JPS59103048A - Pendulum type dynamic vibration absorber - Google Patents

Pendulum type dynamic vibration absorber

Info

Publication number
JPS59103048A
JPS59103048A JP21055382A JP21055382A JPS59103048A JP S59103048 A JPS59103048 A JP S59103048A JP 21055382 A JP21055382 A JP 21055382A JP 21055382 A JP21055382 A JP 21055382A JP S59103048 A JPS59103048 A JP S59103048A
Authority
JP
Japan
Prior art keywords
damper
plates
dynamic vibration
vibration absorber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21055382A
Other languages
Japanese (ja)
Other versions
JPS6360254B2 (en
Inventor
Matsuo Tsuji
辻 松雄
Isamu Kano
勇 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21055382A priority Critical patent/JPS59103048A/en
Publication of JPS59103048A publication Critical patent/JPS59103048A/en
Publication of JPS6360254B2 publication Critical patent/JPS6360254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect

Abstract

PURPOSE:To reduce the frictional force acting on weights to simplify the mechanism by mutually opposing two or more plates having weights at the lower parts thereof, and mounting these plates on a support frame by wire hinges, in the titled dynamic vibration absorber suppressing a horizontal vibration of a tower- shaped structure. CONSTITUTION:Two or more weight suspending plates 2 and 2' having an elongated shape in the upward and downward direction are suspended down from the support frame 1 swingable on the perpendicular face in the vibrating direction to be controlled by means of wire hinges 3 and 3'. Weights 4 and 4' are mounted on the lower parts of the weight suspending plates 2 and 2'. A damper 9 of a viscous elastic member or a viscous member is mounted on the upper parts of the plates 2 and 2'. This damper 9 is fitted by a bolt 12 between damper fitting plates 11 and 11' axially supported in a rotatable manner by pins 10 and 10'.

Description

【発明の詳細な説明】 本発明は塔状構造物の風などによる水平振動を抑えるた
めの振り子穴動吸振器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pendulum hole dynamic vibration absorber for suppressing horizontal vibration caused by wind or the like in a tower-like structure.

塔状構造物例えば工事中に独立状態となる長大橋の主塔
などは(比較的低風速の風によってカルマン振動を発生
し、塔工事の作業上或いは塔構造強度上有害となる。(
以下長大橋の主塔を例として説明する。〕 上記の振動を抑えるために、従来は塔から索を張り出し
てその先端部に減衰器を取付ける方式が主として採用さ
れていた。この方式には例えば11ノブロツクとすべり
台の間のクーロン摩擦により減衰性を振動系に付加する
スライディングブロック方式、(2)油圧減衰器を用い
、油の造渦抵抗により減衰性を振動系に付加する油圧減
衰方式等がある。
Tower-shaped structures, such as the main tower of a long bridge that becomes independent during construction, generate Karman vibration due to relatively low wind speeds, which is harmful to the tower construction work and the strength of the tower structure. (
The main tower of a long bridge will be explained below as an example. ] In order to suppress the above-mentioned vibrations, the main method used in the past was to extend a cable from the tower and attach a damper to the end of the cable. This method includes, for example, a sliding block method that adds damping properties to the vibration system using Coulomb friction between the No. 11 block and the slide, and (2) a hydraulic damper that adds damping properties to the vibration system using oil vortex formation resistance. There are hydraulic damping methods, etc.

然し、これらの方式は、(t+の場合減衰効果の定量的
な信頼性に乏しく、ブロックの作動性に問題があり、(
2)の場合+17の有する問題は解消するが、工事中と
はいえ索を張ることは海域、減衰器設置場所の確保に少
なからず支障を来すという大きな問照点を有するもので
ある。従って、索を張らない制振方式がもとめられる。
However, these methods lack quantitative reliability of the damping effect in the case of (t+) and have problems with block operability;
In the case of 2), the problem of +17 will be resolved, but there is a major point of concern in that even though construction is underway, stringing a cable will pose a considerable hindrance to securing the sea area and the location for installing the attenuator. Therefore, there is a need for a vibration damping method that does not require cables.

索を張らない方式、としては、空力学的な対策、動吸振
器による制振等が考えられる。空力学的対策にはlal
仕切板、ネットによる方式(文献:橋梁と基礎1q74
−6、r架設時の吊橋主塔の耐風安定性と制振方式J 
) 、lblカウリング方式(文献:三菱重工技報vO
e−14、No、3 1977 5、「長大つり橋主塔
架設時の耐風安定性」)等があるが、いづれも実験の域
を出ず、実際に使用された例はない。又、これらの装置
の取付は方について種々の問題がある。
Possible methods that do not involve stringing cables include aerodynamic measures and vibration damping using dynamic vibration absorbers. lal for aerodynamic measures
Method using partition plates and nets (Reference: Bridges and Foundations 1q74
-6. Wind resistance stability and vibration damping method of suspension bridge main tower during construction J
), lbl cowling system (Reference: Mitsubishi Heavy Industries Technical Report vO
e-14, No. 3, 1977, 5, ``Wind resistance stability when constructing a main tower of a long suspension bridge,'' etc., but all of them are beyond the realm of experimentation and there are no examples of actual use. Additionally, there are various problems regarding the installation of these devices.

次に、動吸振器による制振方式も索を張らない方式で、
本発明もこの方式に含まれるものであるから、まずその
基本的な原理の説明を行なう。
Next, the vibration damping method using a dynamic vibration absorber is also a method that does not require ropes.
Since the present invention is also included in this system, the basic principle thereof will be explained first.

(尚、動吸振器は’IBM D [Tuned Mas
s Damp −er j  などと呼ばれることがあ
る。ン構造物の大きさく質量と剛性等)と対象とする振
動のモード形がわかると、その振動の性状をあられすの
に十分な次の6つの特性値が決まる。これをモデル的に
示せば第1図のようになる。図において、MT  は構
造物の等価質量(tS/rn)、KTは構造物の等価バ
ネ(’/m ) 、CT は構造物の等価減衰(”/m
 )  を示す。この構造物に質iMd。
(The dynamic vibration absorber is 'IBM D [Tuned Mas
It is sometimes called s Damp -er j. Once the size, mass, rigidity, etc. of the structure and the mode shape of the target vibration are known, the following six characteristic values are determined, which are sufficient to determine the nature of the vibration. This can be shown as a model as shown in Figure 1. In the figure, MT is the equivalent mass of the structure (tS/rn), KT is the equivalent spring of the structure ('/m), and CT is the equivalent damping of the structure (''/m
) is shown. iMd on this structure.

バネKd  、減衰Cd の振動特性値を有する動吸振
器を取付けた状態をモデル的に示せば第2図のようにな
る。然して、この動吸振器を取付けた構造物の共振曲線
の変化(動吸振器の減衰係数Cd  をパラメーターに
とったときの)を同様モデル的に示すと第6図のように
なる。第6図において、縦軸は応答倍率、横軸は外力振
動数ω0/固有振動数(IJT  である。第6図のC
d=Oの曲線は動吸′振器の減衰がない状態、Cd−■
の曲線は動吸振器の質量M(l が構造物の質量MT 
 に固着した状態の場合で、共に応答振幅は大きい。c
d=ca−iの曲線は動吸振器を取付けたときの状態を
示し構造物の応答振幅は低下し、’ cd ”” ca
 *Qp Lの曲線は最適の値の減衰係数を有する動吸
振器を取付けたときの状態を示し、構造物の応答振幅は
相当に低下する。即ち、適当な値のMd 、 Kd 、
Cd を有する動吸振器を構造物に取付けるならば、外
力で揺れるその振幅を相当量抑えることが出来る。
FIG. 2 shows a model of the state in which a dynamic vibration absorber having vibration characteristic values of spring Kd and damping Cd is attached. However, if the change in the resonance curve of a structure to which this dynamic vibration absorber is installed (when the damping coefficient Cd of the dynamic vibration absorber is taken as a parameter) is similarly shown in a model, it becomes as shown in FIG. In Figure 6, the vertical axis is the response magnification, and the horizontal axis is the external force frequency ω0/natural frequency (IJT).
The curve d=O is the state where there is no damping of the dynamic absorber, Cd-■
The curve is the mass M of the dynamic vibration absorber (l is the mass MT of the structure
In both cases, the response amplitude is large. c.
The curve d=ca-i shows the state when a dynamic vibration absorber is installed, and the response amplitude of the structure decreases, ' cd "" ca
The *Qp L curve represents the situation when a dynamic damper with an optimal value of the damping coefficient is installed, and the response amplitude of the structure is considerably reduced. That is, appropriate values of Md, Kd,
If a dynamic vibration reducer with Cd is attached to a structure, the amplitude of vibration due to external force can be suppressed by a considerable amount.

構造物のMT t KT v’ (:’T  に対して
、動吸振器のMd 、 Kd 、 Cd  と制振効率
(対数減衰係数として表現する)との間には次のような
関係がある。
MT t KT v' (: 'T of the structure, there is the following relationship between Md, Kd, Cd of the dynamic vibration absorber and damping efficiency (expressed as a logarithmic damping coefficient).

質量比 β =且・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・(1)
MT 動吸振器の最適な固有振動数ωdeopt動吸振器の最
適な減衰係数cd−op【上記の如(Mct 、 Kd
 、 Cd  が設定されたとき、主体の構造物の対数
減衰係数δT は次式のようになる。
Mass ratio β = and...
・・・・・・・・・・・・・・・・・・・・・・・・(1)
MT Optimal natural frequency ωdeopt of dynamic vibration absorber Optimal damping coefficient cd-op [as above (Mct, Kd
, Cd are set, the logarithmic damping coefficient δT of the main structure is as follows.

以上述べた理論に従って動吸振器を装置化しようとする
場合、次のような問題が生ずる。
When trying to create a dynamic vibration reducer according to the theory described above, the following problems arise.

Ial装置機構の中に摩擦部が入り、理論通りの効果が
得られない。
A frictional part enters the Ial device mechanism, and the theoretical effect cannot be obtained.

lbl動吸振器を’Pf+足の固有振動数(ωd−op
L )と減衰係数(cd−optン  に合わせる調整
装置が大がかりとなる。
lbl dynamic vibration absorber is 'Pf + natural frequency of foot (ωd-op
A large-scale adjustment device is required to match the L) and attenuation coefficient (CD-OPT).

そのため、建築構造物、橋梁構造物への動吸振器の適用
例は非常に少なく、本発明で対象とする振動は水平方向
であるのでこの観点から確かな資料による従来技術とし
一〇取上げられるものは、次に示すC1ticorp 
Center ビルの装置位のものである。
Therefore, there are very few examples of application of dynamic vibration absorbers to building structures and bridge structures, and since the vibration targeted by the present invention is in the horizontal direction, from this point of view, it is considered as prior art based on reliable materials. is the following C1ticorp
It is comparable to the equipment in the Center building.

構造物 :米国ニューヨーク C4L1corpCen
terビル、高さ274m 等画質量比 :1150 振動周期: 6.5 sec 動吸振器:重錘は400L  コンクリート塊。
Structure: C4L1corpCen, New York, USA
ter building, height 274m Isometric mass ratio: 1150 Vibration period: 6.5 sec Dynamic vibration absorber: Weight is 400L Concrete block.

油膜スライド面を設ける。ガスス フ’ IJソング油圧制御ダンパー使用。Provide an oil film sliding surface. Gussu Uses IJ song hydraulically controlled damper.

重錘ストローク±1.57 m。Weight stroke ±1.57m.

この装置では、ビルの頂部床上に巨大な重錘を設置し、
油圧ダンパーを介して床上の支点に連結したものである
が、上記1a)の摩擦力を/ノ・さくすることに神経を
使っており、そのために油膜面をつくり、装置も大がか
りなものになっている。この装置が対象とした構造物が
巨大なピルであったこともあって、このような大規模な
装置となったのであろうが、工事用の吊橋主塔等には費
用の点、規模の点から採用は出来ない。例えば吊橋主塔
の制振用であれば、重錘の重量は数tonとなる。
In this device, a huge weight is installed on the top floor of a building.
It is connected to a fulcrum on the floor via a hydraulic damper, but care is taken to reduce the frictional force mentioned in 1a) above, so an oil film is created and the equipment becomes large-scale. ing. This large-scale device was probably created partly because the target structure of this device was a huge pill, but it was difficult to use it for construction purposes such as suspension bridge main towers due to cost and scale. It is not possible to hire based on the points. For example, if the weight is used for damping the vibration of a main tower of a suspension bridge, the weight of the weight will be several tons.

この重錘をいかに摩擦がかからずに滑動させるかに装置
上の工夫が要るところである。
The device requires some ingenuity in how to slide this weight without causing friction.

本発明は、上記従来の動吸振器の有する問題点を解決し
、重錘に作用する摩擦力を著しく小さくし、機構を簡素
化して、工事用の割振装置としで極めて効果的な動吸振
器を提供することを目的とする。
The present invention solves the problems of the conventional dynamic vibration reducer, significantly reduces the frictional force acting on the weight, simplifies the mechanism, and makes the dynamic vibration absorber extremely effective as a vibration allocation device for construction work. The purpose is to provide

本発明の振り子犬動吸振器は、重錘を吊り下げた振り子
形式のもので、制振すべき構造物の頂部又はその近傍に
固定された支持フレームと、上端部を線ヒンジによって
、制御すべき振動方向に直角な面上において該支持フレ
ームに取付けられ、揺動可能に吊り下げられた互に対向
する2枚以上の上下方向に長い形状の板と、該対向する
2枚以上の板の下部に夫々取付けられた重錘と、該対向
する2枚以上の板の相隣れる2枚の板の間に介在して両
者と連結する減衰器とよりなることを特徴とするもので
ある。
The pendulum dynamic vibration absorber of the present invention is of a pendulum type in which a weight is suspended, and is controlled by a support frame fixed at or near the top of a structure to be damped, and a line hinge at the upper end. two or more vertically elongated plates facing each other that are attached to the support frame on a plane perpendicular to the direction of vibration and are swingably suspended; It is characterized by comprising a weight attached to each lower part and an attenuator interposed between and connected to two or more adjacent plates of the two or more opposing plates.

以下実施例図によりその詳細を説明する。The details will be explained below with reference to embodiment figures.

第4図1alは本発明の振り子犬動吸振器の、減衰器と
して粘弾性体(又は粘性体〕ダンパーを使用した場合の
1実施例の構成を示す斜視図である。
FIG. 4 1al is a perspective view showing the structure of an embodiment of the swing motion vibration absorber of the present invention in which a viscoelastic (or viscous) damper is used as the damper.

動吸振器は制振すべき構造物の頂部又はその近傍の高所
に設置される。第4図1al において、1は構造物に
固定された支持フレームであるが、構造物自身の構成部
材も利用出来る場合はそれに含めるものとする。2,2
′は上下方向に長い形状の2枚以上の重錘懸垂板で、夫
々線ヒンジ6.6′によって、制御すべき振動方向に直
角な面上において揺動可能忙支持フレーム1に吊り下げ
られている。
A dynamic vibration reducer is installed at a high place at or near the top of the structure to be damped. In FIG. 4 1al, 1 is a support frame fixed to a structure, but if the structural members of the structure itself can be used, they are also included. 2,2
′ denotes two or more weight suspension plates having a vertically elongated shape, each of which is suspended from the swingable support frame 1 on a plane perpendicular to the vibration direction to be controlled by wire hinges 6 and 6′. There is.

重錘懸垂板2,2′は互に平行に向い合っており、制御
すべき振動方向にのみ常に平行を保ちながら揺動可能で
あろっ4,4′は夫々重錘懸垂板2,2′の下部に吊り
高さel  を調整可能に取付けられた重錘で、各々2
分割されて重錘懸垂板をはさんで重錘取付はボルト5.
5’によりしめつけらnて重錘懸垂板に固定さj、でい
る。吊り高さel  の調整は、ボルト5.5’を緩め
て重錘懸垂板2,2′に固定吉九た取付は金具乙に取付
けられ穴型錘位置調整用ボルト7の調節によって、重錘
懸垂板2,2′に設けた上下方向に長い孔8内を上下に
移動させることによって行われる。
The weight suspension plates 2 and 2' face each other in parallel, and can swing only in the direction of vibration to be controlled while always maintaining parallelism. A weight is attached to the bottom of the unit so that the lifting height el can be adjusted.
The weight is divided into parts and the weight suspension plate is sandwiched between them, and the weight is attached using bolts 5.
It is tightened by 5' and fixed to the weight suspension plate. To adjust the hanging height el, loosen the bolts 5.5' and fix the weights to the suspension plates 2 and 2'. This is done by moving up and down inside vertically long holes 8 provided in the suspension plates 2, 2'.

9は粘弾性体又は粘性体ターンバー(減衰器ンで、相隣
nる重錘懸垂板2,2′の向い合う面に、重錘懸垂板上
端部の綜ヒンジ6.6′と平行に夫々ビン−10、10
’によって旋回可能に軸止さ九たダンパー取付は板11
 、11’間にボルトで取付けられる。
Reference numeral 9 denotes a viscoelastic or viscous material turn bar (attenuator), which is attached to opposing surfaces of the adjacent weight suspension plates 2 and 2' in parallel with the helix hinges 6 and 6' at the upper end of the weight suspension plates, respectively. Bin-10, 10
'The damper is mounted on the shaft so that it can be rotated by the plate 11.
, 11'.

12はそのボルトで(下方位置のボルトは図では見えな
い)、ダンパー取付は板11 、11’と粘弾性体(又
は粘性体)を接着されている金属板16゜13′とを夫
々結合する。減衰器の取付は高さは、工作上取付けやす
い位置を任意に選ぶことが出来る。
12 is the bolt (the bolt in the lower position is not visible in the figure), and the damper installation connects the plates 11 and 11' and the metal plates 16 and 13' to which the viscoelastic body (or viscous body) is glued, respectively. . The height of the attenuator can be selected at any location that is convenient for construction.

上記の構造により、重錘懸垂板が振り子として揺動する
とき、粘弾性体(粘性体)ダンパーは剪断変形をうけて
減衰力を生起することが出来る。
With the above structure, when the weight suspension plate swings as a pendulum, the viscoelastic (viscous material) damper undergoes shearing deformation and can generate a damping force.

第4図1alは振り子犬動吸振器の減衰器として粘弾性
体(以下粘性体をも含む)ダンパーを水平に並べた形式
で、第4図1alは粘弾性体を鉛直に並べた形式を示す
。図1b)の場合は、粘弾性体(ま、図1alの如くダ
ンパー取付板11.11を介することなく直接に重錘懸
垂板2,2′に連結する。124オダンハ−増付ケボル
トである。
Figure 4 1al shows a type in which viscoelastic body (hereinafter also referred to as viscous body) dampers are arranged horizontally as a damper for a pendulum motion vibration absorber, and Figure 4 1al shows a type in which viscoelastic bodies are arranged vertically. . In the case of Fig. 1b), the viscoelastic body (or, as shown in Fig. 1al, is directly connected to the weight suspension plates 2, 2' without going through the damper mounting plate 11, 11).

第4図1clは、振り子犬動吸振器の減衰器として油圧
ダンパーを使用した場合の取付は方式を示す。
FIG. 4 1cl shows an installation method when a hydraulic damper is used as a damper for a swing motion vibration absorber.

図に2いて、2.2’は重錘懸垂板で、14は油圧ダン
パーである。油圧ダンパー14はその両端部を夫々ピン
15 、15’により重錘懸垂板2,2′に回動可能な
ように傾斜さtで取付けらnている。
In the figure, 2.2' is a weight suspension plate, and 14 is a hydraulic damper. The hydraulic damper 14 is rotatably attached at both ends to the weight suspension plates 2, 2' by pins 15, 15' at an inclination t.

図のaは油圧ダンパー増刊は点の高さ、bは幅で、傾斜
角度を決定する。
In the figure, a is the height of the point, and b is the width, which determines the inclination angle.

粘弾性体ダンパー使用の場合、油圧ダンパー使用の場合
共に、制振すべき構造物の振動の特性値に対応して、夫
々最適な振動特性値が得られるように諸元を調整して動
吸振器に所望の減衰力を与える。装置の固有振動数は重
錘の吊り高さel  の調整により、減衰係数は粘弾性
体ダンパー使用の場合表−1の粘弾性体体積以下の諸元
の調整により、油圧ダンパー使用の場合ダンパーの減衰
係数及び取付は角度等の調整による。
When using a viscoelastic damper or a hydraulic damper, dynamic vibration absorption is achieved by adjusting the specifications to obtain the optimum vibration characteristic value depending on the vibration characteristic value of the structure to be damped. Provide the desired damping force to the device. The natural frequency of the device can be determined by adjusting the hanging height el of the weight, the damping coefficient can be determined by adjusting the specifications below the viscoelastic volume in Table 1 when using a viscoelastic damper, and the damping coefficient can be determined by adjusting the damper's volume when using a hydraulic damper. The damping coefficient and installation are determined by adjusting the angle, etc.

上記の如き本発明の動吸振器の構成によtば、以下の如
き効果が得られる。
According to the structure of the dynamic vibration absorber of the present invention as described above, the following effects can be obtained.

(11摩擦力は懸垂部材の固定点に2ける回転摩擦力と
オイルダンパーの摩擦力がテコ比分だけ縮小された力(
オイルダンパー使用の場合)だけとなり、いずれも小さ
く、少なくともテフロン(静摩擦係数0.03 程度ン
を重錘の滑動面に使用する場合よりも小さいと推定され
る。
(11 Frictional force is the force obtained by reducing the rotational frictional force at the fixed point of the suspension member and the frictional force of the oil damper by the lever ratio (
Both of them are small, and are estimated to be at least smaller than when Teflon (static friction coefficient of about 0.03) is used for the sliding surface of the weight.

+21装置の規模もそnはど大きくならず、工事中の主
塔の割振装置として採用出来る規模となる。
The scale of the +21 device will not be too large and will be of a scale that can be used as an allocation device for the main tower under construction.

次に、実際の構造物に対して本発明の動吸振器を適用し
た場合の装置の概略の諸元について述べる。
Next, the general specifications of the device when the dynamic vibration absorber of the present invention is applied to an actual structure will be described.

υ 対象構造物: 斜張橋主塔(高さ122m、全重量1575りたわみ1
次振動の特性値・・・・・・・・・MT  = 40 
 LS2/m KT  =168  ’/m CT  ” CL261 ’ ”/昂(対数減衰率’T
 =0.01としてン 構造物の固有振動数ωT= z 05 rady。
υ Target structure: Cable-stayed bridge main tower (height 122m, total weight 1575, deflection 1
Characteristic value of next vibration...MT = 40
LS2/m KT = 168'/m CT "CL261 '"/Long (logarithmic decay rate 'T
= 0.01, the natural frequency of the structure ωT = z 05 rady.

2 動吸振器: 振動特性値は表−1に示される。2 Dynamic vibration absorber: The vibration characteristic values are shown in Table-1.

これらの式から動吸振器の諸元が算出される。The specifications of the dynamic vibration reducer are calculated from these equations.

まず質量比β(β=Md)を決める。β−土MT   
            125とする。
First, determine the mass ratio β (β=Md). β-Sat MT
125.

・°・庵=NT = D、 52 Lす□・°・Wd 
= 5.14’ 最適固有振動数ωd*opLは、 吊り高さel・optは、 最適衰係数Cd−optは′、 必要な粘弾性体の体積Vは ここでG2 = 500 ”//m2の材料を使用する
・°・嵵=NT = D, 52 Lsu・°・Wd
= 5.14' The optimal natural frequency ωd*opL is, The suspension height el・opt is, The optimal damping coefficient Cd-opt is ', The required volume V of the viscoelastic body is G2 = 500''//m2 Use materials.

−’、 V = 1.65XIOm’  = 1650
  cm’以上の計算により動吸振器の主要パラメータ
ーwct % cct 、e+  が次のように決定さ
nた。
-', V = 1.65XIOm' = 1650
The main parameters wct % cct and e+ of the dynamic vibration absorber were determined as follows by calculations over cm'.

Wd=5.14t Cd = [10712LS/m2(G2 = 500
. ’/r112の粘弾性体で1650 cm” ) e+=238m 上記の値をもとにして、第4図1alに示す形式の装置
を4台設置することとした。1台の所要値は、上記パラ
メーターのうちWd 、 Cdを4分の1にした値であ
る。
Wd=5.14t Cd=[10712LS/m2(G2=500
.. '/r112 viscoelastic material: 1650 cm'') e+=238 m Based on the above values, it was decided to install four devices of the type shown in Figure 4, 1al.The required value for one device is as shown above. It is a value obtained by dividing Wd and Cd of the parameters into one-fourth.

Wdo = Wd/4 = 785 K&Cd  = 
0.0178 ”7m (G2 = 500 ’/m2
として420 cm3ン (h  =258m (変更なし) 上記動吸振器4台設置により得られた効果は次即ち、こ
の種の構造物の減衰は、対数減衰率δTで表現すれば、
δT=101〜(102であるから減衰性能が10〜2
0倍に増加、換言すれば応答振幅は1/1o〜1/2o
に減少したことになる。
Wdo = Wd/4 = 785 K&Cd =
0.0178"7m (G2 = 500'/m2
420 cm3 (h = 258 m (no change)) The effect obtained by installing the four dynamic vibration absorbers described above is as follows: The damping of this type of structure is expressed as the logarithmic damping rate δT.
Since δT=101~(102, the damping performance is 10~2
Increased by 0 times, in other words the response amplitude is 1/1o to 1/2o
This means that it has decreased to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は構造物の振動モデル、第2図は動吸振器を取付
けた系のモデル、第6図は動吸振器を取付けた状態の構
造物の、共振曲線、第4図1alは本発明の振り子穴動
吸振器の実施例図(減衰器として粘弾性体ダンパー使用
の場合の斜視図ン、第4図1alは粘弾性体を鉛直に並
べた場合の減衰器部分の斜視図、第4図1cJは減衰器
として油圧ダンパーを使用した場合の減衰′型部分の側
面図である。 MT  ・・・構造物の等価質量、KT  ・・・構造
物の等価バネ、CT  ・・・構造物の等価減衰、廚・
・・動吸振器の質量、刈・・・動゛吸振器のバネ、cd
  ・・・動吸振器の減衰、1・・・支持フレーム、 
2 、2’・・・重錘懸垂板、6.6′・・・線ヒンジ
、4.イ・・・重錘、5,5′・・・重錘取付はボルト
、6・・・取付は金具、7・・・重錘位置調整用ボルト
、8・・・長孔、9・・・粘弾性体ダンパー(減衰器)
 、10 、10’・・・ピン、11 、11’・・・
ダンパー取付は板、12・・・ダンパー取付はボルト、
13 、 i 3’・・・金属板、14・・・油圧ダン
パー、15゜15′・・・ビン。 代理人 弁理士 木村三朗 第4 (a) (b)
Figure 1 is a vibration model of the structure, Figure 2 is a model of the system with a dynamic vibration absorber installed, Figure 6 is the resonance curve of the structure with the dynamic vibration absorber installed, and Figure 4 1al is the invention of the present invention. An example diagram of a pendulum hole dynamic vibration absorber (a perspective view when a viscoelastic damper is used as the attenuator, Fig. 4 1al is a perspective view of the attenuator part when viscoelastic bodies are arranged vertically, Fig. 4) Figure 1cJ is a side view of the damping 'type part when a hydraulic damper is used as a damper. MT: equivalent mass of the structure, KT: equivalent spring of the structure, CT: equivalent spring of the structure. equivalent attenuation,
... mass of dynamic vibration absorber, cutting ... spring of dynamic vibration absorber, cd
... Damping of dynamic vibration absorber, 1... Support frame,
2, 2'... Weight suspension plate, 6.6'... Line hinge, 4. A... Weight, 5, 5'... Bolt for mounting the weight, 6... Metal fitting for mounting, 7... Bolt for adjusting the weight position, 8... Long hole, 9... Viscoelastic damper (dampener)
, 10 , 10'...pin, 11, 11'...
Damper installation is by plate, 12... Damper installation is by bolt,
13, i3'...Metal plate, 14...Hydraulic damper, 15°15'...Bin. Agent Patent Attorney Saburo Kimura 4th (a) (b)

Claims (1)

【特許請求の範囲】 1)制振すべき構造物の頂部又はその近傍に固定された
支持フレームと、上端部を線ヒンジによって、制御すべ
き振動方向に直角な面上において該支持フレームに取付
けられ、揺動可能に吊り下げられた互に対向する2枚以
上の上下方向に長い形状の板と、該対向する2枚以上の
板の下部に夫々取付けられた重錘と、該対向する2枚以
上の板の相隣れる2枚の板の間に介在して両者お連結す
る減衰器とよりなることを特徴とする振り子穴動吸振器
。 2)前記減衰器として粘弾性体又は粘性体ダンパーを使
用したこ七を特徴とする特許請求の範囲第1項記載の振
り子穴動吸振器。 ω 前記減衰器として油圧ダンパーを使用したことを特
徴とする特許請求の範囲第1項記載の振り子穴動吸振器
[Claims] 1) A support frame fixed at or near the top of the structure to be damped, and the upper end is attached to the support frame by a line hinge on a plane perpendicular to the vibration direction to be controlled. two or more vertically elongated plates facing each other and swingably suspended; a weight attached to the lower part of each of the two or more facing plates; A pendulum hole dynamic vibration absorber comprising a damper interposed between two or more adjacent plates and connecting the two or more plates. 2) The pendulum hole dynamic vibration absorber according to claim 1, characterized in that a viscoelastic material or a viscous material damper is used as the damper. ω The pendulum hole dynamic vibration absorber according to claim 1, characterized in that a hydraulic damper is used as the damper.
JP21055382A 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber Granted JPS59103048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21055382A JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21055382A JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPS59103048A true JPS59103048A (en) 1984-06-14
JPS6360254B2 JPS6360254B2 (en) 1988-11-24

Family

ID=16591223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21055382A Granted JPS59103048A (en) 1982-12-02 1982-12-02 Pendulum type dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JPS59103048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246042A (en) * 1985-08-22 1987-02-27 Nippon Kokan Kk <Nkk> Spring loaded pendulum-type dynamic vibration reducer
JP2019049185A (en) * 2018-08-24 2019-03-28 住友ゴム工業株式会社 Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246042A (en) * 1985-08-22 1987-02-27 Nippon Kokan Kk <Nkk> Spring loaded pendulum-type dynamic vibration reducer
JP2019049185A (en) * 2018-08-24 2019-03-28 住友ゴム工業株式会社 Vibration control device

Also Published As

Publication number Publication date
JPS6360254B2 (en) 1988-11-24

Similar Documents

Publication Publication Date Title
US8418413B2 (en) Windturbine support tower with pendulum-damping means
Kwok et al. Performance of tuned mass dampers under wind loads
US4910929A (en) Added damping and stiffness elements
Ali et al. Seismic energy dissipation for cable‐stayed bridges using passive devices
Webster et al. Application of tuned mass dampers to control vibrations of composite floor systems
WO1999020859A1 (en) Method and apparatus to control seismic forces, accelerations, and displacements of structures
CN1327084C (en) Stayed cable shock attenuation device
CZ298103B6 (en) Method of protecting buildings and objects from dynamic forces caused by acceleration of foundation plate, for instance due to earthquake and apparatus for making the same
KR20040012813A (en) Frictional damper for damping movement of structures
US5259159A (en) Construction having a damping device
CN109235229A (en) Lever damping unit and cable-stayed bridge equipped with lever damping unit
Phan Passive winglet control of flutter and buffeting responses of suspension bridges
MX2008004936A (en) Damping for tall structures.
JPS5997342A (en) Pendulum-type dynamic vibration absorber
JPS59103048A (en) Pendulum type dynamic vibration absorber
WO2004003306A1 (en) Simple pendulum with variable restoring force
JP2750362B2 (en) Damping viscoelastic wall
Taylor Toggle brace dampers: A new concept for structural control
JP2926107B2 (en) Damping bridge
JPH0681516A (en) Vibrational energy absorber in damping device
CN106436947A (en) Damping device for large-span structure and design method thereof
CN106677053A (en) Steel box girder bridge girder
CN114754097B (en) Vibration isolation metamaterial device based on equivalent mass amplification and vibration isolation method
JP2516575B2 (en) Frame built-in vibration control device
JPH0228746B2 (en) FURIKOSHIKIDOKYUSHINKI