JPS6358696B2 - - Google Patents

Info

Publication number
JPS6358696B2
JPS6358696B2 JP55060364A JP6036480A JPS6358696B2 JP S6358696 B2 JPS6358696 B2 JP S6358696B2 JP 55060364 A JP55060364 A JP 55060364A JP 6036480 A JP6036480 A JP 6036480A JP S6358696 B2 JPS6358696 B2 JP S6358696B2
Authority
JP
Japan
Prior art keywords
rubber
molded
minutes
sputter etching
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55060364A
Other languages
Japanese (ja)
Other versions
JPS56157336A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6036480A priority Critical patent/JPS56157336A/en
Publication of JPS56157336A publication Critical patent/JPS56157336A/en
Publication of JPS6358696B2 publication Critical patent/JPS6358696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ゴムの表面処理方法に関する。更に
詳しくは、摩擦摩耗特性にすぐれた成形ゴム材料
を与えるゴムの表面処理方法に関する。 従来から、成形ゴム材料の表面摩擦摩耗特性を
改善するための種々の方法が提案されており、大
きく分けるとそれらは次の3つになる。 (1) 化学的処理: 硫酸処理、ハロゲン処理など、化学薬品とゴ
ムとを反応させることにより、成形ゴム材料の
表面を改質する。この処理方法では、危険物を
取扱うため安全衛生面、公害面など湿式処理特
有の問題点がみられ、またゴムを劣化させ易い
欠点がある。 (2) 物理的処理: コーテイング、浸漬、塗布などの手段で、成
形ゴム材料の表面を他の材質でカバーコートす
る。この処理方法では、ゴムとの接着性が問題
であり、複雑な形状・構造のものには適用し難
く、これに伴つて装置費がかかり、コストがア
ツプする欠点がある。 (3) エネルギー照射処理: 成形ゴム材料に紫外線、コロナ放電など適当
なエネルギーを照射すると、通常にくらべゴム
の劣化が促進される傾向があり、例えば100%
伸長時の状態を走査型電子顕微鏡で観察すると
多数のクラツクの発生がみられ、このためゴム
の摩擦摩耗特性向上への応用を困難としてい
る。 本発明者は、成形ゴム材料の表面摩擦摩耗特性
の改善を目的とする従来技術にみられるこれらの
問題点乃至欠点をもたらさないゴムの表面処理方
法について種々検討の結果、高周波プラズマとい
う新技術の一分野である高周波スパツタエツチン
グの方法を成形ゴム材料に適用することにより、
前記の如き課題が有効に解決されることを見出し
た。従つて、本発明はゴムの表面処理方法に係
り、このゴムの表面処理は、一対の電極の一方に
装着させた成形ゴム材料の表面を、10-2
10-1Torr(約1〜10Pa)の圧力条件および100W
以下の出力条件下で高周波スパツタエツチングさ
せることにより行われる。 従来から、ポリエチレンやポリテトラフルオロ
エチレンなどの高分子材料の表面を、酸素プラズ
マまたは非酸化性プラズマ、殊にヘリウム、アル
ゴンなどの希ガスや水素ガスのプラズマによつて
処理し、表面の接着性を改善することが行われて
いるが、このような効果がもたらされる原因とし
て材料表面における分子量の大きな架橋皮膜の形
成や材料表面に付着している汚染物質や低分子化
合物のプラズマガスによる弱いスパツタリング効
果に基く除去などが挙げられている(化学の領域
増刊第111号“低温プラズマ化学”第50〜51頁)。 しかしながら、これらの樹脂状高分子材料にあ
つては、その表面接着性が問題となることはあつ
ても、ゴム材料の場合の如くに粘着性や摩擦係数
の増大が問題になることは、本質的にはまずない
といえる。従つて、スパツタエツチングによつて
樹脂状高分子材料の表面接着性が改善されるとい
う知見が従来から存在していても、これによつて
ゴム状高分子材料の表面摩擦摩耗特性の改善が達
成し得ることを予測させるものは、そこには存在
しないといえる。 高周波スパツタエツチングでは、約10-2
10-1Torr(約1〜10Pa)という低圧条件下で、高
周波放電(周波数13.56MHz)が行われる。高周
波放電は、アルゴン、ネオン、クリプトンなどの
不活性ガスを使用して一般には行われるが、イオ
ン化率やコストなどを考慮するとアルゴンの使用
が望ましい。この他にヘリウムや空気なども使用
でき、ほぼアルゴンを用いた場合と同様の処理効
果を与えることが確認された。 表面処理される成形ゴム材料は、一定の間隔を
有する一対の電極の一方の電極に適当な手段によ
つて装着される。電極間の距離は、電極の大きさ
にも関係して設定されるが、一定以上の距離がと
られた場合には、成形ゴム材料の装着された位置
でのずれによるスパツタエツチング効果のむらは
みられないようになる。これに関連して、成形ゴ
ム材料の形状によるスパツタエツチング効果のむ
らをより少くするために、成形ゴム材料を処理中
回転させるなどして、その影響をできるだけ少く
することもできる。また、出力(入射波―反射
波)が100W以下の場合には、W数×放電時間の
値が一定であれば、ほぼ同じスパツタエツチング
量となる。 具体的には、例えば図示されたフローシートに
従つて、成形ゴム材料の表面処理が行われる。即
ち、 ベルジヤー型チヤンバー1内に設置された電
極間距離30mmの一対の電極2,3の一方の電極
3側に成形ゴム材料4を適当な手段で装着す
る。 油回転ポンプおよび油拡散ポンプ(いずれも
図示せず)に接続された排気ライン5によつ
て、チヤンバー内を10-7Torr(約10-5Pa)のオ
ーダー迄減圧する。 ガス導入ライン6によつてアルゴンガスを導
入し、チヤンバー内の圧力を10-4Torr(約
10-2Pa)とする。 次に、メインバルブを調節して、圧力を10-2
〜10-1Torr(約1〜10Pa)とする。 高周波発振器7によつて発振させた高周波を
整合器8で、入射波と反射波の差が最大となる
ように調節する。なお、出力は可変である。 放電はアルゴンによつて行われ、アルゴンの
プラスイオンがゴム材料側の電極を攻撃し、こ
のときにスパツタエツチングする。 一定時間放電してそれを止めた後リークさ
せ、表面処理された成形ゴム材料を取り出す。 本発明に係るゴムの表面処理方法における最大
の特徴は、成形材料を構成するゴム分子の主鎖中
に不飽和結合が存在しなくともこのような処理方
法を適用することができ、それによつて成形ゴム
材料の表面摩擦摩耗特性を大巾に改善し得ること
にある。従来技術の表面処理方法、特に化学的な
表面処理方法では、ゴム分子の主鎖中に不飽和結
合が存在しなければそのような処理方法を適用す
ることが困難で、従つてその適用範囲には限度が
みられた。しかるに、本発明においては、適用範
囲に限界がないばかりではなく、表面摩擦摩耗特
性の改善と引き換えとなつていた他のゴム特性の
低下といつた犠性を払うこともないので、この方
法の有効性はきわめて満足される。 従つて、本発明のゴムの表面処理方法は、天然
ゴムおよび各種の合成ゴムの成形材料に有効に適
用することができる。合成ゴムとしては、例えば
スチレンブタジエンゴム、アクリロニトリルブタ
ジエンゴム、アクリルゴム、クロロプレンゴム、
ヒドリンゴム、エチレンプロピレンゴム、フツ素
ゴムなど広範なものに適用することができる。 次に、実施例について本発明を説明する。 実施例 1 下記のゴム加硫配合物をロール上で混練し、
180℃で4分間プレス加硫し、厚さ2mmのサンプ
ルゴムシートを作成した。 ニトリルゴム(日本ゼオン製品DN―302)
100重量部 FEFカーボンブラツク 60 亜鉛華 5重量部 ステアリン酸 1 テトラメチルチウラムジサルフアイド 2.5 イオウ 0.8 N―シクロヘキシル―2―ベンゾチアジルスル
フインアミド 2.0 このサンプルゴムシートを、前述のスパツタエ
ツチング装置を用い、出力90Wで高周波放電を1
分間、2分間または3分間行ない、それについて
の動摩擦係数を測定した。動摩擦係数(μ)は、
鈴木式摩擦摩耗試験機を用い、次の条件で測定し
た。 回転速度 :150rpm(0.179m/秒)一定 荷 重 :1〜3Kg(0.5〜1.5Kg/cm2)可変 接触面積 :2cm2 相手側材質:S45C 測定時間 :1〜30分間可変 得られた結果は、次の表1〜2に示される。な
お、比較のために、未処理のサンプルゴムシート
および硫酸処理したサンプルゴムシートについて
得られたデーターを併記した。硫酸処理は、試薬
1級の濃硫酸(95%)中に20℃で4秒間浸漬し、
直ちに大量の水で洗浄し、乾燥させて行われた。
硫酸処理されたサンプルゴムシートは、軽く折り
曲げただけで無数のクラツクが生じた。
The present invention relates to a rubber surface treatment method. More specifically, the present invention relates to a rubber surface treatment method that provides a molded rubber material with excellent friction and wear characteristics. Conventionally, various methods have been proposed for improving the surface friction and wear characteristics of molded rubber materials, and they can be broadly classified into the following three types. (1) Chemical treatment: Modify the surface of molded rubber materials by reacting chemicals with rubber, such as sulfuric acid treatment and halogen treatment. This processing method has problems unique to wet processing, such as safety and hygiene and pollution, since it handles hazardous materials, and also has the disadvantage of easily deteriorating the rubber. (2) Physical treatment: Cover-coat the surface of the molded rubber material with another material by means such as coating, dipping, or painting. This treatment method has the problem of adhesion to rubber, making it difficult to apply to products with complex shapes and structures, and has the drawback of increasing equipment costs and increasing costs. (3) Energy irradiation treatment: When molded rubber materials are irradiated with appropriate energy such as ultraviolet rays or corona discharge, the deterioration of the rubber tends to be accelerated compared to normal conditions, for example, 100%
When the stretched state is observed with a scanning electron microscope, numerous cracks are observed, making it difficult to apply it to improving the friction and wear characteristics of rubber. The present inventor has conducted various studies on rubber surface treatment methods that do not cause these problems or drawbacks found in conventional techniques aimed at improving the surface friction and abrasion characteristics of molded rubber materials, and has developed a new technology called high-frequency plasma. By applying the method of high frequency sputter etching, which is a field, to molded rubber materials,
It has been found that the above problems can be effectively solved. Therefore, the present invention relates to a rubber surface treatment method, and this rubber surface treatment is performed by treating the surface of a molded rubber material attached to one of a pair of electrodes to a temperature of 10 -2 to 10 -2 .
10 -1 Torr (approximately 1~10Pa) pressure condition and 100W
This is done by high frequency sputter etching under the following output conditions. Conventionally, the surface of polymer materials such as polyethylene and polytetrafluoroethylene has been treated with oxygen plasma or non-oxidizing plasma, especially rare gas such as helium or argon, or hydrogen gas plasma to improve surface adhesion. However, the causes of this effect include the formation of a cross-linked film with a large molecular weight on the material surface and the weak sputtering of contaminants and low-molecular compounds attached to the material surface due to plasma gas. Removal based on effectiveness is mentioned (Chemistry Area Special Issue No. 111, "Low Temperature Plasma Chemistry", pp. 50-51). However, with these resinous polymeric materials, although their surface adhesion may be a problem, it is not the case with rubber materials that their tackiness or increased coefficient of friction is a problem. It can be said that it is unlikely. Therefore, although sputter etching has long been known to improve the surface adhesion of resinous polymeric materials, it has not been shown that sputter etching can improve the surface friction and wear characteristics of rubbery polymeric materials. It can be said that there is nothing out there that can predict what can be achieved. In high frequency sputter etching, approximately 10 -2 ~
High frequency discharge (frequency 13.56MHz) is performed under low pressure conditions of 10 -1 Torr (approximately 1 to 10Pa). High-frequency discharge is generally performed using an inert gas such as argon, neon, or krypton, but in consideration of ionization rate, cost, etc., it is desirable to use argon. In addition, helium and air can also be used, and it has been confirmed that they provide almost the same treatment effect as when using argon. The molded rubber material to be surface-treated is attached to one electrode of a pair of electrodes having a constant distance therebetween by suitable means. The distance between the electrodes is set in relation to the size of the electrodes, but if the distance is longer than a certain value, the sputter etching effect will be uneven due to misalignment of the molded rubber material at the installed position. become invisible. In this regard, in order to further reduce the unevenness of the sputter etching effect due to the shape of the molded rubber material, it is possible to minimize the effect by rotating the molded rubber material during processing. Further, when the output (incident wave - reflected wave) is 100 W or less, if the value of the number of watts x the discharge time is constant, the amount of spatter etching will be approximately the same. Specifically, the surface treatment of the molded rubber material is performed, for example, according to the illustrated flow sheet. That is, a molded rubber material 4 is attached to one electrode 3 side of a pair of electrodes 2 and 3 with a distance of 30 mm between the electrodes installed in a bell gear type chamber 1 by an appropriate means. The pressure inside the chamber is reduced to the order of 10 -7 Torr (approximately 10 -5 Pa) by an exhaust line 5 connected to an oil rotary pump and an oil diffusion pump (both not shown). Argon gas is introduced through the gas introduction line 6 to reduce the pressure inside the chamber to 10 -4 Torr (approx.
10 -2 Pa). Then adjust the main valve to increase the pressure to 10 -2
~10 -1 Torr (approximately 1 to 10 Pa). A high frequency wave oscillated by a high frequency oscillator 7 is adjusted by a matching device 8 so that the difference between the incident wave and the reflected wave is maximized. Note that the output is variable. The discharge is performed by argon, and positive ions of argon attack the electrode on the rubber material side, causing spatter etching at this time. After discharging for a certain period of time and stopping the discharge, a leak is caused and the surface-treated molded rubber material is taken out. The most important feature of the rubber surface treatment method according to the present invention is that such a treatment method can be applied even when there is no unsaturated bond in the main chain of the rubber molecules constituting the molding material. The object of the present invention is to greatly improve the surface friction and wear characteristics of molded rubber materials. In conventional surface treatment methods, especially chemical surface treatment methods, it is difficult to apply such treatment methods unless unsaturated bonds are present in the main chain of the rubber molecule, and therefore the scope of application is limited. There was a limit. However, in the present invention, not only is there no limit to the scope of application, but the improvement in surface friction and wear properties is not sacrificed in exchange for deterioration of other rubber properties. The effectiveness is very satisfactory. Therefore, the rubber surface treatment method of the present invention can be effectively applied to natural rubber and various synthetic rubber molding materials. Examples of synthetic rubber include styrene butadiene rubber, acrylonitrile butadiene rubber, acrylic rubber, chloroprene rubber,
It can be applied to a wide range of materials including hydrin rubber, ethylene propylene rubber, and fluorine rubber. Next, the present invention will be explained with reference to examples. Example 1 The following rubber vulcanized compound was kneaded on a roll,
Press vulcanization was performed at 180°C for 4 minutes to create a sample rubber sheet with a thickness of 2 mm. Nitrile rubber (Nippon Zeon product DN-302)
100 parts by weight FEF carbon black 60 Zinc white 5 parts by weight Stearic acid 1 Tetramethylthiuram disulfide 2.5 Sulfur 0.8 N-cyclohexyl-2-benzothiazylsulfinamide 2.0 This sample rubber sheet was subjected to the above-mentioned sputter etching device. 1 high frequency discharge with an output of 90W
The kinetic friction coefficient was measured for 2 minutes, 2 minutes or 3 minutes. The coefficient of dynamic friction (μ) is
Measurements were made using a Suzuki friction and wear tester under the following conditions. Rotation speed: 150 rpm (0.179 m/sec) constant Load: 1 to 3 Kg (0.5 to 1.5 Kg/ cm2 ) variable Contact area: 2 cm 2Mating material: S45C Measurement time: variable from 1 to 30 minutes The results obtained are , as shown in Tables 1 and 2 below. For comparison, data obtained for an untreated sample rubber sheet and a sample rubber sheet treated with sulfuric acid are also shown. The sulfuric acid treatment was performed by immersing the sample in 1st class reagent concentrated sulfuric acid (95%) at 20°C for 4 seconds.
It was immediately washed with plenty of water and dried.
The sample rubber sheet treated with sulfuric acid had numerous cracks even when it was slightly bent.

【表】【table】

【表】 実施例 2 下記のゴム加硫配合物をロール上で混練し、
190℃で10分間プレス加硫し、更に200℃で30時間
2次加硫を行ない、厚さ2mmのサンプルゴムシー
トを作成した。 フツ素ゴム(デユポン社製品バイトンE―
60C) 100重量部 MTカーボンブラツク 20 酸化マグネシウム 3 水酸化カルシウム 6 このサンプルゴムシートを、前述のスパツタエ
ツチング装置を用い、出力80Wで高周波放電を1
分間、2分間または3分間行ない、それについて
の動摩擦係数を測定した。 得られた結果は、次の表3に示される。なお、
比較のために、未処理のサンプルゴムシートおよ
びハロゲン処理したサンプルゴムシートについて
得られたデーターを併記した。ハロゲン処理は、
試薬1級の次亜塩素酸ナトリウムの1%水溶液
(有効塩素0.05%)100部に氷酢酸1部を加えて調
製した溶液中に20℃で5分間浸漬し、直ちに水で
洗浄し、乾燥させて行われた。このようにして処
理されたサンプルゴムシートは、殆んど未処理の
ままであり、即ちハロゲン処理は主鎖に不飽和結
合を有するゴム以外には、有効ではないことが判
る。
[Table] Example 2 The following rubber vulcanized compound was kneaded on a roll,
Press vulcanization was carried out at 190°C for 10 minutes, followed by secondary vulcanization at 200°C for 30 hours to prepare a sample rubber sheet with a thickness of 2 mm. Fluorine rubber (DuPont product Viton E)
60C) 100 parts by weight MT carbon black 20 Magnesium oxide 3 Calcium hydroxide 6 This sample rubber sheet was subjected to high-frequency discharge at an output of 80W for 1 time using the sputter etching device described above.
The kinetic friction coefficient was measured for 2 minutes, 2 minutes or 3 minutes. The results obtained are shown in Table 3 below. In addition,
For comparison, data obtained for an untreated sample rubber sheet and a halogen-treated sample rubber sheet are also shown. Halogen treatment is
Immerse for 5 minutes at 20°C in a solution prepared by adding 1 part of glacial acetic acid to 100 parts of a 1% aqueous solution of grade 1 sodium hypochlorite (available chlorine 0.05%), then immediately wash with water and dry. It was done. Most of the sample rubber sheets treated in this manner remained untreated, indicating that halogen treatment is not effective on rubbers other than those having unsaturated bonds in the main chain.

【表】 実施例 3 下記のゴム加硫配合物をロール上で混練し、
190℃で8分間プレス加硫を行ない、厚さ2mmの
サンプルゴムシートを作成した。 アクリルゴム(日本オイルシール工業製品A―
1095) 100重量部 HFカーボンブラツク 40 ステアリン酸 1 二塩基性亜リン酸鉛 5 ヘキサメチレンジアミンカーバメート 1.1 このサンプルゴムシートを、前述のスパツタエ
ツチング装置を用い、出力50Wで高周波放電を5
分間行ない、それについての動摩擦係数を測定し
た。得られた結果は、次の表4に示される。な
お、比較のために、未処理のサンプルゴムシート
について得られたデーターを併記する。
[Table] Example 3 The following rubber vulcanized compound was kneaded on a roll,
Press vulcanization was performed at 190°C for 8 minutes to create a sample rubber sheet with a thickness of 2 mm. Acrylic rubber (Japan Oil Seal Industrial Products A-
1095) 100 parts by weight HF carbon black 40 Stearic acid 1 Dibasic lead phosphite 5 Hexamethylene diamine carbamate 1.1 This sample rubber sheet was subjected to high frequency discharge at an output of 50 W using the sputter etching device described above for 50 minutes.
The kinetic friction coefficient was measured for 1 minute. The results obtained are shown in Table 4 below. For comparison, data obtained for an untreated sample rubber sheet is also shown.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明方法の一態様を実施するための
フローシートである。この図面において、符号1
はチヤンバー、2および3は電極、4は成形ゴム
材料、7は高周波発振器、そして8は整合器をそ
れぞれ指示する。
The drawing is a flow sheet for carrying out one embodiment of the method of the present invention. In this drawing, reference numeral 1
2 and 3 are electrodes, 4 is a molded rubber material, 7 is a high frequency oscillator, and 8 is a matching device, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極の一方に装着させた天然ゴム、ス
チレンブタジエンゴム、アクリロニトリルブタジ
エンゴム、アクリルゴム、クロロプレンゴム、ヒ
ドリンゴム、エチレンプロピレンゴム、およびフ
ツ素ゴムより選ばれるゴムにより成形された成型
ゴム材料の表面を、10-2〜10-1Torr(約1〜
10Pa)の圧力条件および100W以下の出力条件下
で高周波スパツタエツチングさせることを特徴と
するゴムの表面処理方法。
1. The surface of a molded rubber material made of a rubber selected from natural rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylic rubber, chloroprene rubber, hydrin rubber, ethylene-propylene rubber, and fluorine rubber attached to one of a pair of electrodes. , 10 -2 to 10 -1 Torr (approximately 1 to
A rubber surface treatment method characterized by performing high-frequency sputter etching under a pressure condition of 10 Pa) and a power output of 100 W or less.
JP6036480A 1980-05-07 1980-05-07 Surface treatment of rubber Granted JPS56157336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6036480A JPS56157336A (en) 1980-05-07 1980-05-07 Surface treatment of rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036480A JPS56157336A (en) 1980-05-07 1980-05-07 Surface treatment of rubber

Publications (2)

Publication Number Publication Date
JPS56157336A JPS56157336A (en) 1981-12-04
JPS6358696B2 true JPS6358696B2 (en) 1988-11-16

Family

ID=13140004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036480A Granted JPS56157336A (en) 1980-05-07 1980-05-07 Surface treatment of rubber

Country Status (1)

Country Link
JP (1) JPS56157336A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517430B1 (en) * 2002-11-22 2005-09-29 한국타이어 주식회사 Tire cure bladder for preventing lamination failure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324369A (en) * 1976-08-19 1978-03-07 Sekisui Chemical Co Ltd Method of manufacture of polyvinyl butylal sheet having improved blocking tendency
JPS5513753A (en) * 1978-07-18 1980-01-30 Achilles Corp Production of molded plastic product freed from the migration of additive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324369A (en) * 1976-08-19 1978-03-07 Sekisui Chemical Co Ltd Method of manufacture of polyvinyl butylal sheet having improved blocking tendency
JPS5513753A (en) * 1978-07-18 1980-01-30 Achilles Corp Production of molded plastic product freed from the migration of additive

Also Published As

Publication number Publication date
JPS56157336A (en) 1981-12-04

Similar Documents

Publication Publication Date Title
KR100743409B1 (en) Molded fluoroelastomer with excellent detachability and process for producing the same
Kang et al. Surface modifications of polyaniline films by graft copolymerization
JP5849308B2 (en) Method for producing surface-modified fluororesin film and surface-modified fluororesin film
JP3594884B2 (en) Method for producing composite material and composite material obtained thereby
JPH05507383A (en) Continuous material plasma processing equipment
JP3426583B2 (en) Improvement of metal surfaces by plasma polymerization for use in cooling and air conditioning
JPS6358696B2 (en)
Cho et al. Improvement of paint adhesion to a polypropylene bumper by plasma treatment
US6013153A (en) Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
EP0788870B1 (en) Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
JP3661723B2 (en)   Method for producing rubber-based composite material
US4349403A (en) Method for bonding elastomers to steel
JP3232643B2 (en) Method for producing rubber-based composite material
CN1245547C (en) Method for modifying high-polymer fibre material surface
KR100438941B1 (en) Multi-layer deposition method using plasma
US7288019B2 (en) Method of changing the surface wettability of polymer materials
JPS6033860B2 (en) Fluororesin film with adhesive
JP2000129015A (en) Surface modification method of fluorine resin molded article
JPS5931458B2 (en) sliding material
JP2010077227A (en) Rubber molded article and method for producing the same
JPS5971336A (en) Surface treatment of formed rubber material
JPH07102090A (en) Modifying method for surface of fluororesin tube
Tyczkowski et al. Plasma‐Surface Modification of Styrene‐Butadiene Elastomers for Improved Adhesion
JPH05202208A (en) Method of surface-treating vulcanized rubber
CN114134468A (en) Machining process for preventing point discharge during vacuum sputtering