JPS62124210A - Production of pig iron - Google Patents

Production of pig iron

Info

Publication number
JPS62124210A
JPS62124210A JP26173085A JP26173085A JPS62124210A JP S62124210 A JPS62124210 A JP S62124210A JP 26173085 A JP26173085 A JP 26173085A JP 26173085 A JP26173085 A JP 26173085A JP S62124210 A JPS62124210 A JP S62124210A
Authority
JP
Japan
Prior art keywords
coke
iron
furnace
melting
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26173085A
Other languages
Japanese (ja)
Inventor
Yasuo Kamei
亀井 康夫
Tomio Miyazaki
宮崎 富夫
Hideyuki Yamaoka
山岡 秀行
Masahisa Tachibana
立花 雅久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26173085A priority Critical patent/JPS62124210A/en
Publication of JPS62124210A publication Critical patent/JPS62124210A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Abstract

PURPOSE:To decrease the content of Si in a molten iron and to increase the amt. of the gas to be generated in a process for production for gasifying coal and coke blown through tuyeres with O2 and steam, and melting and carburizing reduced iron, etc., with the formed gas by further blowing prescribed materials through said tuyeres. CONSTITUTION:A combustion chamber (a) consisting of a packed bed of coke, coal, and limestone charged from supply ports 6 is formed in front of the tuyeres 5 of a melting and gasifying furnace. A heating part (b) and melting part (c) consisting of the packed beds of coke 9 and reduced iron 10 successively charged from a supply port 8 are respectively formed in the central part of the furnace body and the upper part of the heating part (b) in front of the chamber (a). The coke and coal are burned and gasified when O2 2, steam 3 and pulverized coal 4 are blown from the tuyeres 5. The formed gas pass the heating part (b) and melts the reduced iron of the melting part (c). >=1 Kinds of iron oxide 25, reduced iron and basic auxiliary raw materials 26 are blown in the form of powder together with pulverized coal 4, etc., from the tuyeres 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銑鉄の製造方法に関し、さらに詳細には、羽
口から石炭を吹き込み、この石炭およびコークスを酸素
および水蒸気を用いてガス化するとともに、生成ガスに
より還元鉄等を溶解および浸炭して溶融銑鉄を製造する
方法における改良に関する〇 (従来の技術) 従来より、炉内部にコークス充填層を形成し、炉下部羽
口より酸氷、水蒸気および微粉炭を吹き込み、この酸素
および水蒸気によりコークスおよび微粉炭をガス化して
、生成ガスにより、炉頂部から装入される還元鉄を溶解
および浸炭して銑鉄を製造するとともに、還元鉄溶解に
供しt後のガスを炉上部より回収する方法は、比とえは
、特公昭59−18443号公報、特開昭59−130
06号公報等に開示さnている0こ1らの方法では、ガ
ス化および溶融銑鉄製造用原料として微粉炭およびコー
クスを使用しているが、高炉法とは異なって高温空気の
代わりに常温の酸素を送風に使用することから、微粉炭
の燃焼性が向上し、多量の微粉炭を吹き込めることが特
色の1つとなっている。微粉炭の多量吹込みが可能なこ
とは、高価なコークス消費量を低減させ、銑鉄製造コス
ト低下に寄与するが、羽口から吹き込まnた微粉炭は、
羽口前の約2000〜2500℃と炉内で最も高温の燃
焼帯で燃焼する之め、石炭灰分中の5iOzから(1)
式の反応によりStOが発生し、発生し之si。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing pig iron, and more particularly, the present invention relates to a method for producing pig iron, and more specifically, in which coal is blown through a tuyere and the coal and coke are gasified using oxygen and steam. 〇 (Conventional technology) Regarding improvements in the method of manufacturing molten pig iron by melting and carburizing reduced iron etc. using generated gas. Conventionally, a coke packed bed is formed inside the furnace, and acid ice, Steam and pulverized coal are injected, and the coke and pulverized coal are gasified by the oxygen and steam, and the resulting gas melts and carburizes the reduced iron charged from the top of the furnace to produce pig iron. The method of recovering the gas from the upper part of the furnace after being exposed to water is described in Japanese Patent Publication No. 59-18443 and Japanese Patent Application Laid-open No. 59-130.
These methods disclosed in Publication No. 06 and others use pulverized coal and coke as raw materials for gasification and production of molten pig iron, but unlike the blast furnace method, they use room temperature air instead of high temperature air. One of its features is that the combustibility of pulverized coal is improved and a large amount of pulverized coal can be blown into the air by using oxygen for blowing. Being able to inject a large amount of pulverized coal reduces the consumption of expensive coke and contributes to lower pig iron production costs, but pulverized coal that is injected through the tuyere
Since it burns in the highest temperature combustion zone in the furnace, approximately 2000 to 2500℃ in front of the tuyeres, it is possible to burn from 5iOz in the coal ash (1).
StO is generated by the reaction of the formula.

は炉下部高温帯を上昇する間に、さらに(2)式により
Siとなり、溶銑に吸収さnて溶銑中のSiを増加させ
るという欠点を有している。
While rising through the high-temperature zone in the lower part of the furnace, it further becomes Si according to equation (2) and is absorbed into the hot metal, which has the disadvantage of increasing the Si content in the hot metal.

5iOz + C4SfO+ CO・・・・(1)Si
O+ C−+St  十Co = = (2)溶銑中S
iについては、鯛鍋過程で精錬する際に低い方が望まし
く、また燃料比、炉熱の両面からも低い方が望ましいこ
とから、操業面での工夫がなさnてきた。すなわち、溶
銑中へのSi移行過程は、羽口前や炉下部の高温帯で発
生し1siOを介して、還元鉄溶融位置から炉下部湯溜
り間で、溶銑に吸収さすることが知ら几てbるので、従
来の低りt操業方法では、熱流比を増加させ、溶融位置
を下方に移動させてSi吸収帯を短縮するとともに炉下
部でのFeO量を増加させ、に)式の反応を期待する方
法がとらルてき几○ (発明が解決しようとする間坦点) しかしながら、上記のような従来の方法では、装入物の
装入条件を操作することにより、低Si化を図ろうとす
るものであるため、装入物が炉頂から炉下部に達する1
でに長時間を要し、即効性がない。また、熱流比の増加
は、炉熱を低目に抑える操業となることから、少しの変
動によっても操業トラブルを発生し易いという問題があ
る。
5iOz + C4SfO+ CO... (1) Si
O+ C-+St 10Co = = (2) S in hot metal
As for i, it is desirable to have it low when refining in the sea bream pot process, and it is also desirable to have it low in terms of both fuel ratio and furnace heat, so improvements have been made in terms of operation. In other words, it is well known that the process of Si transfer into the hot metal occurs in the high-temperature zone in front of the tuyere and in the lower part of the furnace, and is absorbed into the hot metal from the melting position of reduced iron to the sump in the lower part of the furnace via 1siO. Therefore, in the conventional low temperature operation method, the heat flow ratio is increased, the melting position is moved downward to shorten the Si absorption band, and the amount of FeO in the lower part of the furnace is increased. However, in the conventional method as described above, it is difficult to achieve low Si by manipulating the charging conditions of the charge. Because of this, the charge reaches from the top of the furnace to the bottom of the furnace.
It takes a long time and has no immediate effect. In addition, since an increase in the heat flow ratio results in an operation in which the furnace heat is kept low, there is a problem in that even slight fluctuations can easily cause operational troubles.

そこで、本発明の目的は、上記のような問題を解決しな
から溶銑中Siの低下を図ることができ、さらに、同時
に、溶銑中Sの低下、出銑量および発生ガス量の増大、
コークス比の低下をもあわせて達成することのできる銑
鉄の製造方法を提供することにあろ〇 (問題点を解決するための手段) 上記問題点を解決し、上記目的を達成するために本発明
は、炉内部にコークス充填層を形成し、炉下部羽口より
酸素、水蒸気および微粉炭を吹き込み、この酸素および
水蒸気によりコークスおよび微粉炭をガス化して、生成
したガスにより炉頂部から装入される還元鉄を溶解およ
び浸炭して銑鉄を製造するとともに、還元鉄溶解後のガ
スを炉上部より回収する方法において、前記羽口より、
さらに、酸化鉄、還元鉄および塩基性副原料の各粉体の
1種尽上を吹き込むことを特徴とするものである〇 本発明を、添付の図面を参照しながら、さらに詳細に説
明する。
Therefore, an object of the present invention is to be able to reduce the Si content in hot metal without solving the above-mentioned problems, and at the same time, reduce the S content in the hot metal, increase the amount of iron tapped and the amount of gas generated,
An object of the present invention is to provide a method for producing pig iron that can also reduce the coke ratio. (Means for solving the problems) In order to solve the above problems and achieve the above objects, the present invention In this method, a coke packed bed is formed inside the furnace, oxygen, steam and pulverized coal are blown into the furnace through the tuyere at the bottom of the furnace, the coke and pulverized coal are gasified by the oxygen and steam, and the generated gas is charged from the top of the furnace. In a method for manufacturing pig iron by melting and carburizing reduced iron, and recovering gas from the upper part of the furnace after melting the reduced iron, from the tuyeres,
Further, the present invention, which is characterized by injecting powders of iron oxide, reduced iron, and basic auxiliary raw materials, will be described in more detail with reference to the accompanying drawings.

第1図は、本発明方法を実施するための銑鉄製造システ
ムの概要を示す0 2、水蒸気3.微粉炭4等の吹込み用羽口5を有し、′
この羽口上方にコークス、石灰石等の供給口6を炉体下
部に出銑滓ロアをそ几ぞn設けてなる固定床炉を用いて
いる。羽口5の前方には、供給口5から装入するコーク
ス、石炭、石灰石の充填層から成る燃焼室aが形成され
る〇この燃焼室a前方で炉体中央部には、供給口8から
装入するコークス9の充填層から成る加熱部すが形成さ
n、この加熱部すの上部には、同じく供給口8から装入
する還元鉄10の充填層から成る溶解部Cが形成される
。このようにして、羽口前燃焼室aにおいて、羽口5か
ら吹き込む酸素および水蒸気によって、コークスおよび
石炭が燃焼ガス化さ几、COとH2を主成分とする燃焼
ガスと、コークスおよび石炭の灰分と石灰石が分解して
生成する生石灰とが混合溶融して生じる溶融スラグとが
生成される。生成燃焼ガスは、燃焼室前方のコークス充
填層から成る加熱部すを通って炉体止部へ流ル、溶解部
Cの還元鉄を溶解した後、ガス取出し口11から回収さ
れる0溶融スラグの方は、溶解部Cで生成し加熱部すを
滴下してくる溶融還元鉄とともに、湯留りdに収集さn
、出銑滓ロアから取り出される。供給口6は、場合によ
っては、省略することもできる。
FIG. 1 shows an overview of a pig iron manufacturing system for carrying out the method of the present invention. It has a tuyere 5 for blowing pulverized coal 4 etc.'
A fixed bed furnace is used in which a feed port 6 for coke, limestone, etc. is provided above the tuyere, and a tap slag lower is provided at the bottom of the furnace body. In front of the tuyeres 5, there is formed a combustion chamber a consisting of a packed bed of coke, coal, and limestone, which is charged from the supply port 5. A heating section N is formed consisting of a packed bed of coke 9 to be charged, and a melting section C consisting of a packed bed of reduced iron 10, which is also charged from the supply port 8, is formed above this heating section. . In this way, coke and coal are combusted and gasified in the pre-tuyere combustion chamber a by the oxygen and water vapor blown in from the tuyere 5, and the combustion gas containing CO and H2 as main components and the ash of the coke and coal are produced. A molten slag is produced by mixing and melting quicklime produced by decomposing limestone. The generated combustion gas flows through the heating section consisting of a coke-filled bed in front of the combustion chamber to the furnace body stop, and after melting the reduced iron in the melting section C, the molten slag is recovered from the gas outlet 11. In this case, the molten reduced iron generated in the melting section C and dripping down the heating section is collected in the molten metal sump d.
, taken out from the tap slag lower. The supply port 6 may be omitted depending on the case.

本発明によnば、上記のような炉において、酸化鉄、還
元鉄および塩基性副原料のうち少なくとも1種が、粉体
の形で、微粉炭等とともに羽口5から吹き込ま几る0 図示の例では、酸化鉄は、ホッパー 12 。
According to the present invention, in the above-mentioned furnace, at least one of iron oxide, reduced iron, and basic auxiliary raw materials is blown in the form of powder from the tuyere 5 along with pulverized coal and the like. In the example, iron oxide is in the hopper 12.

13  、フィーダー 14 、輸送管 15 を介し
て炉内に吹き込まルる0また、塩基性副原料は、ホッパ
ー 16  、 17  、フィーダー 18゜輸送管
 19 を介して炉内へ吹き込まnる0さらに、還元鉄
も、図示しない同様のホッパー。
13, a feeder 14, a transport pipe 15, and the basic auxiliary raw material is blown into the furnace through a hopper 16, 17, a feeder 18, and a transport pipe 19. Iron also has a similar hopper (not shown).

フィーダー、輸送管を介して炉内に吹き込まnる0なお
、図において、20および21は微粉炭用ホッパー、2
2は同フィーダー、23は同輸送、管を示す024はキ
ャリアガスを示す0こnらの酸化鉄、塩基性副原料、還
元鉄および微粉炭は、第1図に示すように、独立した吹
込み系統で炉内へ吹き込んでもよいし、あるいは1種以
上を混合して吹き込んでもよく、特に限定さnない0し
かしながら、図示のように独立した系統で吹き込む方が
制御性は良好であるeまた、吹込み方法についても、第
1図は気体輸送を例に示したが、水、炭化水素系燃料で
スラリー状態とし吹込んでもよいことは言うまでもない
O 吹込みに使用する酸化鉄としては、鉄鎖石粉、粉焼結鉱
、転炉ダスト等が使用でき、塩基性副原料としては石灰
石、ドロマイト等、カルシウム、マグネシウムの炭酸化
物、酸化物、水酸化物等が利用できる。また、還元鉄粉
としては、たとえば特開昭57−210905号公報に
示される還元炉で製造さ几た還元鉄粉を利用できる。
In the figure, 20 and 21 are pulverized coal hoppers, 2
2 indicates the same feeder, 23 indicates the same transport pipe, and 024 indicates the carrier gas.0 These iron oxides, basic auxiliary raw materials, reduced iron, and pulverized coal are transported through independent blowing as shown in Figure 1. It may be blown into the furnace using a combined system, or one or more types may be blown into the furnace, and there is no particular limitation. As for the method of blowing, gas transport is shown as an example in Figure 1, but it goes without saying that it is also possible to make a slurry with water or hydrocarbon fuel and blow it in. As for the iron oxide used for blowing, iron chain Stone powder, sintered ore powder, converter dust, etc. can be used, and as basic auxiliary raw materials, limestone, dolomite, etc., carbonates, oxides, and hydroxides of calcium and magnesium can be used. Further, as the reduced iron powder, reduced iron powder produced in a reducing furnace disclosed in, for example, Japanese Patent Application Laid-Open No. 57-210905 can be used.

(作用) 上記のような構成の溶解ガス化炉に吹き込まnた酸化鉄
、還元鉄、および塩基性副原料の作用につ力て説明する
(Operations) The functions of the iron oxide, reduced iron, and basic auxiliary raw materials that are blown into the melting and gasifying furnace configured as described above will be explained in detail.

l)酸化鉄・還元鉄吹込みの場合 羽口から吹込まnた酸化鉄は、羽口前の高温帯で溶融し
、(3)式にしたがい還元さnて炉床部へ滴下するが、
1部はFeOの形態で炉床部へ滴下し、(4)式の反応
で、溶銑中のSiを低下させる〇FeOx +XC−+
Fe+X−Co ・・・・(3)2 ・Feo +Si
 → 2・Fe+5iOz ” ” (4)(3)式中
のC源としては、コークス、微粉炭の両方が考えらする
が、本発明の対象とする溶解ガス化炉では、約300〜
500 kg/pig−tと、高炉の場合の数倍〜10
倍にあたる大量の微粉炭を吹き込むため、はとんどが微
粉炭により還元さ几、コークスの消費はきわめて少ない
OFe +  02 →FeO” ” (5)還元鉄を
吹込む場合は、羽口前燃焼帯の酸化帯で(5)式にした
がい再酸化されるが、酸化反応で発熱するので溶融しや
すいという特徴がある0生成したFeOは(3) 、 
(4)式の反応にしたがうことになる。
l) In the case of iron oxide/reduced iron injection, the iron oxide injected from the tuyere melts in the high temperature zone in front of the tuyere, is reduced according to equation (3), and drips into the hearth.
One part is dropped into the hearth in the form of FeO, and the reaction of equation (4) lowers the Si in the hot metal〇FeOx +XC-+
Fe+X-Co...(3)2 ・Feo+Si
→ 2・Fe+5iOz ” ” (4) Both coke and pulverized coal can be considered as the C source in equation (3), but in the melting and gasifying furnace targeted by the present invention, approximately 300 to
500 kg/pig-t, several times that of a blast furnace ~10
Because twice as much pulverized coal is injected, most of the coke is reduced by the pulverized coal, and coke consumption is extremely low. (5) When injecting reduced iron, pre-tuyere combustion In the oxidation zone of the oxidation zone, it is re-oxidized according to equation (5), but the 0-generated FeO is characterized by being easy to melt because it generates heat in the oxidation reaction.
The reaction follows equation (4).

使用する酸化鉄の粒径は、特に限定はないが、目的によ
り使い分けることができる。すなわち、(3)式の反応
に着目し、出銑量の増加を目的とす石場合は、細粒酸化
鉄を使用した方が、微粉炭との還元反応が速やかに進行
し、初期の目的を達することができる。本発明の場合、
高炉と異なり微粉炭を多量に吹込む几め、酸化鉄もその
分多量に吹込むことができる。なお(3)式の反応は吸
熱反応であることから、羽口前燃焼帯温度の低下を防止
するために熱補償を行う必要があるが、本発明の場合に
は酸素送風の几め、水蒸気量調整により容易に行える〇
一方、溶銑中St低下効果を望む場合は、粗粒の酸化鉄
な使用することにより、(3)式の反応が抑制される結
果(4)式の反応量が増加し、Si低減効果が増大する
ことになる。
The particle size of the iron oxide used is not particularly limited, but can be selected depending on the purpose. In other words, focusing on the reaction of equation (3), if the purpose is to increase the amount of iron produced, using fine grained iron oxide will allow the reduction reaction with pulverized coal to proceed more quickly, achieving the initial purpose. can be reached. In the case of the present invention,
Unlike a blast furnace, a large amount of pulverized coal is injected, and a correspondingly large amount of iron oxide can also be injected. Since the reaction in equation (3) is an endothermic reaction, it is necessary to perform thermal compensation to prevent the temperature of the combustion zone before the tuyere from decreasing. This can be easily done by adjusting the amount. On the other hand, if you want the effect of reducing St in hot metal, use coarse-grained iron oxide, which suppresses the reaction in equation (3) and reduces the reaction amount in equation (4). This results in an increase in the Si reduction effect.

2)塩基性副原料の場合 カルシウム、マグネシウム等の炭酸化物、水酸化物を羽
口から吹込むと、羽口前の高温帯で(6)〜(11)式
にしたがって熱分解して酸化物になるとともに、発生し
7’c CO2、H20は、主として微粉炭と反応して
CO,H2となる0 CaCO3−CaO+COz ・・・・(6)Mg C
O3部MgO+COz・・・・(7)Ca (OH)2
− CaO+ H2O” ” (8)Mg (OH)z
→Mg O+Hz O・・・・(9)CCh+C→2C
O・・・・(10) H20+ C4CO+Hz・・・・ (11)(6)〜
(9)式で生成したCaO,MgOは羽口前高温帯で溶
融し・微粉炭・コークス灰分や酸化鉄脈石、FeOと同
化し、スラグの塩基度を上昇させることになる0スラグ
の塩基度が上昇するとスラグ中5iOzの活量が低下し
、SiQ  の発生が抑制される結果、溶銑中Siは低
下する。ま几、溶銑中Sは塩基性スラグによく吸収され
ることがら、塩基性副原料吹込みにより溶銑中Sも低下
させることができる。
2) In the case of basic auxiliary raw materials: When carbonates and hydroxides of calcium, magnesium, etc. are blown into the tuyere, they are thermally decomposed in the high temperature zone in front of the tuyere according to equations (6) to (11) to form oxides. 7'c CO2 and H20 generated mainly react with pulverized coal to become CO and H20 CaCO3-CaO+COz... (6) Mg C
O3 part MgO + COz... (7) Ca (OH)2
- CaO+ H2O” ” (8) Mg (OH)z
→Mg O+Hz O...(9) CCh+C→2C
O...(10) H20+ C4CO+Hz... (11)(6)~
CaO and MgO produced by equation (9) melt in the high temperature zone in front of the tuyere and are assimilated with pulverized coal, coke ash, iron oxide gangue, and FeO, increasing the basicity of the slag. As the temperature increases, the activity of 5iOz in the slag decreases, and the generation of SiQ is suppressed, resulting in a decrease in Si in the hot metal. Since the S in the hot metal is well absorbed by the basic slag, the S in the hot metal can also be reduced by injecting the basic auxiliary raw material.

さらに、酸化鉄、塩基性副原料吹込みの場合は、いずn
も吸熱反応であることから、羽目前温度が低下し、Si
Oの発生を抑制することも溶銑中Si低減に寄与してい
る。ま几、発生ガス量は、(3)(4) m)式にした
がい増加する。
Furthermore, in the case of injecting iron oxide and basic auxiliary materials,
Since this is also an endothermic reaction, the immediate temperature decreases and the Si
Suppressing the generation of O also contributes to reducing Si in hot metal. The amount of gas generated increases according to equations (3), (4) and m).

(実施例) つぎに、本発明の効果を実施例により説明するC 箪1図に示される炉を対象に、酸化鉄、塩基性副原料を
吹込まない場合(ケースl)、酸化鉄のみを吹込んだ場
合Cケース2)、塩基性副原料のみを吹込んだ場合(ケ
ース3)、酸化鉄と塩基性副原料の両方を同時に吹込ん
だ場合(ケース4)について操業を行った結果を第1表
に示す。そnぞルの吹込み原料の種類、粒度、組成を第
2表に示す。ケース2については、酸化鉄が細粒の場合
(ケース2−a)、粗粒の場合(ケース2−b)につい
て操業を実施した。第1表よりケース2,3,4とも溶
銑中Siはケースlと比較して明らかに低下しており、
本発明による溶銑中Si低減効果は明白である。なお。
(Example) Next, the effects of the present invention will be explained by examples. The results of the operation are shown for C case 2) when injected, when only basic auxiliary raw material is injected (case 3), and when both iron oxide and basic auxiliary raw material are injected at the same time (case 4). Shown in Table 1. The types, particle sizes, and compositions of the respective blown raw materials are shown in Table 2. Regarding Case 2, operations were carried out when the iron oxide was fine particles (Case 2-a) and when the iron oxide was coarse particles (Case 2-b). From Table 1, Si in the hot metal is clearly lower in cases 2, 3, and 4 compared to case 1.
The effect of reducing Si in hot metal according to the present invention is obvious. In addition.

前述の理由により、ケース2− aよりケース2−すの
方がSi低減効果は大きく、さらにケース4の場合は、
羽ロ前スラグ中Sigh活量低下によるSiO発生抑制
とFeOによる脱珪効果の相乗作用で、Si低減効果が
大である。
For the reasons mentioned above, the Si reduction effect is greater in case 2-a than in case 2-a, and in case 4,
The Si reduction effect is large due to the synergistic effect of the suppression of SiO generation by reducing the Sigh activity in the front slag and the desiliconization effect by FeO.

一方、塩基性副原料吹込みのケース3.4の場合、溶銑
中Sも明らかに低下している。°さらに、ケース2.4
の場合、コークス比が低下しており、高価なコークス使
用量削減効果を確認するとともに、出銑量増大効果も確
認した。また、ケース2ン4において発生ガス量が増大
してhることも確認さn1本発明の効果を確認すること
ができ友。
On the other hand, in case 3.4 where basic auxiliary raw materials are injected, S in the hot metal also clearly decreases. °Furthermore, case 2.4
In this case, the coke ratio decreased, confirming the effect of reducing the amount of expensive coke used, and also confirming the effect of increasing the amount of tapped iron. It was also confirmed that the amount of gas generated increased in Case 2 and 4, confirming the effect of the present invention.

(発明の効果) 上記したように、本発明によnば、羽口から石炭を吹き
込み、石炭およびコークスを酸素および水蒸気を用いて
ガス化するとともに、生成ガスにより還元鉄等を溶解お
よび浸炭して溶融銑鉄を製造する方法において、羽口か
ら、酸素鉄、還元鉄、塩基性副原料の粉体を吹き込むよ
うにしたので、従来の溶銑中St低下方法のように操業
トラブルを生じることなく、溶銑中Stを低下させるこ
とができる0ま之、同時に3生ガス量を大幅に増大させ
ることができる。さらに、酸化鉄、還元鉄を吹き込む場
合には、コークス比の低下とともに出銑量の増加の効果
をあわせて出し、塩基性副原料を吹き込む場合には、溶
銑中S濃度の低下をあわせて達成することができる。
(Effects of the Invention) As described above, according to the present invention, coal is blown through the tuyere, the coal and coke are gasified using oxygen and steam, and reduced iron, etc. is dissolved and carburized by the generated gas. In the method for producing molten pig iron, powders of oxygen iron, reduced iron, and basic auxiliary raw materials are injected through the tuyere, so there is no operational trouble unlike the conventional method of reducing St in molten pig iron. While it is possible to reduce the St in hot metal, it is also possible to significantly increase the amount of raw gas. Furthermore, when injecting iron oxide or reduced iron, the effect of lowering the coke ratio and increasing the amount of iron tapped is achieved, and when injecting basic auxiliary raw materials, a reduction in the S concentration in the hot metal is achieved. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための銑鉄製造システムを示
す概要図であル。 1・・炉体側壁  2・・酸素  3・・水蒸気4・・
微粉炭  5・・羽口  6・・コークス。 石灰石供給口  7・・出銑滓口 8・・供給口  9・・コークス  10・・還元鉄1
1・・ガス取出し口 12.13.16.17.20.21・・ホッパー14
.18.22・・フィーダー 15.19.23・・輸送管 24・・キャリアガス 25・・酸化鉄  26・・塩基性副原料特許出願人 
  住友金属工業株式会社二1・−一°−゛
FIG. 1 is a schematic diagram showing a pig iron manufacturing system for implementing the present invention. 1. Furnace side wall 2. Oxygen 3. Water vapor 4.
Pulverized coal 5.Tuyere 6.Coke. Limestone supply port 7..Tapping slag port 8..Supply port 9..Coke 10..Reduced iron 1
1...Gas outlet 12.13.16.17.20.21...Hopper 14
.. 18.22...Feeder 15.19.23...Transport pipe 24...Carrier gas 25...Iron oxide 26...Basic auxiliary raw material patent applicant
Sumitomo Metal Industries Co., Ltd. 21・−1°−゛

Claims (1)

【特許請求の範囲】[Claims] (1)炉内部にコークス充填層を形成し、炉下部羽口よ
り酸素、水蒸気および微粉炭を吹き込み、この酸素およ
び水蒸気によりコークスおよび微粉炭をガス化して、生
成したガスにより炉頂部から装入される還元鉄を溶解お
よび浸炭して銑鉄を製造するとともに、還元鉄溶解後の
ガスを炉上部より回収する方法において、前記羽口より
、酸化鉄、還元鉄および塩基性副原料の各粉体の1種以
上をさらに吹き込むことを特徴とする銑鉄の製造方法。
(1) Form a coke packed bed inside the furnace, blow oxygen, steam and pulverized coal through the tuyere at the bottom of the furnace, gasify the coke and pulverized coal with the oxygen and steam, and charge the coke from the top of the furnace with the generated gas. In this method, the reduced iron is melted and carburized to produce pig iron, and the gas after melting the reduced iron is recovered from the upper part of the furnace. A method for producing pig iron, characterized by further injecting one or more of the following.
JP26173085A 1985-11-21 1985-11-21 Production of pig iron Pending JPS62124210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26173085A JPS62124210A (en) 1985-11-21 1985-11-21 Production of pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26173085A JPS62124210A (en) 1985-11-21 1985-11-21 Production of pig iron

Publications (1)

Publication Number Publication Date
JPS62124210A true JPS62124210A (en) 1987-06-05

Family

ID=17365910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26173085A Pending JPS62124210A (en) 1985-11-21 1985-11-21 Production of pig iron

Country Status (1)

Country Link
JP (1) JPS62124210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916968B1 (en) * 2007-12-18 2009-09-14 도날드 에이치 최 Combustion apparatus
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier
KR100916968B1 (en) * 2007-12-18 2009-09-14 도날드 에이치 최 Combustion apparatus

Similar Documents

Publication Publication Date Title
US4153426A (en) Synthetic gas production
JP3058039B2 (en) Converter steelmaking method
CZ284106B6 (en) Process of obtaining electric power simultaneously with the production of liquid pig iron and apparatus for making the same
AU2010258245A1 (en) Method for producing cast iron or semi steel with reducing gas
US4957545A (en) Smelting reduction process using reducing gas generated in precombustor
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
CA2698888C (en) Method for manufacturing molten iron
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
MXPA04007099A (en) Process for producing molten iron.
KR100931228B1 (en) Environment-friendly direct steelmaking apparatus and method
CA2136692A1 (en) Method and apparatus for producing iron
JPS61178412A (en) Production of calcium carbide by blast furnace process
CN100336915C (en) One and half step melting deacidizing iron-smelting method
JPS649376B2 (en)
JPS62124210A (en) Production of pig iron
CA1333662C (en) Process for melting cold iron material
CA2513814A1 (en) An improved smelting process for the production of iron
US6197088B1 (en) Producing liquid iron having a low sulfur content
JPS597327B2 (en) Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance
JPS58174512A (en) Method and apparatus for manufacting molten pig iron
JPS63176407A (en) Production of molten iron
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
JP2666397B2 (en) Hot metal production method
JPS58171515A (en) Method and device for production of pig iron
JPS61159491A (en) Method and apparatus for gasifying coal involving production of molten iron