
記の装置を取り付けることにより得られる効果は、対数
減液率δTと゛し九表現すると、即ち、塔のもつ構造減
衰はδ=0.01程度であるから、#J20倍に増大す
る。応答[[について−し 言えば約2゜に減少したことになる。
Weight type ff1Wd: 20.5 t = 2.6 as iron material
6m3 (1,77 Expressed as follows: Since the structural damping of the tower is about δ=0.01, it increases by #J20 times. Regarding the response [[--in other words, it has decreased to about 2 degrees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は構造物の振動モデル、第2図は動吸振器を取り
付けた系のモデル、第6図は動吸振器を取り付り゛た状
態の構造物の共振曲顧、第4図、第5図、第6図は本発
明の振り子式動gji k 4の実施例図(斜視図)で
ある。 MT:構造物の等価質景、I(T:構造物の等何バネ、
CT:構造物の等価減衰、Md:動吸振器の質量、Kd
:動吸振器のバネ、Cd :動吸振器の減資、1:支持
フレーム、2:重錘、3:%;垂部材、4:減衰器連結
棒、ps*pz:揺動軸、5:油圧ダンパー、り・・・
粘弾性体(粘性体)ダンパー、6:減衰器取り付は金具
、7:粘弾性体ダンパーの取り付はアーム。 代理人 弁地士  木 村 三 餌 箱1図    第2図 第3図 第4図 第5図 第6図
Figure 1 is a vibration model of the structure, Figure 2 is a model of the system with a dynamic vibration absorber installed, Figure 6 is a resonance study of the structure with the dynamic vibration absorber installed, Figure 4, FIGS. 5 and 6 are views (perspective views) of an embodiment of the pendulum-type movable gjik 4 of the present invention. MT: equivalent texture of the structure, I (T: equivalent number of springs of the structure,
CT: equivalent damping of the structure, Md: mass of dynamic vibration absorber, Kd
: Spring of dynamic vibration absorber, Cd : Capital reduction of dynamic vibration absorber, 1: Support frame, 2: Weight, 3: Percentage member, 4: Attenuator connecting rod, ps*pz: Swing shaft, 5: Hydraulic pressure Damper, Ri...
Viscoelastic body (viscous body) damper, 6: Attenuator is attached to metal fittings, 7: Viscoelastic body damper is attached to arm. Agent: Mr. Kimura Feeding Box 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1)制振すべき構造物の頂部又はその近傍に固定された
支持フレームと、該支持フレームに複数の懸垂部材を介
して吊り下げられた電画と、構造物の制御すべき振動方
向に揺動可能に下端部を該重錘に軸止され上部を前記支
持フレームに軸止された減衰器連結棒と、支持フレーム
に固定された減衰器取り付は金具に取り付けられ前記減
衰器連結棒に連結された減衰器とよりなることを特徴と
する振り子穴動吸振器。 2)前記減衰器として油圧ダンパーを使用したことを特
徴とする特許請求の範囲第1項記載の振り子穴動吸振器
。 6)前記減衰器として粘弾性体又は粘性体ダンパーを使
用したことを特徴とする特許請求の範囲第1項記載の振
り子穴動吸振器。
[Claims] 1) A support frame fixed at or near the top of a structure to be damped, an electric picture suspended from the support frame via a plurality of suspension members, and control of the structure. a damper connecting rod whose lower end is pivoted to the weight and whose upper end is pivoted to the support frame so as to be able to swing in the desired vibration direction; A pendulum hole dynamic vibration absorber comprising a damper connected to the damper connecting rod. 2) The pendulum hole dynamic vibration absorber according to claim 1, wherein a hydraulic damper is used as the damper. 6) The pendulum hole dynamic vibration absorber according to claim 1, wherein a viscoelastic material or a viscous material damper is used as the damper.
JP57205946A 1982-11-26 1982-11-26 Pendulum-type dynamic vibration absorber Pending JPS5997342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205946A JPS5997342A (en) 1982-11-26 1982-11-26 Pendulum-type dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205946A JPS5997342A (en) 1982-11-26 1982-11-26 Pendulum-type dynamic vibration absorber

Publications (1)

Publication Number Publication Date
JPS5997342A true JPS5997342A (en) 1984-06-05

Family

ID=16515326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205946A Pending JPS5997342A (en) 1982-11-26 1982-11-26 Pendulum-type dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JPS5997342A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233537A (en) * 1986-04-03 1987-10-13 Kazuto Sedo Vibration suppressing method for structure
JPH0314941A (en) * 1990-06-13 1991-01-23 Kayaba Ind Co Ltd Damping device for structure
EP0428239A2 (en) * 1989-10-18 1991-05-22 Mitsubishi Jukogyo Kabushiki Kaisha Dynamic damper and method for detecting malfunction of a dynamic damper
JPH044335A (en) * 1990-04-23 1992-01-08 Mitsubishi Heavy Ind Ltd Pendulum type vibration damping device
US5779010A (en) * 1996-07-12 1998-07-14 Technical Manufacturing Corporation Suspended low-frequency horizontal pendulum isolator for vibration isolation systems
US20120063915A1 (en) * 2010-12-27 2012-03-15 Mitsubishi Heavy Industries, Ltd. Vibration control apparatus of wind turbine generator and wind turbine generator
CN104141352A (en) * 2014-07-21 2014-11-12 天津大学 Oscillating type dampers used for vibration prevention of tower
EP3433509B1 (en) * 2016-11-29 2020-05-13 Burkhard Dahl Compact three-dimensional ellipsoidal tuned pendulum

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233537A (en) * 1986-04-03 1987-10-13 Kazuto Sedo Vibration suppressing method for structure
EP0428239A2 (en) * 1989-10-18 1991-05-22 Mitsubishi Jukogyo Kabushiki Kaisha Dynamic damper and method for detecting malfunction of a dynamic damper
JPH044335A (en) * 1990-04-23 1992-01-08 Mitsubishi Heavy Ind Ltd Pendulum type vibration damping device
JPH0314941A (en) * 1990-06-13 1991-01-23 Kayaba Ind Co Ltd Damping device for structure
US5779010A (en) * 1996-07-12 1998-07-14 Technical Manufacturing Corporation Suspended low-frequency horizontal pendulum isolator for vibration isolation systems
US20120063915A1 (en) * 2010-12-27 2012-03-15 Mitsubishi Heavy Industries, Ltd. Vibration control apparatus of wind turbine generator and wind turbine generator
CN102713278A (en) * 2010-12-27 2012-10-03 三菱重工业株式会社 Vibration control device for windmill for wind-powered electricity generation, and windmill for wind-powered electricity generation
US8322975B2 (en) * 2010-12-27 2012-12-04 Mitsubishi Heavy Industries, Ltd. Vibration control apparatus of wind turbine generator and wind turbine generator
CN104141352A (en) * 2014-07-21 2014-11-12 天津大学 Oscillating type dampers used for vibration prevention of tower
EP3433509B1 (en) * 2016-11-29 2020-05-13 Burkhard Dahl Compact three-dimensional ellipsoidal tuned pendulum
US11255395B2 (en) 2016-11-29 2022-02-22 Burkhard Dahl Compact spatial ellipsoidal mass pendulum

Similar Documents

Publication Publication Date Title
Abdel-Rohman et al. Active control of tall buildings
Kwok et al. Performance of tuned mass dampers under wind loads
Yang et al. Active control and stability of cable-stayed bridge
US8418413B2 (en) Windturbine support tower with pendulum-damping means
Al-Saif et al. Modified liquid column damper for vibration control of structures
CN1327084C (en) Stayed cable shock attenuation device
JPH10504088A (en) Tuning mass damper
JPS5997342A (en) Pendulum-type dynamic vibration absorber
JP2010174550A (en) Active mass damper and construction
JP3854999B2 (en) Seismic isolation device
JPH0472094B2 (en)
JPH0310817B2 (en)
WO1992002743A1 (en) Vibration-damping apparatus
JPS59103048A (en) Pendulum type dynamic vibration absorber
JP3136325B2 (en) Hybrid dynamic vibration absorber
Patel et al. Seismic response of adjacent structures connected with semi-active variable friction dampers
JP2926107B2 (en) Damping bridge
JP2903075B2 (en) Multi-degree-of-freedom dynamic vibration absorber
JP3181369B2 (en) Boiler damping support structure
JP3803940B2 (en) Vibration control device for high-rise buildings with different building cycles in two orthogonal directions
JPH0228746B2 (en) FURIKOSHIKIDOKYUSHINKI
EP4145012A1 (en) Vibration damper
JPS6246042A (en) Spring loaded pendulum-type dynamic vibration reducer
Dhanush et al. Feasibility Study on Tuned Mass Dampers Surrounded by Fluid Media in Structures Subjected to Excitation
JPH0337057B2 (en)