JPS6360212A - Smelting reduction method for iron ore - Google Patents

Smelting reduction method for iron ore

Info

Publication number
JPS6360212A
JPS6360212A JP20338486A JP20338486A JPS6360212A JP S6360212 A JPS6360212 A JP S6360212A JP 20338486 A JP20338486 A JP 20338486A JP 20338486 A JP20338486 A JP 20338486A JP S6360212 A JPS6360212 A JP S6360212A
Authority
JP
Japan
Prior art keywords
iron ore
reaction vessel
flue
exhaust gas
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20338486A
Other languages
Japanese (ja)
Inventor
Masaaki Sakurai
桜井 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20338486A priority Critical patent/JPS6360212A/en
Publication of JPS6360212A publication Critical patent/JPS6360212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To efficiently execute preheating and pre-reduction by using effectively the high temp. by blowing steam and water into a reaction vessel and flue and adjusting descending speed of iron ore blown under controlling the gas flowing speed ascending the flue. CONSTITUTION:At the time of smelting-reducing the iron ore by using the reaction vessel 11, the steam and water quantities blown into the reaction vessel 11 or the flue 12 from blowing holes 21, 22 are adjusted in accordance with grain size and specific gravity of the iron ore blown from the iron ore blowing hole 17 installed at the upper part of flue 12. In this way, the exhaust flowing speed is controlled by adjusting the exhaust gas temp. By this control of exhaust gas flowing speed, the iron ore does not become fluid and falls naturally in the reaction vessel 11. In this way, the utilizing efficiency of exhaust gas is improved and the pre-reduction rate for the iron ore is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に予備還元工程を改良した溶融還元方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention particularly relates to a melt reduction method with an improved preliminary reduction step.

(従来技術) 鉄鉱石の予備還元方法において、鉄鉱石を予熱、予備還
元する方法として、鉄鉱石を予め流動層に装入する方法
がある。この方法は、溶融還元を行なう反応容器から発
生した排ガスを利用して流動層を形成するものであるが
、上記排ガスは、1600〜1800℃あるため、その
ままでは流動層用ガスとして使用できず、1000’C
程度に冷却する必要がある。また流動層を形成しつる流
速を得るために別のガスを吹込んで流速を高める必要が
ある。このように流動層を利用する方法では、反応容器
から発生した高温の排ガスの顕熱をあまり有効に利用し
ていなかった。しがち排ガスを冷却し、流速を高めるた
めに別系統のガス吹込みを必要とし、設備が複雑であっ
た。また反応容器上部は、高温の排ガスが流通するため
ここが過熱される問題があった。
(Prior Art) In a method for pre-reducing iron ore, there is a method of preheating and pre-reducing iron ore by charging iron ore into a fluidized bed in advance. In this method, a fluidized bed is formed using exhaust gas generated from a reaction vessel in which melting and reduction is carried out, but since the temperature of the exhaust gas is 1600 to 1800°C, it cannot be used as is as a gas for a fluidized bed. 1000'C
It needs to be cooled to a certain degree. In addition, in order to form a fluidized bed and obtain a stable flow rate, it is necessary to increase the flow rate by blowing in another gas. In this method of using a fluidized bed, the sensible heat of the high-temperature exhaust gas generated from the reaction vessel is not utilized very effectively. In order to cool the flue gas and increase the flow rate, a separate gas injection system was required, making the equipment complex. In addition, there was a problem that the upper part of the reaction vessel was overheated due to the flow of high-temperature exhaust gas.

(発明が解決しようとする技術的課題)本発明は上記事
情に鑑みてなされたものでその目的とするところは、排
ガスの顕熱を有効に利用して鉄鉱石の予熱、予備還元を
効率よくおこない、しかも設備を簡略化することができ
、同時に反応容器上部の過熱を防止することができる鉄
鉱石の溶融還元方法を提供することにある。
(Technical problem to be solved by the invention) The present invention has been made in view of the above circumstances, and its purpose is to efficiently preheat and pre-reduce iron ore by effectively utilizing the sensible heat of exhaust gas. It is an object of the present invention to provide a method for melting and reducing iron ore, which can be carried out with simple equipment, and at the same time can prevent overheating of the upper part of a reaction vessel.

(技術的課題を解決する手段) 本発明は、炭材及び酸素を含有するガスを横吹きあるい
は底吹きしうる機構を備えた反応容器を用意し、この反
応容器に予備還元処理した鉄鉱石、炭材、及び酸素を供
給して鉄鉱石を還元、溶融する溶融還元方法において、
反応容器の開口上部に取付けられた煙道の上部から鉄鉱
石を吹込むとともに、反応容器及び/又は煙道内に水蒸
気及び/又は水を吹込んで、排ガスの温度を調節して上
記煙道を上昇するガスの流速を制御し、煙道上部から吹
込んだ鉄鉱石の降下速度を調節して、この鉄鉱石の予熱
、予備還元を調節する鉄鉱石の溶融還元方法である。
(Means for Solving Technical Problems) The present invention provides a reaction vessel equipped with a mechanism capable of side-blowing or bottom-blowing a gas containing carbonaceous material and oxygen, and storing iron ore pre-reduced in the reaction vessel. In a melt reduction method that reduces and melts iron ore by supplying carbonaceous material and oxygen,
Iron ore is injected from the upper part of the flue attached to the upper part of the opening of the reaction vessel, and steam and/or water is blown into the reaction vessel and/or the flue to adjust the temperature of the exhaust gas and rise up the flue. This is a method for melting and reducing iron ore in which preheating and preliminary reduction of the iron ore are controlled by controlling the flow rate of the gas and adjusting the rate of descent of the iron ore injected from the upper part of the flue.

(発明の詳細な説明) 以下本発明を図面を参照して説明する。(Detailed description of the invention) The present invention will be explained below with reference to the drawings.

第1図は本発明方法を実施する溶融還元装置を示し、転
炉型の反応容器11の開口上部に煙道12を取付け、こ
の煙道を集塵器13に接続している。反応容器11は底
部及び側部にそれぞれ吹込口14,15.16を取付け
ている。底部吹込口14からは酸素と炭材(主に微粉炭
)とを反応容器内の鉄浴に吹込むもので、この吹込みに
より炭Hの燃焼及び鉄鉱石の還元をおこなついる。側部
吹込口15からは酸素を吹込んで、スラグを攪拌するも
ので、この攪拌により、スラグの熱を鉄浴に伝達すると
ともにスラグと鉄浴との反応を促進している。別の側部
吹込口16からは酸素を吹込んで、反応容器11から発
生したCOガスを二次燃焼している。上記煙道12の上
部には、鉄鉱石吹込口17が取付けられ、ここから鉄鉱
石を反応容器内に自然落下させ、落下中に反応容器から
上昇する排ガスで予熱、予備還元している。また煙道内
には、ガス流速計18及びガス圧力計19が取付けられ
ている。更に集塵器13の出口側には、圧力制御弁20
が取付けられ、これを調節することにより反応容器内及
び煙道内の排ガスの圧力を任意に調節できるようになっ
ている。そして反応容器上部及び煙道中央部には、それ
ぞれ水蒸気及び/又は水の吹込口21.22が取付けら
れている。
FIG. 1 shows a smelting reduction apparatus for carrying out the method of the present invention, in which a flue 12 is attached to the upper part of the opening of a converter-type reaction vessel 11, and this flue is connected to a dust collector 13. The reaction vessel 11 is equipped with inlets 14, 15, and 16 at the bottom and sides, respectively. Oxygen and carbonaceous material (mainly pulverized coal) are blown into the iron bath in the reaction vessel through the bottom injection port 14, and this injection causes combustion of coal H and reduction of iron ore. Oxygen is blown in from the side blowing port 15 to stir the slag, and this stirring transfers the heat of the slag to the iron bath and promotes the reaction between the slag and the iron bath. Oxygen is blown in from another side blow-in port 16 to perform secondary combustion of the CO gas generated from the reaction vessel 11. An iron ore inlet 17 is attached to the upper part of the flue 12, from which the iron ore is allowed to fall naturally into the reaction vessel, and is preheated and prereduced by the exhaust gas rising from the reaction vessel during the fall. Furthermore, a gas flow meter 18 and a gas pressure gauge 19 are installed in the flue. Furthermore, a pressure control valve 20 is installed on the outlet side of the dust collector 13.
is attached, and by adjusting this, the pressure of the exhaust gas in the reaction vessel and the flue can be adjusted as desired. Steam and/or water inlets 21 and 22 are installed at the top of the reaction vessel and at the center of the flue, respectively.

しかして本発明では、鉄鉱石吹込口17から吹込まれる
鉄鉱石の粒径及び比重に応じて、反応容器11あるいは
煙道12内に吹込む水蒸気、水の量を調節して排ガス温
度を調節し、このことにより排ガス流速を制御し、鉄鉱
石が流動状態とならずに反応容器11内に自然落下する
ようにしている。即ち第2図は、排ガス流速をパラメー
タとし、これを5m/秒、4.3m/秒、3m/秒とさ
せて、鉄鉱石の比重、粒径の異ならせた時の反応容器開
口部での落下領域と流動化領域との変化について示して
いる。第3図は鉄鉱石の比重をパラメーターとして排ガ
スの流速と鉄鉱石の粒径との関係を示している。このよ
うな関係を利用して、本発明では、ガス流速計18でガ
ス流速を検出し、この検出信号とこれらの図に示した関
係とを比較する。例えば、鉄鉱石が流動化領域にある時
あるいは微粉の鉄鉱石を吹込む時は、吹込口21゜22
からの水蒸気、水の吹込み量を増加して排ガスの温度を
低下、例えば1100℃程度として排ガス流速を低下さ
せる。このことにより鉄鉱石が自然落下するようにする
Therefore, in the present invention, the exhaust gas temperature is adjusted by adjusting the amount of steam and water blown into the reaction vessel 11 or the flue 12 according to the particle size and specific gravity of the iron ore injected from the iron ore inlet 17. However, by this, the flow rate of the exhaust gas is controlled so that the iron ore naturally falls into the reaction vessel 11 without being in a fluidized state. That is, Figure 2 shows the flow rate at the opening of the reaction vessel when the exhaust gas flow velocity is set to 5 m/sec, 4.3 m/sec, and 3 m/sec, and the specific gravity and particle size of iron ore are varied. It shows the change between the falling region and the fluidized region. FIG. 3 shows the relationship between the flow rate of exhaust gas and the particle size of iron ore using the specific gravity of iron ore as a parameter. Utilizing such relationships, in the present invention, the gas flow rate is detected by the gas flow meter 18, and this detection signal is compared with the relationships shown in these figures. For example, when iron ore is in the fluidized region or when fine powdered iron ore is injected, the injection port 21°22
The temperature of the exhaust gas is lowered by increasing the amount of steam and water blown into the exhaust gas, for example, to about 1100° C., and the flow rate of the exhaust gas is lowered. This allows the iron ore to fall naturally.

なお本発明では、排ガス顕熱の利用効率を高めるために
反応容器内の圧力を、好ましくは3〜10atmと高め
るのが良い。
In the present invention, the pressure inside the reaction vessel is preferably increased to 3 to 10 atm in order to increase the utilization efficiency of exhaust gas sensible heat.

(発明の効果) しかして本発明によれば1600〜1800℃もの高温
の排ガスを直接利用でき、熱の利用効率を向上すること
ができる。しかも排ガスの流速を下げれば微粉の鉄鉱石
も使用可能となり、使用可能な鉄鉱石の種類が増加する
。また流動層及び排ガス冷却系統を必要としないので、
設備が簡略化される。更に反応容器上部から水蒸気、水
を吹込んだ場合この箇所の過熱を防止することができる
(Effects of the Invention) According to the present invention, exhaust gas as high as 1,600 to 1,800° C. can be directly utilized, and heat utilization efficiency can be improved. Moreover, by lowering the flow rate of exhaust gas, fine powdered iron ore can also be used, increasing the types of usable iron ore. Also, since a fluidized bed and exhaust gas cooling system are not required,
Equipment is simplified. Furthermore, if steam or water is blown into the reaction vessel from the top, overheating of this area can be prevented.

(実施例) 従来の流動層を使用した予備還元と、本発明による予備
還元とを行なったデークーを比較して示す。
(Example) A comparative example will be shown in which preliminary reduction using a conventional fluidized bed and preliminary reduction according to the present invention were performed.

表−1 なお従来法におけるガス流速は流動層内のガス流速を示
す。このデーターから本発明では、ガス圧力を高めて操
業でき、ガスの利用効率を高めることができる。また鉄
鉱石の予備還元率を高めることができ、微細な鉄鉱石を
利用でき、更に落下歩留りを向上できることがわかる。
Table 1 Note that the gas flow rate in the conventional method indicates the gas flow rate within the fluidized bed. Based on this data, in the present invention, the gas pressure can be increased for operation, and the gas utilization efficiency can be increased. It is also found that the preliminary reduction rate of iron ore can be increased, fine iron ore can be used, and the falling yield can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる溶融還元方法の一例を示す説明
図、第2図は排ガスの流速をパラメーターとして鉄鉱石
の粒径と比重を変えた場合の落下領域と流動化領域の変
化を示す図、第3図は鉄鉱石の比重をパラメーターとし
て鉄鉱石の粒径と排ガスの流速との関係を示す図である
。 11・・・反応容器、12・・・煙道、13・・・集塵
器、14・・・底部吹込口、15.16・・・側部吹込
口、17・・・鉄鉱石吹込口、18・・・ガス流速計、
19・・・ガス圧力計、20・・・圧力制御弁、21.
22・・・水蒸気、水の吹込口 出願人代理人 弁理士 鈴江武彦 ○2.炭材 第1図 流  速  (m7秒) 第3図
Figure 1 is an explanatory diagram showing an example of the melting reduction method according to the present invention, and Figure 2 shows changes in the falling area and fluidization area when the particle size and specific gravity of iron ore are changed using the flow rate of exhaust gas as a parameter. FIG. 3 is a diagram showing the relationship between the particle size of iron ore and the flow rate of exhaust gas using the specific gravity of iron ore as a parameter. 11... Reaction vessel, 12... Flue, 13... Dust collector, 14... Bottom inlet, 15.16... Side inlet, 17... Iron ore inlet, 18...Gas flow meter,
19... Gas pressure gauge, 20... Pressure control valve, 21.
22... Steam and water inlet Applicant's representative Patent attorney Takehiko Suzue○2. Charcoal material Figure 1 Flow velocity (m7 seconds) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 炭材及び酸素を含有するガスを横吹きあるいは縦吹きし
うる機構を備えた反応容器を備え、この反応容器に予備
還元処理した鉄鉱石、炭材、及び酸素を供給して鉄鉱石
を還元、溶融する溶融還元方法において、反応容器の開
口上部に取付けられた煙道の上部から鉄鉱石を吹込むと
ともに、反応容器及び/又は煙道内に水蒸気及び/又は
水を吹込んで、排ガス温度を調節して排ガス流速を制御
し、煙道上部から吹込んだ鉄鉱石の自然落下速度を調節
して、この鉄鉱石の予熱、予備還元を調節する鉄鉱石の
溶融還元方法。
Equipped with a reaction vessel equipped with a mechanism that can blow horizontally or vertically a gas containing carbonaceous material and oxygen, and supplying pre-reduced iron ore, carbonaceous material, and oxygen to this reaction vessel to reduce the iron ore. In the smelting reduction method, iron ore is injected from the upper part of the flue installed at the top of the opening of the reaction vessel, and steam and/or water is blown into the reaction vessel and/or the flue to adjust the exhaust gas temperature. A method for melting and reducing iron ore in which preheating and preliminary reduction of iron ore are controlled by controlling the flow rate of exhaust gas and adjusting the natural falling speed of iron ore injected from the upper part of the flue.
JP20338486A 1986-08-29 1986-08-29 Smelting reduction method for iron ore Pending JPS6360212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20338486A JPS6360212A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20338486A JPS6360212A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Publications (1)

Publication Number Publication Date
JPS6360212A true JPS6360212A (en) 1988-03-16

Family

ID=16473145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20338486A Pending JPS6360212A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Country Status (1)

Country Link
JP (1) JPS6360212A (en)

Similar Documents

Publication Publication Date Title
US4588437A (en) Method for producing molten pig iron or steel pre-products in a melt-down gasifier
SU1169995A1 (en) Method of producing pig iron and reducing gas in melting gasifier and device for effecting same
KR910006037B1 (en) Method for smelting reduction of iron ore
CA1160056A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
US3814404A (en) Blast furnace and method of operating the same
EP0320999B1 (en) Method for smelting reduction of iron ore and apparatus therefor
SU1479006A3 (en) Method of producing molten iron or steel products and reducing gas in melting gasifier
KR930007308B1 (en) Process for the production of liquid steel or pre-pig iron
JPS6360212A (en) Smelting reduction method for iron ore
JPS6360213A (en) Smelting reduction method for iron ore
JPH0136903Y2 (en)
JPS6360214A (en) Smelting reduction method for iron ore
JPS6056401B2 (en) Reactor - equipment for iron making
JPH09272907A (en) Furnace structure in smelting reduction plant
JPH01111809A (en) Method for stopping operation of iron ore fluidized bed reduction apparatus
JPH04314808A (en) Method and equipment for reforming exhaust gas in smelting reduction furnace
JPS6131166B2 (en)
JPH10183213A (en) Operation of smelting reduction equipment and furnace body structure therefor
JPH10158708A (en) Structure for furnace body of smelting reduction equipment
JPS62228874A (en) Preheated core shifter to fluidized-bed spare reducing furnace
JPH03177511A (en) Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace
JPS62227017A (en) Production of molten metal from powdery ore
JPH02179806A (en) Smelting reduction method for iron ore
JPH04224611A (en) Method for controlling holdup quantity of ore in circulating fluidized bed pre-reduction furnace