JPH04314808A - Method and equipment for reforming exhaust gas in smelting reduction furnace - Google Patents

Method and equipment for reforming exhaust gas in smelting reduction furnace

Info

Publication number
JPH04314808A
JPH04314808A JP3082656A JP8265691A JPH04314808A JP H04314808 A JPH04314808 A JP H04314808A JP 3082656 A JP3082656 A JP 3082656A JP 8265691 A JP8265691 A JP 8265691A JP H04314808 A JPH04314808 A JP H04314808A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
reforming
reduction furnace
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3082656A
Other languages
Japanese (ja)
Inventor
Koji Warisawa
割沢 康二
Hiromitsu Moridera
森寺 弘充
Takashi Nakamura
隆 中村
Shigehiko Nomura
成彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3082656A priority Critical patent/JPH04314808A/en
Publication of JPH04314808A publication Critical patent/JPH04314808A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reform exhaust gas to get gas very suitable for preliminary reduction by adding coal materials for reforming having different properties according to the property of the exhaust gas in preliminary reduction of a feed ore by the exhaust gas from a smelting reduction furnace. CONSTITUTION:Exhaust gas G from a smelting reduction furnace 2 enters a riser 5 through a flue 3 and a hot cyclone 4 installed in a fluidized bed preliminary reduction equipment 1 and preliminarily reduces a pulverized iron ore therein while it is fluidized to rise, and then discharges from a cyclone 7. The pulverized ore K in the riser 5 of the preliminary reduction equipment 1 is preliminarily reduced in the form of a fluidized bed by the exhaust gas G from the smelting reduction furnace 2 and the put into the smelting reduction furnace 2 as a preliminarily reduced ore RK. Coal materials having different properties, such as coal, char and coke are added from coal material feeding equipment for reforming exhaust gas 10 according to the degree of oxidation and temp. of the exhaust gas G to increase the quantity of reducing components, such as CO, H2 and CH4 in the exhaust gas and simultaneously to decrease the temp. of the exhaust gas to about 900 deg.C which is suitable for the preliminary reduction of an iron ore, and also added to the smelting reduction furnace as an ore with a high preliminarily reducing rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉱石の予備還元に利用
するために、溶融還元炉の排ガスを改質する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for reforming exhaust gas from a smelting reduction furnace for use in preliminary reduction of ore.

【0002】0002

【従来の技術】従来から、粉鉱石を予備還元するための
流動層還元装置とこの還元装置によって略30%程度ま
で予備還元された鉱石を溶融還元する溶融還元炉とを連
結した溶融還元設備がある。
[Prior Art] Conventionally, there has been a smelting reduction equipment that connects a fluidized bed reduction device for pre-reducing fine ore and a smelting reduction furnace that melts and reduces the ore that has been pre-reduced to about 30% by this reduction device. be.

【0003】かかる設備においては、溶融還元炉におい
て発生した排ガスは流動層還元装置に導入され、ここで
流動ガスとして機能する予備還元用の還元ガスとして利
用されることが多い。
[0003] In such equipment, the exhaust gas generated in the smelting reduction furnace is introduced into a fluidized bed reduction device, where it is often used as a reducing gas for preliminary reduction that functions as a fluidizing gas.

【0004】この予備還元のために用いられる還元ガス
としての適温は900℃程度であるのに対して、溶融還
元炉での酸素吹込操業中は炉口近傍で排ガスの温度は2
000℃以上に及ぶことがある。そのため、この排ガス
を予備還元用の還元ガスとして利用するためには冷却が
必要である。
[0004] The appropriate temperature for the reducing gas used for this preliminary reduction is about 900°C, whereas during the oxygen injection operation in the smelting reduction furnace, the temperature of the exhaust gas near the furnace mouth is 2.
Temperatures may exceed 000°C. Therefore, in order to utilize this exhaust gas as a reducing gas for preliminary reduction, cooling is required.

【0005】この排ガス冷却の手段として、排ガスをボ
イラー等の熱交換器によって冷却する方法、炉内に冷材
を投入して発生する排ガス温度を低下させる方法等も知
られている。
As means for cooling the exhaust gas, there are also known methods such as cooling the exhaust gas using a heat exchanger such as a boiler, and lowering the temperature of the generated exhaust gas by introducing a coolant into the furnace.

【0006】一方、この排ガスを予備還元炉のための還
元ガスとしての利用する場合は温度の調整と共に、その
酸化度(OD(%)=(CO2 +H2 O)/(CO
+CO2 +H2 +H2 O)  ×100)を小さ
く、すなわち、この排ガス中のCO,H2 を多くして
鉱石に対する還元能を高める必要がある。
On the other hand, when this exhaust gas is used as a reducing gas for a preliminary reduction furnace, the temperature must be adjusted and its oxidation degree (OD (%) = (CO2 + H2 O) / (CO
+CO2 +H2 +H2 O) ×100), that is, it is necessary to increase the amount of CO and H2 in this exhaust gas to improve the ability to reduce the ore.

【0007】この還元ガス変成のために、固体石炭を直
接炉内に装入して、ガスの変成と共に排ガス温度の適温
までの低下を狙った方法も、特開昭62−60806号
公報において開示されている。
[0007] For this reducing gas conversion, a method in which solid coal is directly charged into the furnace to convert the gas and lower the exhaust gas temperature to an appropriate temperature is also disclosed in JP-A-62-60806. has been done.

【0008】この固体石炭を装入する方法は、溶融還元
炉からの排ガスの改質と同時に予備還元鉱石の還元、装
入物の溶融熱源、溶融鉄酸化物の還元剤、加炭のための
炭素源となるチヤーが同時に生成でき、チャー化、チャ
ーの回収、装入等の工程が省略できるので設備費等、経
費の低減が可能であるという利点があるが、酸素吹込み
操業を行う場合には、燃焼が先行してしまい、ガス改質
が余り行われず、むしろ排ガス中のCO2 ,H2 が
増加して還元能が低下し、予備還元用のガスとして適性
が低下するという問題がある。
This method of charging solid coal improves the exhaust gas from the smelting reduction furnace, simultaneously reduces the pre-reduced ore, serves as a melting heat source for the charge, as a reducing agent for molten iron oxide, and as a material for carburization. Char, which is a carbon source, can be generated at the same time, and processes such as char conversion, char recovery, and charging can be omitted, which has the advantage of reducing equipment costs and other expenses.However, when performing oxygen injection operation However, there is a problem in that combustion occurs in advance and gas reformation is not performed much, and instead, CO2 and H2 in the exhaust gas increase, reducing reducing ability and reducing suitability as a preliminary reduction gas.

【0009】[0009]

【発明が解決しようとする課題】本発明は、溶融還元炉
からの排ガスを予備還元用として適性の高い還元用ガス
に効果的に改質する方法および装置を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention provides a method and apparatus for effectively reforming exhaust gas from a smelting reduction furnace into a reducing gas highly suitable for preliminary reduction.

【0010】0010

【課題を解決するための手段】本発明の第1の発明は、
溶融還元炉の排ガスを予備還元用の還元ガスとして用い
る際に、ガス改質用炭素物質を排ガスに対するガス改質
能別に分級して複数のホッパーに夫々貯留しておき、該
排ガスの性状に応じて各ホッパーからのガス改質用炭素
物質の切出し量を調整してガス改質能を調整し、これを
該排ガス中に投入し、該排ガスの酸化度を調整すること
を特徴とする溶融還元炉の排ガス改質方法であり、第2
の発明は、予備還元装置に排ガス供給する溶融還元炉に
複数種のガス改質用炭素物質を貯留し、該排ガス通路へ
の切出装置を備えた複数のホッパーと、排ガス通路に設
けた排ガス性状検出装置と、この排ガス性状検出装置か
らのガス性状検出情報に基づいて前記ホッパーからの該
排ガス通路への炭素物質の切出し量を調整する演算制御
装置を設けたことを特徴とする溶融還元炉の排ガス改質
装置である。
[Means for solving the problems] The first invention of the present invention is
When exhaust gas from a smelting reduction furnace is used as a reducing gas for preliminary reduction, the carbon material for gas reforming is classified according to the gas reforming ability for the exhaust gas and stored in multiple hoppers, depending on the properties of the exhaust gas. A smelting reduction method characterized in that the amount of carbon material for gas reforming cut out from each hopper is adjusted to adjust the gas reforming ability, and the carbon material is introduced into the exhaust gas to adjust the degree of oxidation of the exhaust gas. This is a furnace exhaust gas reforming method, and the second
In the invention, a plurality of types of carbon materials for gas reforming are stored in a smelting reduction furnace that supplies exhaust gas to a pre-reduction device, a plurality of hoppers equipped with a cut-out device to the exhaust gas passage, and an exhaust gas provided in the exhaust gas passage. A smelting-reduction furnace characterized by being provided with a property detection device and an arithmetic control device that adjusts the amount of carbon material cut out from the hopper to the exhaust gas passage based on the gas property detection information from the exhaust gas property detection device. This is an exhaust gas reformer.

【0011】また、第3の発明は、溶融還元炉の排ガス
を予備還元用の還元ガスとして用いる際に、溶融還元炉
に設けた複数のホッパーからの排ガス改質用炭素物質の
投入により排ガスを改質し、改質後の排ガス中に改質用
炭素物質より揮発分の他、石炭、コークス、チャー等、
炭素質装入フラックスを投入して、改質ガスの温度を降
下させ、この降温改質ガスを予備還元装置に供給するこ
とを特徴とする溶融還元炉の排ガス改質方法であり、第
4の発明は、溶融還元炉の排ガスを予備還元用の還元ガ
スとして用いる際に、該排ガス中に炭素物質を投入して
、該排ガスを改質し、改質後の排ガス中に炭素物質と共
に予備還元後の鉱石を投入し、改質ガスを降温し、併せ
て該予備還元鉱の還元度をさらに高めて溶融還元炉に供
給することを特徴とする溶融還元炉の排ガス改質方法で
ある。
[0011] Furthermore, in the third invention, when the exhaust gas of the smelting reduction furnace is used as the reducing gas for preliminary reduction, the exhaust gas is reduced by charging carbon material for exhaust gas reforming from a plurality of hoppers provided in the smelting reduction furnace. After reforming, the exhaust gas contains volatile components from the reforming carbon material, as well as coal, coke, char, etc.
A method for reforming exhaust gas in a smelting reduction furnace, characterized in that a carbonaceous charging flux is introduced to lower the temperature of the reformed gas, and the cooled reformed gas is supplied to a preliminary reduction device, and the fourth method is The invention provides that when exhaust gas from a smelting reduction furnace is used as a reducing gas for preliminary reduction, carbon substances are introduced into the exhaust gas to reform the exhaust gas, and the exhaust gas is subjected to preliminary reduction together with the carbon substances in the reformed exhaust gas. This is a method for reforming exhaust gas in a smelting reduction furnace, which is characterized by charging the subsequent ore, lowering the temperature of the reformed gas, and further increasing the degree of reduction of the pre-reduced ore and supplying the pre-reduced ore to the smelting reduction furnace.

【0012】また、第5の発明は、前記第2の発明にお
いて、ホッパーの一つに気化物(VM)の少ない石炭ま
たは気化物(VM)のほとんどないコークスまたはホッ
トサイクロン等で回収したチャーを冷却したものを収納
して、予備還元炉導入ガスの性状検出装置およびホット
サイクロンの上流で他のホッパーからのガス改質用石炭
の排ガス中への投入位置から上流に投入することによっ
て、ガス温度を主に調整する溶融還元炉における排ガス
改質方法である。
[0012] In a fifth invention, in the second invention, one of the hoppers contains coal with little vaporized matter (VM), coke with almost no vaporized matter (VM), or char recovered by a hot cyclone or the like. The temperature of the gas can be determined by storing the cooled material and injecting it into the flue gas of gas reforming coal from another hopper upstream of the preliminary reduction furnace introduction gas property detection device and the hot cyclone. This is an exhaust gas reforming method in a smelting reduction furnace that mainly adjusts the

【0013】[0013]

【作用】石炭吹き込みによるガス改質は、下記のガス化
反応が挙げられる。
[Operation] Gas reforming by coal injection includes the following gasification reactions.

【0014】 ■石炭→H2 ,Cm Hn ,C  −1000kc
al         反応(1)      (乾留
熱分解反応) ■C+2H2 →CH4   +17900 kcal
             反応(2)      (
チャーの水素化によるメタン生成反応)■C+H2 O
→CO+H2   −31400 kcal     
    反応(3)      (チャーの水性ガス、
反応不均一系)■C+2H2 O→CO2 +2H2 
  −18200 kcal   反応(4)    
  (チャーの水性ガス、反応不均一系)■C+CO2
 →2CO  −38200 kcal       
      反応(5)      (発生炉ガス反応
) この内、反応(1)で示される”熱分解”は、比較的低
温の350℃以上に加熱されると乾留熱分解されること
が知られている。熱分解によって、CH4 ,CO,H
2 等のガス成分、Cm Hn で代表される分解油お
よびタール等の液状成分、Cで示されるチャー等の固体
成分に変えられる。完全ガス化を目的とした高温乾留は
、700℃以上で行われ、油およびタール分を減じて、
ガス化率の向上を図ることが知られている。
■Coal → H2, Cm Hn, C -1000kc
al reaction (1) (carbonized pyrolysis reaction) ■C+2H2 →CH4 +17900 kcal
Reaction (2) (
Methane production reaction by hydrogenation of char) ■C+H2O
→CO+H2 -31400 kcal
Reaction (3) (char water gas,
Reaction heterogeneous system)■C+2H2 O→CO2 +2H2
-18200 kcal reaction (4)
(Char water gas, reaction heterogeneous system) ■C + CO2
→2CO -38200 kcal
Reaction (5) (Generating Furnace Gas Reaction) Among these, "thermal decomposition" shown in reaction (1) is known to result in carbonization pyrolysis when heated to a relatively low temperature of 350° C. or higher. By thermal decomposition, CH4, CO, H
2, liquid components such as cracked oil and tar represented by Cm Hn, and solid components such as char represented by C. High-temperature carbonization for the purpose of complete gasification is carried out at 700°C or higher to reduce oil and tar content.
It is known to improve the gasification rate.

【0015】反応(2)によるチャーのメタン化は、反
応式より低温(例えば700℃以下)で、水素分圧が高
い条件下で起こるので、溶融還元炉排ガスの予備還元炉
への利用を考える場合、改質後のガス温度を約1000
〜1200℃を目標としているため、主反応として起こ
り得ないものである。
[0015] Since the methanation of char in reaction (2) occurs at a lower temperature than the reaction formula (for example, 700°C or less) and under conditions where hydrogen partial pressure is high, it is considered that the exhaust gas from the smelting reduction furnace is used in the pre-reduction furnace. In case, the gas temperature after reforming is about 1000
Since the target temperature is ~1200°C, this cannot occur as a main reaction.

【0016】ガス化温度が1100℃以上の高温下では
反応(3)が主体で、1000℃以下では反応(4)が
併存するためCO2 を生成しはじめるとされている。 反応(3)の水性ガス化反応の平衡組成は、1100〜
1200℃の範囲で、CO,H2 のみの組成になり、
それ以上高温にしてもガス組成は変わらないことが知ら
れている。
It is said that when the gasification temperature is at a high temperature of 1,100°C or higher, reaction (3) is the main reaction, and at a gasification temperature of 1,000°C or lower, reaction (4) coexists and begins to produce CO2. The equilibrium composition of the water gasification reaction of reaction (3) is 1100~
In the range of 1200℃, the composition becomes only CO and H2,
It is known that the gas composition does not change even if the temperature is raised higher than that.

【0017】上記現象を説明したものとして、図2にL
urgi 社で行われたカーボン(チャー)、酸素、水
蒸気の各圧力における温度と平衡ガス組成を、図3に水
性ガス化反応と発生炉ガス反応の平衡組成を示す。また
、表1はガス化反応の平衡定数である。
As an explanation of the above phenomenon, FIG.
Figure 3 shows the temperature and equilibrium gas composition at each pressure of carbon (char), oxygen, and water vapor conducted at Urgi Corporation, and the equilibrium composition of the water gasification reaction and the generator gas reaction. Furthermore, Table 1 shows the equilibrium constants of the gasification reaction.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【表2】[Table 2]

【0020】[0020]

【表3】[Table 3]

【0021】一方、図4は Wenによる熱分解・燃焼
・ガス化時の石炭・チャーのガス化初期反応速度を示す
。これら参考諸データを利用して、溶融還元炉排ガスの
ガス改質を効果的に行うため、排ガス温度に適したガス
改質炭材の性状、サイズを考慮して、複数の炭材添加位
置を設定するものである。
On the other hand, FIG. 4 shows the initial gasification reaction rate of coal/char during thermal decomposition, combustion, and gasification by Wen. Using these reference data, in order to effectively reform the exhaust gas from the smelting reduction furnace, we set multiple carbon material addition positions, taking into consideration the properties and size of the gas reforming carbon material that is suitable for the exhaust gas temperature. This is what you set.

【0022】図4は前述のとおり石炭・チャーの熱分解
・燃焼・ガス化時の初期反応速度を示す図であり、同図
で明らかなように、石炭の熱分解反応は酸素による燃焼
と同等の速度で瞬時に終了する。一方、生成したチャー
とCO2 ,H2 Oとの反応は温度が低下すると遅く
なり、ガス改質剤としての効果は薄い。
As mentioned above, FIG. 4 is a diagram showing the initial reaction rate during thermal decomposition, combustion, and gasification of coal and char. As is clear from the figure, the thermal decomposition reaction of coal is equivalent to combustion with oxygen. ends instantly at a speed of On the other hand, the reaction between the generated char and CO2 and H2O slows down as the temperature decreases, making it less effective as a gas modifier.

【0023】従って、石炭吹き込みによるガス改質は、
熱分解によって石炭から揮発するCm Hn とCO2
 ,H2 Oとの気相反応が主であり、チャーや煤との
反応は期待できない。
[0023] Therefore, gas reforming by coal injection is
Cm Hn and CO2 volatilized from coal by pyrolysis
, H2O, and reactions with char and soot cannot be expected.

【0024】一方、同一排ガス条件下において、石炭粒
径が小さくなるほど石炭粒の加熱速度が早く、さらに単
位石炭重量当たりの表面積(比表面積)が大きくなるこ
とから、単位石炭重量当たり揮発分重量が多くなること
が明らかとなっており、同種の石炭であれば、吹き込み
添加される石炭は粒径が小さいほどガス改質能が高く、
粒径が大きくなるほど改質能は低いといえる。
On the other hand, under the same exhaust gas conditions, the smaller the coal particle size, the faster the heating rate of the coal particles, and the larger the surface area (specific surface area) per unit coal weight. It has become clear that the amount of gas reforming increases, and if the coal is of the same type, the smaller the particle size of the coal added by blowing, the higher the gas reforming ability.
It can be said that the larger the particle size, the lower the modification ability.

【0025】したがって、本発明においては、これらの
ことから揮発性が高く粒径の小さい石炭を溶融還元炉か
らの排ガスの改質剤として用いるものであるが、この石
炭の排ガス改質能は、排ガス温度、排ガス組成等ガスの
性状、排ガス量によっても変化し、排ガスの改質効率は
変化するので、石炭を予め排ガス改質能(揮発性、粒度
が支配的)別に分級、貯留しておき、この排ガス改質効
率を高位に維持するために、排ガスの性状に応じて、前
記分級されている石炭の中から種類を選択し、同時にそ
の供給量、投入速度等を設定し、排ガス中に所定の石炭
を供給し、該排ガスの改質を行うようにしている。
Therefore, in the present invention, coal with high volatility and small particle size is used as a reforming agent for the exhaust gas from the smelting reduction furnace. The reforming efficiency of the exhaust gas changes depending on the gas properties such as exhaust gas temperature and exhaust gas composition, and the amount of exhaust gas, so the coal is classified and stored in advance according to its exhaust gas reforming ability (volatility and particle size are dominant). In order to maintain this exhaust gas reforming efficiency at a high level, the type of coal is selected from among the classified coals according to the properties of the exhaust gas, and at the same time, the supply amount, input speed, etc. are set, and the A predetermined amount of coal is supplied and the exhaust gas is reformed.

【0026】通常の溶融還元炉の場合、炉口近傍の16
00℃以上の温度域においては、この排ガス改質剤とし
ての石炭の粒径は2〜5mmであることが実験の結果確
認されている。
[0026] In the case of a normal smelting reduction furnace, 16
As a result of experiments, it has been confirmed that the particle size of coal used as an exhaust gas modifier is 2 to 5 mm in a temperature range of 00° C. or higher.

【0027】[0027]

【実施例】図1は、本発明を実施する溶融還元プロセス
例を概略的に示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram schematically showing an example of a melt reduction process for carrying out the present invention.

【0028】溶融還元炉2からの排ガスGは、煙道3よ
り流動層予備還元装置1の上流に設けられたホットサイ
クロン4から、流動層予備還元装置1の上昇管5に導入
され、鉄鉱石を流動上昇させながら還元した後、上昇管
5と連結した下降管6の上方に位置するサイクロン式固
気分離装置を経て、流動層予備還元装置1の下流に設け
られたサイクロン7を経て排出される。
The exhaust gas G from the smelting reduction furnace 2 is introduced from the hot cyclone 4 provided upstream of the fluidized bed pre-reduction device 1 from the flue 3 into the riser pipe 5 of the fluidized bed pre-reduction device 1, and is then introduced into the riser pipe 5 of the fluidized bed pre-reduction device 1. After being reduced while flowing upward, it passes through a cyclone type solid-gas separator located above a downcomer pipe 6 connected to a riser pipe 5, and then is discharged via a cyclone 7 provided downstream of the fluidized bed preliminary reduction equipment 1. Ru.

【0029】また、流動層予備還元装置1の上昇管5の
下部の鉱石装入部8から導入された鉱石Kは、溶融還元
炉2からの排ガスGによって流動層を形成しつつ上昇管
5から下降管6に高速循環している間に部分還元され、
部分還元された鉱石RKは頂部から溶融還元炉2内に装
入される。溶融還元炉2に装入された予備還元鉱石RK
は、別途溶融還元炉上部から装入される炭材およにフラ
ックスと、前記ホットサイクロン4において分離された
チャーCHと共に形成されたスラグ層Sの上から酸素ラ
ンス9によって吹き込まれる酸素と底吹き攪拌ガスによ
って精錬される。
The ore K introduced from the ore charging section 8 at the lower part of the riser pipe 5 of the fluidized bed pre-reduction device 1 is formed into a fluidized bed by the exhaust gas G from the smelting reduction furnace 2 and is then discharged from the riser pipe 5. While circulating at high speed in the downcomer pipe 6, it is partially reduced,
The partially reduced ore RK is charged into the melting reduction furnace 2 from the top. Pre-reduced ore RK charged into smelting reduction furnace 2
The carbon material and flux are separately charged from the upper part of the melting reduction furnace, and the oxygen and bottom blowing are blown into the slag layer S by the oxygen lance 9 from above the slag layer S formed with the char CH separated in the hot cyclone 4. Refined by stirring gas.

【0030】10はガス改質用炭材供給装置であって、
揮発分の異なる分級された5種類の石炭を別々に収納す
るためのホッパーA,B,C,D,Eを有する。範囲に
よって最も熱分解能が低い石炭が分級されたホッパーに
は、浴組成への悪影響を少なくするために、ガス改質に
寄与しない成分と反応しスラグ化する作用を有する生石
灰、螢石、ドロマイト等のフラックス材を該石炭に混合
することが好ましい。
10 is a carbon material supply device for gas reforming,
It has hoppers A, B, C, D, and E for separately storing five types of coal classified with different volatile contents. In order to reduce the negative impact on the bath composition, the hopper where the coal with the lowest thermal decomposition ability is classified is filled with quicklime, fluorite, dolomite, etc., which have the effect of reacting with components that do not contribute to gas reformation and turning into slag. It is preferable that a flux material of 100% is mixed with the coal.

【0031】それぞれ分級された石炭TA ,TB ,
TC は、それぞれの石炭が有する揮発分の熱分解能に
応じて装入位置が変えられており、溶融還元炉2からの
排ガスの温度に応じた3箇所に投入口11,12,13
が設けられている。
[0031] Classified coal TA, TB,
The charging position of the TC is changed depending on the thermal decomposition ability of the volatile content of each coal, and there are three charging ports 11, 12, 13 in accordance with the temperature of the exhaust gas from the smelting reduction furnace 2.
is provided.

【0032】第1の投入口11はホットサイクロン4の
近くに設けられており、投入口位置は、第2および第3
の投入口よりもガス温度は低いため、炭材中のVMの分
解は可能であっても、生成チャーのガス化までは進まな
い。したがって、主にガス温度調整を主体とする機能を
持たせるため、使用炭材としては、VM率の低いもの、
場合によってはコークスやホットサイクロン4で回収し
たチャーを使用することが望ましい。一方、サイズ的に
は、熱分解後の未反応分チャーは、ホットサイクロン4
によって分離されることが望ましい。一方、炭材中のア
ッシュの融点は、改質後の最終ガス温度1000〜12
00℃より高温であって、液化しないものが望ましい。
[0032] The first input port 11 is provided near the hot cyclone 4, and the position of the input port is between the second and third input ports.
Since the gas temperature is lower than that at the input port, even though it is possible to decompose the VM in the carbonaceous material, the gasification of the generated char does not proceed. Therefore, in order to provide the main function of gas temperature adjustment, the carbon materials used are those with a low VM rate,
In some cases, it is desirable to use coke or char recovered by the hot cyclone 4. On the other hand, in terms of size, the unreacted char after thermal decomposition is
It is desirable that they be separated by On the other hand, the melting point of ash in the carbonaceous material is the final gas temperature after reforming of 1000 to 12
It is desirable that the temperature is higher than 00°C and that it does not liquefy.

【0033】第2の投入口12は、溶融還元炉2の炉口
近くの予備還元された鉱石の投入口と略同位置か、また
は同位置より炉体に近く配置される。この位置で投入さ
れる炭材は、ガス温度も未だ高温であることから、VM
率が高くて良く、チャーのガス化反応も充分期待できる
ので、サイズ的にも比較的制約を受けない。すなわち、
チャーのガス化は、投入位置からホットサイクロン4ま
でに反応すれば良い。しかし、第1の投入口11よりも
上流で、チャーのガス化反応が完了することが、  ガ
ス温度の制御上好ましく、上限粒径として2〜5mmが
実験結果より確認されて  いる。
The second inlet 12 is disposed at approximately the same position as the inlet for the pre-reduced ore near the furnace mouth of the smelting reduction furnace 2, or closer to the furnace body than the same position. Since the gas temperature of the carbon material introduced at this position is still high, the VM
Since the rate is good and the char gasification reaction can be fully expected, there are relatively no restrictions in terms of size. That is,
The gasification of char may be performed from the input position to the hot cyclone 4. However, it is preferable for the gasification reaction of the char to be completed upstream of the first input port 11 in terms of gas temperature control, and experimental results have confirmed that the upper limit particle size is 2 to 5 mm.

【0034】一方、サイズ的に大きくて、溶融還元炉か
らの排ガス流速で飛翔しない炭材は炉内に落下すること
、炭材中のアッシュ分も液化して炉内に滴下し得るか、
固体炭材に付着した状態でホットサイクロン4で回収す
ることが狙える。
On the other hand, is it possible that carbonaceous materials that are large in size and cannot be blown away by the flow rate of the exhaust gas from the smelting-reduction furnace fall into the furnace, and that the ash content in the carbonaceous materials can also be liquefied and dripped into the furnace?
The aim is to collect it in the hot cyclone 4 while it is attached to the solid carbon material.

【0035】この投入位置での本来の狙いは、炉口を通
り抜ける排ガスの温度分布やガス流速の偏差を少なくす
るために、次に示す第3の投入口13の位置(高さレベ
ル)および円周位置の両方から異にすることにある。し
たがって、第2の投入口12から投入するガス改質用炭
材は、その一部あるいは大半を第3の投入口13から投
入することも可能である。
The original aim of this injection position was to reduce the temperature distribution and gas flow rate deviation of the exhaust gas passing through the furnace mouth by adjusting the position (height level) and circle of the third injection port 13 as shown below. The purpose is to differ from both circumferential positions. Therefore, part or most of the gas reforming carbonaceous material inputted from the second input port 12 can also be inputted from the third input port 13.

【0036】また、サイズ制約を厳しくすることと、炭
材のVMレベル次第では、第1の投入口11の炭材と兼
用することも可能である。この場合は、第3の投入口1
3の炭材と兼用することは、全ての改質用炭材に制約を
設けることになり望ましくない。
Furthermore, depending on stricter size constraints and the VM level of the carbon material, it is also possible to use it as the carbon material for the first input port 11. In this case, the third input port 1
It is not desirable to use the same carbon material as No. 3 because it places restrictions on all of the reforming carbon materials.

【0037】第3の投入口13は、溶融還元炉2の炉口
内に開口し、排ガス温度が最も高温の位置へ炭材を投入
するためのものである。炭材としては熱分解後の未反応
チャーが炉内に落下しても、スラグ層に入り、炉内の冶
金反応に利用されるので無駄にはならない。したがって
、炭材のサイズは、比較的大きなもの、”塊炭材”5m
m以上のものを使用することも可能である。一方、ガス
顕熱の最大有効利用の考え方からすれば、VM率の高い
炭材が望ましい。一方、VM率が高い程、吸熱反応も大
きくなることから、炉内壁耐火物の高温ガスからの保護
に対しても効果的である。
[0037] The third inlet 13 opens into the furnace mouth of the melting reduction furnace 2, and is for injecting carbonaceous material into the position where the exhaust gas temperature is the highest. As a carbon material, even if unreacted char falls into the furnace after thermal decomposition, it will not go to waste because it will enter the slag layer and be used for the metallurgical reaction inside the furnace. Therefore, the size of the carbon material is relatively large, "lump carbon material" is 5m.
It is also possible to use more than m. On the other hand, from the perspective of maximizing the effective use of gas sensible heat, carbonaceous materials with a high VM rate are desirable. On the other hand, the higher the VM rate, the greater the endothermic reaction, which is also effective in protecting the furnace inner wall refractories from high-temperature gases.

【0038】なお、以上の説明では、ガス改質用炭材の
ガス改質能別分級は、VM率分級としたが、前記のとお
り、炭材の粒度によっても改質能は異なることから、粒
度別分級にしても良く、また、VM率分級と粒度分級と
を併用しても良い。
[0038] In the above explanation, the classification of carbonaceous materials for gas reforming according to their gas reforming ability was done by VM ratio classification, but as mentioned above, since the reforming ability differs depending on the particle size of the carbonaceous material, Classification by particle size may be used, or VM rate classification and particle size classification may be used together.

【0039】14は予備還元炉2のガス導入口に設けら
れたガス流量、ガス組成と温度を検出する装置であって
、検出したガス流量、ガス組成と温度を溶融還元炉2の
希望還元率とするために、最も効果的な分級石炭を選択
し、その投入量を制御することによって石炭原単位を理
論値に近く下げることが可能になる。排ガスの発生量、
ガス組成、温度等は略一定のパターンによって変化する
ので、予めこの変化パターンを考慮してガス改質用炭材
の投入を自動制御することも可能である。
Reference numeral 14 is a device for detecting the gas flow rate, gas composition and temperature, which is installed at the gas inlet of the pre-reduction furnace 2. In order to achieve this, by selecting the most effective classified coal and controlling its input amount, it becomes possible to reduce the coal consumption rate close to the theoretical value. Amount of exhaust gas generated,
Since the gas composition, temperature, etc. change according to a substantially constant pattern, it is also possible to automatically control the introduction of the carbonaceous material for gas reforming, taking this change pattern into consideration in advance.

【0040】[0040]

【発明の効果】本発明によって以下の効果を奏すること
ができる。
[Effects of the Invention] The following effects can be achieved by the present invention.

【0041】■  溶融還元炉からの排ガスの温度低下
とガス改質後のガス成分を安定して得られる。
(2) The temperature of the exhaust gas from the smelting reduction furnace is lowered and the gas components after gas reformation can be stably obtained.

【0042】■  上記結果により、予備還元炉におい
て鉱石の還元率を安定させることができる。一方、鉱石
の還元率が安定化するため、溶融還元炉の操業も安定す
る。
[0042] According to the above results, the reduction rate of the ore can be stabilized in the preliminary reduction furnace. On the other hand, since the reduction rate of the ore is stabilized, the operation of the smelting reduction furnace is also stabilized.

【0043】■  予備還元炉への導入還元ガス温度を
還元ガスの組成、特に酸化度(OD)への影響を少なく
して制御できる。
(2) The temperature of the reducing gas introduced into the preliminary reduction furnace can be controlled with less influence on the composition of the reducing gas, especially on the degree of oxidation (OD).

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を説明するためのシステムの概略図を示
す。
FIG. 1 shows a schematic diagram of a system for explaining the invention.

【図2】カーボン(チャー)、酸素、水蒸気の各圧力に
おける温度と平衡ガス組成との関係説明図である。
FIG. 2 is an explanatory diagram of the relationship between temperature and equilibrium gas composition at each pressure of carbon (char), oxygen, and water vapor.

【図3】水性ガス化反応の平衡組成との関係説明図であ
る。
FIG. 3 is an explanatory diagram of the relationship between the water gasification reaction and the equilibrium composition.

【図4】熱分解・燃焼・ガス化時の石炭・チャーの初期
ガス化反応速度の説明図である。
FIG. 4 is an explanatory diagram of the initial gasification reaction rate of coal/char during pyrolysis, combustion, and gasification.

【符号の説明】[Explanation of symbols]

1  流動層予備還元装置 2  溶融還元炉 3  煙道 4  ホットサイクロン 5  上昇管 6  下降管 7  サイクロン 8  鉱石装入部 9  酸素ランス 10:ガス改質用炭材供給装置 11,12,13  改質用石炭投入口14  ガス性
状検出装置 A,B,C,D,E  ホッパー
1 Fluidized bed preliminary reduction device 2 Melting reduction furnace 3 Flue 4 Hot cyclone 5 Rising pipe 6 Downcoming pipe 7 Cyclone 8 Ore charging section 9 Oxygen lance 10: Carbon material supply device for gas reforming 11, 12, 13 For reforming Coal input port 14 Gas property detection device A, B, C, D, E Hopper

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  溶融還元炉の排ガスを予備還元用の還
元ガスとして用いる際に、ガス改質用炭素物質を排ガス
に対するガス改質能別に分級して複数のホッパーに夫々
貯留しておき、該排ガスの性状に応じて各ホッパーから
のガス改質用炭素物質の切出し量を調整してガス改質能
を調整し、これを該排ガス中に投入し、該排ガスの酸化
度を調整することを特徴とする溶融還元炉の排ガス改質
方法。
[Claim 1] When exhaust gas from a smelting reduction furnace is used as a reducing gas for preliminary reduction, carbon materials for gas reforming are classified according to gas reforming ability for the exhaust gas and stored in a plurality of hoppers, respectively. The amount of carbon material cut out from each hopper for gas reforming is adjusted according to the properties of the exhaust gas to adjust the gas reforming ability, and this is then added to the exhaust gas to adjust the degree of oxidation of the exhaust gas. Features of a method for reforming exhaust gas in a smelting reduction furnace.
【請求項2】  予備還元装置に排ガス供給する溶融還
元炉に複数種のガス改質炭素物質を貯留し、該排ガス通
路への切出装置を備えた複数のホッパーと、排ガス通路
に設けた排ガス性状検出装置と、この排ガス性状検出装
置からのガス性状検出情報に基づいて前記ホッパーから
の該排ガス通路への炭素物質の切出し量を調整する演算
制御装置を設けたことを特徴とする溶融還元炉の排ガス
改質装置。
[Claim 2] A plurality of types of gas-reformed carbon substances are stored in a smelting reduction furnace that supplies exhaust gas to a pre-reduction device, and a plurality of hoppers equipped with cut-out devices to the exhaust gas passage, and an exhaust gas provided in the exhaust gas passage. A smelting-reduction furnace characterized by being provided with a property detection device and an arithmetic control device that adjusts the amount of carbon material cut out from the hopper to the exhaust gas passage based on the gas property detection information from the exhaust gas property detection device. exhaust gas reformer.
【請求項3】  溶融還元炉の排ガスを予備還元用の還
元ガスとして用いる際に、溶融還元炉に設けた複数のホ
ッパーからの排ガス改質用炭素物質の投入により排ガス
を改質し、改質後の排ガス中に改質用炭素物質より揮発
分の他、石炭、コークス、チャー等、炭素質装入フラッ
クスを投入して、改質ガスの温度を降下させ、この降温
改質ガスを予備還元装置に供給することを特徴とする溶
融還元炉の排ガス改質方法。
[Claim 3] When using the exhaust gas of the smelting reduction furnace as a reducing gas for preliminary reduction, the exhaust gas is reformed by charging carbon material for exhaust gas reforming from a plurality of hoppers provided in the smelting reduction furnace. In addition to the volatile matter from the reforming carbon material, carbonaceous charging flux such as coal, coke, and char is injected into the subsequent exhaust gas to lower the temperature of the reformed gas, and this cooled reformed gas is pre-reduced. A method for reforming exhaust gas in a smelting reduction furnace, characterized by supplying the exhaust gas to a device.
【請求項4】  溶融還元炉の排ガスを予備還元用の還
元ガスとして用いる際に、該排ガス中に炭素物質を投入
して、該排ガスを改質し、改質後の排ガス中に炭素物質
と共に予備還元後の鉱石を投入し、改質ガスを降温し、
併せて該予備還元鉱の還元度をさらに高めて溶融還元炉
に供給することを特徴とする溶融還元炉の排ガス改質方
法。
4. When using the exhaust gas of the smelting reduction furnace as a reducing gas for preliminary reduction, carbon substances are introduced into the exhaust gas to reform the exhaust gas, and the exhaust gas after reforming contains the carbon substances together with the carbon substances. Inject the ore after preliminary reduction, cool the reformed gas,
A method for reforming exhaust gas in a smelting reduction furnace, which further comprises supplying the preliminary reduced ore to the smelting reduction furnace after further increasing its degree of reduction.
【請求項5】  請求項2において、ホッパーの一つに
気化物(VM)の少ない石炭または気化物(VM)のほ
とんどないコークスまたはホットサイクロン等で回収し
たチャーを冷却したものを収納して、予備還元炉導入ガ
スの性状検出装置およびホットサイクロンの上流で他の
ホッパーからのガス改質用石炭の排ガス中への投入位置
から上流に投入することによって、ガス温度を主に調整
する溶融還元炉における排ガス改質方法。
5. In claim 2, one of the hoppers stores coal with little vaporized matter (VM), coke with almost no vaporized matter (VM), or cooled char recovered with a hot cyclone or the like, A smelting reduction furnace that mainly adjusts the gas temperature by injecting gas reforming coal from another hopper into the exhaust gas upstream from the preliminary reduction furnace inlet gas property detection device and the hot cyclone. Exhaust gas reforming method.
JP3082656A 1991-04-15 1991-04-15 Method and equipment for reforming exhaust gas in smelting reduction furnace Withdrawn JPH04314808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082656A JPH04314808A (en) 1991-04-15 1991-04-15 Method and equipment for reforming exhaust gas in smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082656A JPH04314808A (en) 1991-04-15 1991-04-15 Method and equipment for reforming exhaust gas in smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH04314808A true JPH04314808A (en) 1992-11-06

Family

ID=13780480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082656A Withdrawn JPH04314808A (en) 1991-04-15 1991-04-15 Method and equipment for reforming exhaust gas in smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH04314808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006745A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Smelting-reduction method
JP7315125B1 (en) * 2022-02-24 2023-07-26 Jfeスチール株式会社 Method for reducing fine iron ore
WO2023162389A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for reducing fine iron ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006745A (en) * 2009-06-26 2011-01-13 Jfe Steel Corp Smelting-reduction method
JP7315125B1 (en) * 2022-02-24 2023-07-26 Jfeスチール株式会社 Method for reducing fine iron ore
WO2023162389A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for reducing fine iron ore

Similar Documents

Publication Publication Date Title
US4564389A (en) Process for coal-gasification and making pig iron
JP5807786B2 (en) Apparatus and method for producing iron, semi-steel and reducing gas
SU1118292A3 (en) Method of obtaining molten cast iron or steel semiproduct from iron-containing material and device for effecting same
JPS59133308A (en) Refinement for at least partially reduced iron ore
US3814404A (en) Blast furnace and method of operating the same
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
JPS6156217A (en) Direct reduction of iron oxide-containing substance
KR920004676B1 (en) Process and apparatus for producing steel from scrap
CA2281595A1 (en) Apparatus for manufacturing molten pig iron and reduced iron by utilizing fluidized bed, and method therefor
CA1209343A (en) Method and apparatus for the production of liquid iron from iron oxide
US3928023A (en) Method of treating off gases from iron processes
KR840002356B1 (en) Method for the direct reduction of iron in a shaft furnace using gas from coal
US5135572A (en) Method for in-bath smelting reduction of metals
US4897113A (en) Direct reduction process in reactor with hot discharge
JPH04314808A (en) Method and equipment for reforming exhaust gas in smelting reduction furnace
US20050151307A1 (en) Method and apparatus for producing molten iron
US3620699A (en) Reducing gas generation
WO2023162389A1 (en) Method for reducing fine iron ore
NO844801L (en) PROCEDURE AND DEVICE FOR REDUCTION OF OXYDE MATERIAL AND GENERATION OF ENERGY GAS
KR100803983B1 (en) Apparatus for manufacturing molten irons and method for manufacturing molten irons
JPS63176407A (en) Production of molten iron
JPS62124210A (en) Production of pig iron
JPS5918443B2 (en) Pig iron manufacturing method
JPS6131166B2 (en)
JPS6360213A (en) Smelting reduction method for iron ore

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711