JPS6359387A - Method for making ultrapure water - Google Patents

Method for making ultrapure water

Info

Publication number
JPS6359387A
JPS6359387A JP61201471A JP20147186A JPS6359387A JP S6359387 A JPS6359387 A JP S6359387A JP 61201471 A JP61201471 A JP 61201471A JP 20147186 A JP20147186 A JP 20147186A JP S6359387 A JPS6359387 A JP S6359387A
Authority
JP
Japan
Prior art keywords
membrane
water
raw water
cellulose
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201471A
Other languages
Japanese (ja)
Other versions
JPH0679712B2 (en
Inventor
Satoshi Matsumoto
聰 松本
Yoshinari Fujii
能成 藤井
Setsuo Baba
馬場 節雄
Ryoichi Bairinji
梅林寺 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61201471A priority Critical patent/JPH0679712B2/en
Publication of JPS6359387A publication Critical patent/JPS6359387A/en
Publication of JPH0679712B2 publication Critical patent/JPH0679712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To prevent the lowering in capacity of a semipermeable membrane, by supplying raw water after ion exchange treatment, the addition of a chlorine type sterilizing agent and pH adjustment to the semipermeable membrane composed of a cellulosic derivative. CONSTITUTION:After raw water is subjected to ion exchange treatment, a sterilizing agent such as sodium hypochlorite, hydrogen peroxide or sodium bisulfite is added to raw water in a range of 0.01-1ppm. Subsequently, raw water is adjusted to pH 4.0-6.5 and supplied to a semipermeable member formed using cellulose, cellulose acetate, cellulose butyrate or methyl cellulose as a polymer component to be treated. By this method, the lowering in the performance of the semipermeable membrane is suppressed to reduce trouble and the long-term stable operation of a process is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセルロース系誘導体からなる半透膜を利用した
超純水の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing ultrapure water using a semipermeable membrane made of a cellulose derivative.

[従来の技術] 近年、電子工業、製薬工業、バイオメディカル産業など
の先端産業においては、集積回路および関連品の洗浄水
、輸液、薬品製造用水、メディカル製品洗浄水、微生物
および細胞培養供給水などの用途のために高純度の精製
水、すなわち超純水が多聞に必要となってきている。こ
のような目的のための超純水の製造法として、脱法を利
用するプロセスが次第に主流の方法になってきている。
[Conventional technology] In recent years, in advanced industries such as the electronics industry, pharmaceutical industry, and biomedical industry, water for washing integrated circuits and related products, water for intravenous fluids, water for drug manufacturing, water for washing medical products, water for supplying microorganisms and cell culture, etc. Purified water of high purity, that is, ultrapure water, is increasingly required for various applications. As a method for producing ultrapure water for such purposes, a process using demethods is gradually becoming the mainstream method.

一般に脱法では、原水の濁質やコロイド物質を凝集、沈
澱、および−過等の前処理をした後、逆浸透膜、限外;
濾過膜、イオン交換膜などの半透膜を通すことにより、
残沼する塩類、溶存有機物質、微粒子、および生菌等を
除去して超純水を得ている。また原水中の生菌を殺菌し
、プロセスの滅菌状態を維持する目的で前処理時おるい
は前処理後に滅菌剤を添加することが行なわれている。
Generally, in the dehydration method, after pretreatment such as coagulation, precipitation, and filtration of turbidity and colloidal substances in raw water, reverse osmosis membrane, ultrafiltration, etc.
By passing through semipermeable membranes such as filtration membranes and ion exchange membranes,
Ultrapure water is obtained by removing residual salts, dissolved organic substances, fine particles, viable bacteria, etc. In addition, a sterilizing agent is added during or after pretreatment in order to sterilize viable bacteria in raw water and maintain a sterile state in the process.

しかし、この滅菌剤を添加すると石殿高分子物質からな
る半透膜は一般に酸化に弱いため、運転中に膜性能が急
激に低下するという問題点を有する。そこで、従来、酢
酸セルロース系誘導体からなる半透膜は通常の水処理プ
ロセスにおいて、このような酸化剤による滅菌処理に対
して最も耐久性のある半透膜として知られており、超純
粋製造プロセスに対しても推薦されてきている。
However, when this sterilizing agent is added, there is a problem in that the membrane performance rapidly decreases during operation because the semipermeable membrane made of a sterile polymer is generally susceptible to oxidation. Conventionally, semipermeable membranes made of cellulose acetate derivatives have been known to be the most durable semipermeable membranes against sterilization using oxidizing agents in ordinary water treatment processes, and are suitable for ultra-pure manufacturing processes. It has also been recommended for

[発明が解決しようとする問題点] しかしながら、超純粋の純度に対する要求が厳しくなり
前処理技術が向上し、膜モジュールに供給される精製水
の純度が高くなるにつれてセルロース系誘導体からなる
半透膜を用いた場合でも滅菌剤に起因すると考えられる
膜性能の低下がしばしば起こり、このため所定の高純度
の超純粋を製造し、供給するためには、膜モジュールの
交換を著しく頻度高く行なうことになり、脱法の利点で
ある経済性および保守性が著しく損われるという問題が
起こっている。
[Problems to be solved by the invention] However, as the requirements for ultra-pure purity become stricter, pretreatment technology improves, and the purity of purified water supplied to membrane modules increases, semipermeable membranes made of cellulose derivatives Even when using sterilizers, there is often a decrease in membrane performance that is thought to be caused by the sterilizing agent, and as a result, membrane modules must be replaced extremely frequently in order to produce and supply ultrapure products of a specified high purity. This has led to the problem that the economic efficiency and maintainability, which are the advantages of circumventing the law, are being significantly impaired.

これは超純粋をI!!造するプロセスにおける前処理技
術の進歩によって、水中に溶存している有機成分の量(
丁OC:Total Organic Content
 )が少なくなってしまうためと考えられる。このよう
なTOC物質は滅菌剤と競争的に反応すると考えられる
ので、添加された滅菌剤が膜の性能を低下させる割合が
さらに高くなるからでおる。そこで、実用的には滅菌効
果を多少犠牲にしても間欠的添加法や滅菌剤濃度を低下
させるなど滅菌剤の使用量を減少させるという以外に有
効な対策がないのが現状である。
This is super pure! ! Advances in pretreatment technology in the water production process have enabled the amount of organic components dissolved in water (
Ding OC: Total Organic Content
) is likely to decrease. Such TOC materials are believed to react competitively with the sterilant, thereby increasing the rate at which the added sterilant degrades membrane performance. Therefore, in practice, there is currently no effective countermeasure other than reducing the amount of sterilizing agent used, such as by intermittent addition or lowering the sterilizing agent concentration, even if the sterilizing effect is sacrificed to some extent.

[問題点を解決するための手段] 本発明は、かかる従来技術の欠点を解消するために下記
の構成を有する。
[Means for Solving the Problems] The present invention has the following configuration in order to eliminate the drawbacks of the prior art.

「原水に下記イ〜ハからなる処理を施した後、セルロー
ス系誘導体からなる半透膜に供給することを特徴とする
超純水の製造方法。
``A method for producing ultrapure water, which comprises subjecting raw water to the following treatments and then supplying the raw water to a semipermeable membrane made of a cellulose derivative.

イ、イオン交換処理 口、塩素系滅菌剤の添加 ハ、PH4,0〜6.5への調整」 ここでセルロース系誘導体からなる半透膜とは、セルロ
ースおよびセルロースアセテート、セルロースブチレー
ト、メチルセルロース、エチルセルロースなどを主要な
ポリマー成分として製膜される半透膜をいい、その製膜
法などは問わない。超純水製造プロセスに利用される半
透膜としては、逆浸透膜、限外−過膜、イオン交換膜な
どがあり、種々の膜素材からなる半透膜が使用されてい
る。
(a) Addition of ion exchange treatment port, chlorine-based sterilizer (c) Adjustment to pH 4.0 to 6.5.''Here, the semipermeable membrane made of cellulose derivatives refers to cellulose, cellulose acetate, cellulose butyrate, methyl cellulose, It refers to a semi-permeable membrane formed using ethyl cellulose or the like as a main polymer component, and the method of forming the film is not limited. Semipermeable membranes used in the ultrapure water production process include reverse osmosis membranes, ultrafiltration membranes, and ion exchange membranes, and semipermeable membranes made of various membrane materials are used.

本発明は、膜素材としてセルロース系誘導体からなる半
透膜に対して特に有効でおるが、ポリスルホン、ポリア
ミドなどの高分子からなる半透膜、およびポリスルホン
多孔膜性半透膜上に界面重合などによって超薄膜を形成
させて1qられる複合半透膜に対しても有効である。
The present invention is particularly effective for semipermeable membranes made of cellulose-based derivatives as membrane materials, but also for semipermeable membranes made of polymers such as polysulfone and polyamide, and for interfacial polymerization on porous polysulfone semipermeable membranes. It is also effective for composite semipermeable membranes in which an ultra-thin film is formed by 1q.

膜の形態は、平膜、中空糸膜および環状膜などがあり、
それぞれの膜形態に対応する構造体すなわち膜エレメン
トに組み立てられ、圧力容器に挿入されて膜モジュール
として超純水製造プロセスで使用されるが、本発明はい
かなる膜形態、膜エレメント形状および膜モジユール形
状のものにも適している。
Membrane forms include flat membranes, hollow fiber membranes, and annular membranes.
It is assembled into a structure corresponding to each membrane type, that is, a membrane element, and inserted into a pressure vessel to be used as a membrane module in an ultrapure water production process. Also suitable for those.

滅菌剤としては、次亜塩素酸ナトリウム、過酸化水素、
重亜硫酸ソーダ、過酢酸、ホルマリンなどがあるが、通
常安価で滅菌効果率の高い次亜塩素酸ナトリウムが最も
一般的に用いられている。
Sterilizing agents include sodium hypochlorite, hydrogen peroxide,
Examples include sodium bisulfite, peracetic acid, and formalin, but sodium hypochlorite is the most commonly used because it is inexpensive and has a high sterilization effect.

滅菌条件は厳密には前処連接の水質によって変り、−概
に規定することは難しいが、例えば、次亜鉛素酸ナトリ
ウムを連続的に注入する場合には、有効塩素濃度2 p
I)m以下、好ましくは0.01〜lppmの範囲で行
なうことが望ましい。2 pl)mを越えると滅菌効果
は大きいが同時に滅菌剤による膜性能の低下も大きくな
り好ましくない。また、Olo ’+ ppm以下では
滅菌効果が小ざくなりすぎて生菌の増殖による膜性能の
劣化が問題となる。また、同様の理由で、間欠注入の場
合は、1oppm以下、好ましくは0.2〜2 ppm
で行なうことが好ましい。しかしながら、滅菌剤の添加
方法によって本発明の適用が限定されないことは勿論で
ある。
Strictly speaking, sterilization conditions vary depending on the quality of the water in the pretreatment process, and are difficult to define generally, but for example, when sodium subzinc chlorate is continuously injected, the effective chlorine concentration is 2 p.
I) m or less, preferably in the range of 0.01 to 1 ppm. If it exceeds 2 pl)m, the sterilizing effect will be great, but at the same time, the membrane performance will be greatly degraded by the sterilizing agent, which is not preferable. Moreover, below Olo'+ ppm, the sterilization effect becomes too small and deterioration of membrane performance due to proliferation of viable bacteria becomes a problem. In addition, for the same reason, in the case of intermittent injection, the concentration is 1 oppm or less, preferably 0.2 to 2 ppm.
It is preferable to do so. However, it goes without saying that the application of the present invention is not limited by the method of adding the sterilizing agent.

本発明において、前記半透膜に上記の滅菌剤を含む水を
供給するにあたって、供給水のPHを4゜0〜6.5の
範囲に調整することが肝要である。
In the present invention, when supplying water containing the sterilizing agent to the semipermeable membrane, it is important to adjust the pH of the supplied water to a range of 4.0 to 6.5.

多段の場合は、各モジュールの前での調整が必要である
。もちろん、活性塩素による膜性能の低下は、このPH
範囲でも徐々に進行し、特に、好適PH範囲の境界の近
傍のPHでは性能低下がその中央範囲の条件より速やか
に進行するので、活性塩素温度が高い場合や、後述する
TOC等の他の因子の影響などを考慮すると、4.5〜
6.0の範囲に調整するのが好ましい。
In the case of multiple stages, adjustment is required in front of each module. Of course, the decrease in membrane performance due to active chlorine is due to this PH
In particular, at PH near the boundary of the preferred PH range, performance deterioration progresses more quickly than under conditions in the middle range, so if the active chlorine temperature is high or other factors such as TOC described below Considering the influence of
It is preferable to adjust it to a range of 6.0.

ここで超純粋製造条件として考慮すべき条件は、半透膜
で水を処理する際の膜モジュールの供吸水が前処理で濁
質やコロイド物質を除去されているので、微量の不純物
、例えば、TOCとして測定される物質の量である。こ
のいわゆるTOC物質は、微量とはいえその種類と量に
よっては塩素系滅菌剤による膜の性能低下に影響する。
Here, the conditions to be considered as ultrapure production conditions are that when water is treated with a semipermeable membrane, the water supplied and absorbed by the membrane module has been pretreated to remove suspended matter and colloidal substances, so it contains trace amounts of impurities, such as It is the amount of substance measured as TOC. Although this so-called TOC substance is a small amount, depending on its type and amount, it affects the deterioration of membrane performance caused by chlorine-based sterilizers.

例えば、溶存する有機成分の活性塩素に対する反応性が
高い場合、微量でも存在すれば、膜が攻撃される機会は
少なくなるので膜の性能低下それたけ押えられることに
なる。上述のように、TOC物質によって活性塩素との
反応性が異なるが、前処理を施した精製水のTOCが1
001)pb以下になると膜が攻撃される度合が高くな
り膜性能低下を起こしやすくなる。イオン交換処理した
精製水は、通常TOCをほとんど含んでいないので(<
 20ppb)さらに膜性能の低下を起こしやすくなる
。TOC成分による塩素の消費があるということは滅菌
剤をライン中のどのポイントへ注入し、半透膜に接触す
るまでの滞溜時間がどの位かということなども膜性能の
低下に影響することを示している。すなわち、TOCが
同じでも、滅菌剤を滞留時間が相当程度おる供給水タン
ク中で注入した場合にはライン中で有機成分による滅菌
剤の消費があり、半透膜の直前で注入した場合に比べて
半透膜に接触する水中の滅菌剤濃度が低下していると考
えられるからである。
For example, if the dissolved organic component has high reactivity to active chlorine, if even a trace amount exists, the membrane will be less likely to be attacked, and the deterioration in membrane performance will be suppressed. As mentioned above, the reactivity with active chlorine differs depending on the TOC substance, but the TOC of pretreated purified water is 1.
001) When the concentration is less than pb, the degree of attack on the membrane increases and membrane performance tends to deteriorate. Purified water treated with ion exchange usually contains almost no TOC (<
20 ppb) Furthermore, the membrane performance is likely to deteriorate. The fact that chlorine is consumed by TOC components means that the point in the line at which the sterilant is injected and the residence time before it contacts the semipermeable membrane also affect the deterioration of membrane performance. It shows. In other words, even if the TOC is the same, if the sterilant is injected into the feed water tank where the residence time is considerable, the sterilant will be consumed by organic components in the line, compared to when it is injected just before the semipermeable membrane. This is because the concentration of sterilizing agent in the water that comes into contact with the semipermeable membrane is thought to be decreasing.

この滅菌剤添加俊の滞留時間の影響はTOC濃度、TO
C成分の種類などによって異なるが、一般にIOC物質
は比較的速やかに遊M塩素を消費するので、通常の前処
理の場合、10分以上、好ましくは30分以上の滞留時
間を取れば、膜を攻撃する遊離塩素を減少させることが
できる。
The influence of the residence time of this sterilant addition is on the TOC concentration, TO
Although it varies depending on the type of C component, in general, IOC substances consume free M chlorine relatively quickly, so in the case of normal pretreatment, if the residence time is 10 minutes or more, preferably 30 minutes or more, the membrane can be removed. Attacking free chlorine can be reduced.

なあ、本発明方法においては、口とハの工程の順序は、
いずれが先であってもよい。
By the way, in the method of the present invention, the order of the steps of mouth and c is as follows:
Either one may come first.

[実施例] 本発明を以下の実施例で説明する。なお遊離塩素量の測
定は白金電極上での遊離塩素の還元反応を利用する測定
法を用いた(使用測定機器:携帯用残留塩素計「)lo
del RC−3T(バイオニクス機器株式会社製)」
。pHの測定は、超純水条件では水中のイオン濃度が低
く、そのままでは正確にI)Hの測定をすることがむず
かしいので、本発明ではKCIを50ppm添加して測
定した。また、膜性能は1500ppmの食塩を含む食
塩水を30に−i/ ciで加圧し、流速8m/分で膜
面に流して測定した。
[Example] The present invention will be explained in the following example. The amount of free chlorine was measured using a measurement method that utilizes the reduction reaction of free chlorine on a platinum electrode (measurement equipment used: portable residual chlorine meter).
del RC-3T (manufactured by Bionics Equipment Co., Ltd.)
. In the measurement of pH, the ion concentration in water is low under ultrapure water conditions, and it is difficult to accurately measure I)H as it is, so in the present invention, 50 ppm of KCI was added for measurement. The membrane performance was measured by pressurizing a saline solution containing 1500 ppm of salt at 30 -i/ci and flowing it over the membrane surface at a flow rate of 8 m/min.

また、水中の有機成分用(TOC)はTOC計1−AS
TI’?018001)I)bJで測定した。
In addition, for organic components in water (TOC), TOC meter 1-AS
TI'? 018001) I) Measured by bJ.

実施例1 酢酸セルロース系逆浸透膜(塩排除率97.0%、水通
過量0.9Trl!/Tr12・日)を評価装置にセッ
トし、以下の実験を行なった。
Example 1 A cellulose acetate-based reverse osmosis membrane (salt rejection rate 97.0%, water passage rate 0.9Trl!/Tr12·day) was set in an evaluation apparatus, and the following experiment was conducted.

イオン交換水(TOC:15ppb)をタンクに入れ、
硫酸と水酸化ナトリウムで所定のI)Hに調整した。こ
の水を20kq/cmで加圧し、51/分の流速で膜面
に供給した。さらに配管の途中で、膜への供吸水中の遊
離塩素濃度が10ppmとなるように次亜鉛素酸ナトリ
ウムを添加した。次亜鉛素酸ナトリウムの注入ポイント
から膜面までの滞留時間は45秒であった。このように
して塩素によって膜を劣化させ、その後一定時間毎に膜
性能を測定した。
Put ion exchange water (TOC: 15ppb) into the tank,
The desired I)H was adjusted with sulfuric acid and sodium hydroxide. This water was pressurized at 20 kq/cm and supplied to the membrane surface at a flow rate of 51/min. Further, in the middle of the piping, sodium subzinc oxide was added so that the free chlorine concentration in the water supplied to and absorbed by the membrane was 10 ppm. The residence time of sodium subzinc oxide from the injection point to the membrane surface was 45 seconds. The membrane was degraded by chlorine in this manner, and the membrane performance was then measured at regular intervals.

図面は、塩素処理200時間後の膜性能(塩排除率)の
pH依存性を示す。l)Hが4〜6.5では塩排除率の
低下は5%以下であり、特に、4.5〜6゜0の範囲で
は実質的に塩排除率の低下はない。−方1)Hが6.5
では15%、7.0では25%の低下となり、pHが6
.5を越えると塩排除率が著しく低下することが分かる
The figure shows the pH dependence of membrane performance (salt rejection rate) after 200 hours of chlorination. l) When H is 4 to 6.5, the salt rejection rate decreases by 5% or less, and in particular, in the range of 4.5 to 6.0, there is virtually no decrease in the salt rejection rate. - Method 1) H is 6.5
The decrease is 15% at 7.0 and 25% at pH 6.
.. It can be seen that when the value exceeds 5, the salt rejection rate decreases significantly.

実施例2 実施例1と同じ酢酸セルロース系逆浸透膜を(塩排除率
97.0%、水透過Wh0.9m”/m2・日)を用い
、同じ評価装置で以下の実験を行なった。イオン交換水
(TOC:10ppb)と浄水(TOC:1200pp
b)を混合して種々の丁DC最の原水(pH:6.5)
を作り、濃度が10ppmとなるように次亜鉤素酸ナト
リウムを添加しつつ膜面に供給した。次亜鉤素酸ナトリ
ウムの注入ポイントから膜面までの滞留時間は45秒で
あった。膜性能(塩排除率)の低下は、TOC量が15
0ppbでは5%、3ooppb以上では2.5%以下
であり、150pl)b以上では膜性能の低下は小さい
。一方、TOCffiが75ppbでは塩素排除率の低
下は13%、30ppb以下では16%となり、100
ppb以下にになると膜性能の低下が大きい。
Example 2 Using the same cellulose acetate-based reverse osmosis membrane as in Example 1 (salt rejection rate 97.0%, water permeation Wh 0.9 m''/m2·day), the following experiment was conducted with the same evaluation equipment.Ion Exchange water (TOC: 10ppb) and purified water (TOC: 1200pp)
b) to make various types of raw water (pH: 6.5)
was prepared and supplied to the membrane surface while adding sodium hypoalthite to a concentration of 10 ppm. The residence time from the injection point of sodium hypoalthite to the membrane surface was 45 seconds. The decrease in membrane performance (salt rejection rate) occurs when the TOC amount is 15
It is 5% at 0ppb, 2.5% or less at 3ooppb or more, and the decrease in membrane performance is small at 150pl)b or more. On the other hand, when TOCffi is 75 ppb, the chlorine rejection rate decreases by 13%, and when it is below 30 ppb, it decreases to 16%.
When the amount is less than ppb, the membrane performance deteriorates significantly.

実施例3 実施例1と同じ酢酸セルロース系逆浸透膜(塩排除率9
7.0%、水透過ff10.9m’/m2・日)を用い
、同じ評価装置で以下の実験を行なった。
Example 3 Cellulose acetate reverse osmosis membrane same as Example 1 (salt rejection rate 9
7.0%, water permeation ff 10.9 m'/m2·day), and the following experiment was conducted using the same evaluation apparatus.

イオン交換水(TOC:10ppb)をタンクに入れ、
1)Hを6.5に調整し、実施例1と同じ条件で膜面に
供給した。さらに水中の遊離塩素濃度が10ppmとな
るように次亜鉤素酸ナトリウムを配管の途中で添加した
。この時注入ポイントを変えることによって、注入ポイ
ントから膜面までの滞留時間を種々変更させてその影響
を調べた。
Put ion exchange water (TOC: 10ppb) into the tank,
1) H was adjusted to 6.5 and supplied to the membrane surface under the same conditions as in Example 1. Furthermore, sodium hypoalthite was added in the middle of the piping so that the free chlorine concentration in the water was 10 ppm. At this time, by changing the injection point, the residence time from the injection point to the membrane surface was varied and the effects thereof were investigated.

滞留時間が15分以上では膜性能(塩排除率の低下は5
%以下であるが、滞留時間が7.5分では12%、1分
では15%となり、滞留時間が10分以下になると膜性
能の低下が大きいことがわかる。
If the residence time exceeds 15 minutes, the membrane performance (salt rejection rate decreases by 5
% or less, but it becomes 12% when the residence time is 7.5 minutes, and 15% when the residence time is 1 minute, indicating that the membrane performance is greatly degraded when the residence time is 10 minutes or less.

実施例4 ポリスルホン基膜上にポリエチレンイミンとトルエンジ
イソシアネートとの界面重合により形成させた複合膜に
ついいて実施例1と同じ条件で実験を行なった結果、膜
性能の低下のp++依存性は実施例1と同様であった。
Example 4 As a result of conducting an experiment under the same conditions as in Example 1 on a composite membrane formed by interfacial polymerization of polyethyleneimine and toluene diisocyanate on a polysulfone base film, the p++ dependence of the decrease in membrane performance was found to be the same as in Example 1. It was the same.

[発明の効果] 本発明は、セルロース系誘導体からなる半透膜を用いた
超純粋製造プロセスにおいて、原水にイオン交換処理、
塩素系滅菌剤の添加を行なうとともに、pHを特定の範
囲に管理することによって、膜性能の低下を押え、それ
にともなうトラブルをなくし、プロセスの長期安定運転
を可能にするものである。
[Effects of the Invention] The present invention provides raw water with ion exchange treatment,
By adding a chlorine-based sterilizing agent and controlling the pH within a specific range, deterioration in membrane performance is suppressed, troubles associated with this are eliminated, and long-term stable operation of the process is made possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、セルロースアセテートからなる半透膜に供給す
る塩素系滅菌剤を含む水のPHと、塩排除率との関係を
示したものである。
The drawing shows the relationship between the pH of water containing a chlorine-based sterilizing agent supplied to a semipermeable membrane made of cellulose acetate and the salt rejection rate.

Claims (4)

【特許請求の範囲】[Claims] (1)原水に下記イ〜ハからなる処理を施した後、セル
ロース系誘導体からなる半透膜に供給することを特徴と
する超純水の製造方法。 イ、イオン交換処理 ロ、塩素系滅菌剤の添加 ハ、PH4.0〜6.5への調整
(1) A method for producing ultrapure water, which comprises subjecting raw water to the following treatments and then supplying the raw water to a semipermeable membrane made of a cellulose derivative. B. Ion exchange treatment B. Addition of chlorine-based sterilizer C. Adjustment to pH 4.0 to 6.5
(2)塩素系滅菌剤の添加後、10分間以上の滞溜時間
をおくことを特徴とする超純粋の製造方法。
(2) An ultra-pure manufacturing method characterized by allowing a residence time of 10 minutes or more after adding a chlorine-based sterilizing agent.
(3)pHが4.5〜6.0に調製されていることを特
徴とする特許請求の範囲第(1)項記載の超純粋の製造
方法。
(3) The method for producing ultrapure according to claim (1), wherein the pH is adjusted to 4.5 to 6.0.
(4)イオン交換処理が、有機成分量を、100ppb
以下にする処理であることを特徴とする特許請求の範囲
第(1)項記載の超純粋の製造方法。
(4) Ion exchange treatment reduces the amount of organic components to 100 ppb
The ultrapure manufacturing method according to claim (1), characterized in that the following treatment is performed.
JP61201471A 1986-08-29 1986-08-29 Ultrapure water production method Expired - Fee Related JPH0679712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201471A JPH0679712B2 (en) 1986-08-29 1986-08-29 Ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201471A JPH0679712B2 (en) 1986-08-29 1986-08-29 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JPS6359387A true JPS6359387A (en) 1988-03-15
JPH0679712B2 JPH0679712B2 (en) 1994-10-12

Family

ID=16441629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201471A Expired - Fee Related JPH0679712B2 (en) 1986-08-29 1986-08-29 Ultrapure water production method

Country Status (1)

Country Link
JP (1) JPH0679712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722442A (en) * 1994-01-07 1998-03-03 Startec Ventures, Inc. On-site generation of ultra-high-purity buffered-HF for semiconductor processing
JP2012096187A (en) * 2010-11-04 2012-05-24 Sumitomo Metal Mining Co Ltd Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474285A (en) * 1977-11-25 1979-06-14 Sasakura Eng Co Ltd Reverse osmotic pressure apparatus control method
JPS60209204A (en) * 1984-03-31 1985-10-21 Kimihiko Okanoe Preparation of ultrapure water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474285A (en) * 1977-11-25 1979-06-14 Sasakura Eng Co Ltd Reverse osmotic pressure apparatus control method
JPS60209204A (en) * 1984-03-31 1985-10-21 Kimihiko Okanoe Preparation of ultrapure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722442A (en) * 1994-01-07 1998-03-03 Startec Ventures, Inc. On-site generation of ultra-high-purity buffered-HF for semiconductor processing
JP2012096187A (en) * 2010-11-04 2012-05-24 Sumitomo Metal Mining Co Ltd Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same

Also Published As

Publication number Publication date
JPH0679712B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
EP1900417B1 (en) Method of bacteriostasis or disinfection for permselective membrane
KR102046581B1 (en) Filtration treatment system and filtration treatment method
JP2008296188A (en) Membrane separation apparatus and membrane separation method
JP2009183825A (en) Water treatment apparatus
US4722798A (en) Hemodialysis with dialysate osmolarity varied non-linearly with time
JPS63100998A (en) Production of ultrapure water
JP3641854B2 (en) Reverse osmosis membrane separation method and reverse osmosis membrane separation device
JPH11104639A (en) Reverse osmosis membrane type pure water-making apparatus
JPS6359387A (en) Method for making ultrapure water
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
WO2021192582A1 (en) Water treatment method, water treatment device and slime inhibitor for membranes
JPS6339686A (en) Method for treating seawater
CN110573196A (en) dialysate for hemodialysis
JP3087750B2 (en) Sterilization method of membrane
JPS62170257A (en) Production of dyalysate
JPH0957067A (en) Separation with reverse osmotic membrane and apparatus therefor
JP2000042373A (en) Sterilization method in reverse osmosis membrane separation process
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
JP2000354744A (en) Membrane sterilization method and fresh water making method
JPH10225683A (en) Reverse osmotic method seawater desaltinating system
JP2000107777A (en) Method of water treatment and apparatus therefor
JPH0252087A (en) Method for making pure water
WO2023074267A1 (en) Water treatment method and water treatment system
CN212315799U (en) Pure water production equipment capable of increasing hydrogen content

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees