JPS6358558B2 - - Google Patents

Info

Publication number
JPS6358558B2
JPS6358558B2 JP10816281A JP10816281A JPS6358558B2 JP S6358558 B2 JPS6358558 B2 JP S6358558B2 JP 10816281 A JP10816281 A JP 10816281A JP 10816281 A JP10816281 A JP 10816281A JP S6358558 B2 JPS6358558 B2 JP S6358558B2
Authority
JP
Japan
Prior art keywords
fermenter
fermentation
discharge port
hour
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10816281A
Other languages
Japanese (ja)
Other versions
JPS5813386A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10816281A priority Critical patent/JPS5813386A/en
Priority to CA000407101A priority patent/CA1191098A/en
Priority to AU85956/82A priority patent/AU547698B2/en
Priority to GB08220313A priority patent/GB2104914B/en
Publication of JPS5813386A publication Critical patent/JPS5813386A/en
Publication of JPS6358558B2 publication Critical patent/JPS6358558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

固定化微生物を用いる連続発酵は従来の連続発
酵におけると同様に雑菌の汚染による目的物の収
率低下に問題がある。これに対してこれまでとら
れている実用的な対策は雑菌侵入の経路を殺菌強
化することである。連続発酵技術はその目的から
長期間の安定運転が必須要件であり、雑菌汚染の
防御が必要である。固定化微生物を用いる連続発
酵においてもこの課題は同様である。アルコール
発酵、アセトン・ブタノール発酵、乳酸発酵など
の嫌気発酵は菌体自体に炭素源消費速度が好気発
酵に比し高く、固定化微生物を用いる方法によつ
て反応槽内滞留時間は極めて短縮されることが知
られている。しかし雑菌汚染はかゝる反応槽にて
も従来の連続発酵に比べれば多少軽減されるもの
の避け難い問題である。雑菌汚染は、まず固定化
に用いる生産菌、あるいは雑菌の凝集によつて微
少フロツクが生成し、反応槽内に蓄積し、槽外へ
排出されにくいことが一因となつている。 このフロツクの除去方法について検討の結果反
応槽内にフロツクの沈降集積部分を設けて槽外へ
排出し発酵を行えば雑菌汚染の影響を大巾に減少
できることを見い出した。 本発明によれば生成するフロツクを沈降集積せ
しめる構造を有する発酵槽を用いてフロツクを集
積し槽外へ適宜排出することによつて長期間安定
に発酵を行うことができる。 本発明で用いられる槽の例を以下に示す。 (1) 傾斜板を反応槽下部に設置し傾斜板の底部に
沈降性の懸濁物質を集め、反応槽流出液をここ
から抜き出す反応槽。(第1図) (2) 円錐型の沈降槽単独又は(1)の傾斜板を併用す
る方法。(第3図) これらの発酵槽について以下に説明する。 第1図はフロツクの沈降集積構造を有し、固定
化膜を用いる発酵槽を示す。フロツクは沈降集積
部3に集められ排出口4から排出される。 第3図は粒状の固定化菌体を用いる例を示しフ
ロツクは金網14を通して沈降集積部11に集め
られ排出口12から系外へ排出される。 比較のため第2図に従来用いられる粒状固定化
菌体を用いる例を示す。 本発明で用いられる反応槽としては、フイルム
状、球状などの担体を用いる流動床反応槽ばかり
でなく膜状に固定した固定膜反応槽にも適用でき
特に後者では担体流動のない点で懸濁物の沈降が
妨害されにくく沈降槽の機能向上が期待できる。 本発明方法によれば原料の殺菌温度を通常より
低下しても雑菌汚染は殆んどない。すなわち通常
原料培地の殺菌方法は、発酵の種類、使用する菌
種、雑菌汚染の影響度から判断して決定され、例
えば固定化微生物を用いるアルコール連続発酵で
は原料殺菌を90〜100℃、5分程度の殺菌で行つ
ている。しかし本方法による場合には、70℃程度
まで低下しても雑菌汚染の悪影響がみられない。
雑菌汚染の対策に要す原料殺菌のエネルギーは負
担が大きく、本法は軽減具体策として意義が大き
いものといえる。 以下に本発明の態様を実施例によつて説明す
る。 実施例 1 第1〜3図に示される各装置を滅菌処理した。
別途滅菌処理を行つた10%アルギン酸ソーダ水溶
液1容に協会2号ブドウ酒酵母の麹汁培養液2容
を加えて混合した。該混合液を第1図に示す発酵
槽に送り込み、膜に液を浸漬させた後、2%塩化
カルシウム水溶液を送り、膜状にゲルを形成させ
た。然る後、90℃に5分間加熱保持した15%糖含
有糖蜜を送り込み連続運転を行つた(実験1)。
また第2図(実験2)、第3図(実験3)に示す
各々の発酵槽に殺菌した塩化カルシウム水溶液を
はり込み、上の酵母を含むアルギン酸混合液を滴
下しビーズ状担体を、液量の1/2に相当するかさ
容積(1.5)調製した。次いで、別途120℃15分
加熱殺菌した糖液を供給し連続運転を行つた。第
1〜3図における各発酵槽吐出口の糖濃度が20
g/程度となるように徐々にフイード量を増加
し、4日后に各々800ml/hrにていずれも8.2〜
8.4V/V%のアルコール濃度のもろみが得られ
た、このまゝ通塔を継続し雑菌汚染の影響を観察
した。500時間目まで、いずれも消費糖に対する
転換収率(理論値を100%とした比率、以后、収
率と略記する)は95%を維持し雑菌の増殖は認め
られなかつた。そこで500時間目から実験2,3
の糖液殺菌温度も実験1と同じ90℃5分間とし
た。通算800時間目では、実験2は収率が80%に
低下しカラム中に雑菌のフロツクが観察された。
これに対し実験1,3は、いずれも収率は95%で
雑菌フロツクは観察されなかつた。更に70℃5分
に糖液殺菌温度を低下し、通算1200時間通塔后、
実験1では収率は、91%、実験2では61%、実験
3では85%であつた。更に実験1では1800時間目
にても収率90%が維持できた。このとき実験2で
は収率60%、実験3では収率82%となつた。 実施例 2 第4図に示す空容量3から成る発酵槽に金網
製ラシヒリング(東京特殊金網(株)製、Dixon型径
6mm)2.5を充填した。まず発酵槽全体を殺菌
した。イノシン生産菌ブレビバクテリウム・アン
モニアゲネスATCC15187の種培養液(培地組
成:グルコース20g/、ペプトン10g/、酵
母エキス10g/、塩化ナトリウム3g/、30
℃、24時間培養)100mlおよび市販アルギン酸ソ
ーダ(富士化学(株)製、スノーアルギンL)3.3%
水溶液900mlの混合液を当該発酵槽に上部より平
均的に滴下しラフシリングを当該混合液で濡らし
た。当該発酵槽下部より余剰混合液を抜き出し、
次いで塩化カルシウム2%水溶液を送り込みゲル
化を行つた。ゲル化後、直ちに、下記生産培地を
発酵槽に送り込み、流下液を約1/hrにて循環
し、発酵を開始させた。空気吹込管25及び空気
吹込管16に空気をそれぞれ14/min、1/
min送り込んだ。空気は排出管17より排出され
る。
Continuous fermentation using immobilized microorganisms has the same problem as conventional continuous fermentation in that the yield of the target product decreases due to bacterial contamination. The practical countermeasure that has been taken so far is to strengthen the sterilization of the routes of microbial invasion. Due to its purpose, continuous fermentation technology requires stable operation over a long period of time, and protection against bacterial contamination is necessary. This problem is also the same in continuous fermentation using immobilized microorganisms. In anaerobic fermentation such as alcohol fermentation, acetone/butanol fermentation, and lactic acid fermentation, the rate of carbon source consumption by the bacterial cells themselves is higher than in aerobic fermentation, and the residence time in the reaction tank is extremely shortened by the method using immobilized microorganisms. It is known that However, even in such a reaction tank, bacterial contamination is an unavoidable problem, although it is somewhat reduced compared to conventional continuous fermentation. One of the causes of bacterial contamination is that minute flocs are generated by the aggregation of production bacteria or bacteria used for immobilization, accumulate in the reaction tank, and are difficult to be discharged from the tank. As a result of research into a method for removing flocs, it was found that the influence of bacterial contamination could be greatly reduced by providing a sedimentary accumulation area for flocs in the reaction tank and discharging the flocs outside the tank for fermentation. According to the present invention, fermentation can be carried out stably for a long period of time by using a fermenter having a structure that allows the produced flocs to settle and accumulate, and by accumulating the flocs and appropriately discharging them outside the tank. Examples of tanks used in the present invention are shown below. (1) A reaction tank in which an inclined plate is installed at the bottom of the reaction tank to collect sedimentary suspended matter at the bottom of the inclined plate, and from which the reaction tank effluent is extracted. (Fig. 1) (2) Method using a conical sedimentation tank alone or in combination with the inclined plate of (1). (Figure 3) These fermenters will be explained below. FIG. 1 shows a fermenter having a floc sedimentation accumulation structure and using an immobilized membrane. The flocs are collected in the settling section 3 and discharged from the discharge port 4. FIG. 3 shows an example in which granular immobilized microbial cells are used, and the flocs are collected in the sedimentation accumulation section 11 through a wire mesh 14 and discharged from the system through the discharge port 12. For comparison, FIG. 2 shows an example using conventionally used granular immobilized bacterial cells. The reaction vessel used in the present invention can be applied not only to a fluidized bed reaction vessel using a carrier in the form of a film or a sphere, but also to a fixed membrane reaction vessel in which the carrier is fixed in the form of a membrane. The sedimentation of objects is less likely to be disturbed, and it is expected that the functionality of the sedimentation tank will be improved. According to the method of the present invention, there is almost no bacterial contamination even if the sterilization temperature of the raw material is lower than usual. In other words, the method of sterilizing the raw material culture medium is usually determined based on the type of fermentation, the type of bacteria used, and the degree of influence of bacterial contamination.For example, in continuous alcoholic fermentation using immobilized microorganisms, the method of sterilizing the raw material culture medium is carried out at 90 to 100°C for 5 minutes. It is carried out with a certain degree of sterilization. However, when using this method, no adverse effects of bacterial contamination are observed even when the temperature drops to about 70°C.
The energy required to sterilize raw materials to prevent bacterial contamination is a heavy burden, and this method can be said to be of great significance as a concrete mitigation measure. Aspects of the present invention will be explained below with reference to Examples. Example 1 Each device shown in FIGS. 1 to 3 was sterilized.
To 1 volume of a 10% sodium alginate aqueous solution that had been sterilized separately, 2 volumes of a koji broth culture of Japan Association No. 2 grape wine yeast were added and mixed. The mixed solution was sent to the fermentation tank shown in FIG. 1, and after the membrane was immersed in the liquid, a 2% aqueous calcium chloride solution was sent to form a gel in the form of a membrane. After that, 15% sugar-containing molasses heated and maintained at 90°C for 5 minutes was fed and continuous operation was performed (Experiment 1).
In addition, a sterilized calcium chloride aqueous solution was poured into each of the fermenters shown in Fig. 2 (Experiment 2) and Fig. 3 (Experiment 3), and the above alginic acid mixture containing yeast was added dropwise to the bead-shaped carrier. A bulk volume (1.5) corresponding to 1/2 of the volume was prepared. Next, a sugar solution that had been separately heated and sterilized at 120°C for 15 minutes was supplied, and continuous operation was performed. The sugar concentration at each fermenter outlet in Figures 1 to 3 is 20
Gradually increase the amount of feed so that it is about 8.2 to 800 ml/hr after 4 days
A mash with an alcohol concentration of 8.4 V/V% was obtained, and the operation was continued to observe the effects of bacterial contamination. Up to the 500th hour, the conversion yield (ratio based on the theoretical value of 100%, hereinafter abbreviated as "yield") relative to consumed sugar was maintained at 95%, and no bacterial growth was observed. Therefore, from the 500th hour, experiments 2 and 3
The sugar solution sterilization temperature was also the same as in Experiment 1, 90°C for 5 minutes. At the 800th hour in total, the yield in Experiment 2 decreased to 80% and flocs of bacteria were observed in the column.
On the other hand, in Experiments 1 and 3, the yield was 95% and no bacterial flocs were observed. Furthermore, the sugar solution sterilization temperature was lowered to 70℃ for 5 minutes, and after a total of 1200 hours,
In experiment 1, the yield was 91%, in experiment 2 61%, and in experiment 3 85%. Furthermore, in Experiment 1, a yield of 90% was maintained even after 1800 hours. At this time, in Experiment 2, the yield was 60%, and in Experiment 3, the yield was 82%. Example 2 A fermenter having an empty capacity of 3 as shown in FIG. 4 was filled with 2.5 Raschig rings made of wire mesh (manufactured by Tokyo Tokushu Kinami Co., Ltd., Dixon type, diameter 6 mm). First, the entire fermenter was sterilized. Seed culture solution of inosine producing bacterium Brevibacterium ammoniagenes ATCC15187 (medium composition: glucose 20g/, peptone 10g/, yeast extract 10g/, sodium chloride 3g/, 30
℃, 24 hour culture) 100 ml and commercially available sodium alginate (manufactured by Fuji Chemical Co., Ltd., Snow Algin L) 3.3%
A mixed solution of 900 ml of aqueous solution was evenly dropped into the fermenter from the top to wet the rough shilling with the mixed solution. Extract the excess mixed liquid from the bottom of the fermenter,
Next, a 2% aqueous solution of calcium chloride was introduced to effect gelation. Immediately after gelation, the following production medium was sent into the fermenter, and the flowing liquid was circulated at about 1/hr to start fermentation. Air is supplied to the air blowing pipe 25 and air blowing pipe 16 at 14/min and 1/min, respectively.
I sent min. Air is exhausted from the exhaust pipe 17.

【表】 * 初発のみ、連続供給では除外
生産培地は予め120℃30分殺菌し使用した。塔
底液のPHを22%のアンモニア水を用いて7.4に調
節した。発酵開始後16時間目より培地を連続供給
した。吐出口20から発酵液の糖残量を5g/
となるように供給量を徐々に増大した。該発酵液
は供給量60ml/hrにてイノシン35g/が生成
し、これ以上の供給量ではイノシン含量は低下し
た。 イノシンの分析は高速液体クロマトグラフイー
を用いた。2連の発酵槽を用い、上記迄の操作を
併行して行つた。一方の発酵槽は、上記の操作を
継続した。他方の発酵槽は吐出口、供給開始后90
時間目にて吐出口21に変更し吐出口20は閉と
した。供給開始後240時間後までのイノシン力価
はいずれも35g/であり、雑菌汚染は認められ
なかつた。 いずれの発酵槽も240時間目より、培地殺菌条
件を100℃15分間に変更した。殺菌条件緩和後、
吐出口21より抜き出す発酵槽では雑菌汚染が急
速に進行し、イノシン力価は、殺菌条件緩和後
100時間目で21g/、150時間目で10g/、
200時間目で0g/となつた。他方、本発明に
係る装置では雑菌汚染が同様に発生したが、殺菌
条件緩和後100時間目でイノシン力価32g/、
150時間目で30g/、200時間目で28g/に低
下したが、雑菌による悪化は比較的緩慢であつ
た。 実施例 3 下記の種養養培地150mlを2容三角フラスコ
に入れ、L−リジン生産菌コリネバクテリウム、
グルタミカムATCC21513を接種して培養温度28
℃で24時間振盪培養を行つた。別に第4図の発酵
槽を用意し、殺菌した。
[Table] *Only for the first occurrence, excluded for continuous supply The production medium was sterilized in advance at 120°C for 30 minutes before use. The pH of the bottom liquid was adjusted to 7.4 using 22% aqueous ammonia. The medium was continuously supplied from 16 hours after the start of fermentation. The remaining amount of sugar in the fermented liquid from the discharge port 20 is 5 g/
The supply amount was gradually increased so that The fermentation liquid produced 35 g/hr of inosine at a feed rate of 60 ml/hr, and the inosine content decreased at a feed rate higher than this. Inosine was analyzed using high performance liquid chromatography. The above operations were carried out in parallel using two fermenters. One fermenter continued the above operation. The other fermenter has a discharge port, and after the start of feeding, 90
At the time point, the outlet was changed to the outlet 21, and the outlet 20 was closed. The inosine titer up to 240 hours after the start of supply was 35 g/in all cases, and no bacterial contamination was observed. After 240 hours in both fermenters, the medium sterilization conditions were changed to 100°C for 15 minutes. After easing sterilization conditions,
Bacterial contamination rapidly progresses in the fermenter extracted from the discharge port 21, and the inosine titer remains low after sterilization conditions are relaxed.
21g/ at 100th hour, 10g/ at 150th hour,
At the 200th hour, it became 0g/. On the other hand, in the device according to the present invention, bacterial contamination occurred in the same way, but the inosine titer was 32g/100 hours after relaxing the sterilization conditions.
The weight decreased to 30g/at the 150th hour and 28g/at the 200th hour, but deterioration due to bacteria was relatively slow. Example 3 150 ml of the following seed culture medium was placed in a 2-volume Erlenmeyer flask, and L-lysine producing bacteria Corynebacterium,
Glutamicum ATCC21513 was inoculated and cultured at a temperature of 28
Shaking culture was performed at ℃ for 24 hours. Separately, a fermenter shown in Figure 4 was prepared and sterilized.

【表】 上の培力液に6%ロウメトキシペクチン
(UniPectin社製)水溶液900mlを加え、よく混合
し、第4図の発酵槽の供給口15から発酵槽に詰
めたラシヒリング上に滴下した。次いで、余剰の
混合液を充分抜き去つた後、塩化カルシウム2%
水溶液を送り込みゲル化を行つた。ゲル化後、次
に示す生産培地500ml(初発より248時間までは
120℃15分殺菌以後は変更)を送り、固定化微生
物ゲル層の上部に滴下した。空気吹込口25及び
16よりそれぞれ18/min、2/minの通気
を行つた。 生産培地組成 廃糖蜜(グルコースとして) 150g/ MgSO4・7H2O 0.3g/ KH2PO4 0.7g/ 大豆粕酸加水分解物 20g/ ロイシン 200mg/ 層18の流下液はPH電極24及び22%アンモニ
ア水供給口及びミキサー22を用いてPH8.2に調
節し、リサイクル管19を通して層18の上部に
戻した。48時間培養後から生産培地を90ml/hrの
流量で連続供給した。実施例2と同様に、上記と
同じ操作を2連の装置を用い併行実施した。連続
供給開始後いずれも120時間目にて吐出口20か
ら抜取液中にリジン塩酸塩50g/の生成を確認
した。同じく150時間目から一方は吐出口20か
ら抜出しを止め吐出口21を開き、発酵液を抜き
出した。他方は、供給開始時から吐出口21を閉
とし吐出口20より発酵液を抜き出した。連続供
給開始から200時間目より培地殺菌条件を110℃15
分に変更した。殺菌条件緩和後50時間目には、吐
出口21より抜出す装置で雑菌汚染が認められ
た。すなわち、発酵液中のリジン含量は、殺菌条
件緩和後50時間目には48g/、100時間目には
35g/、150時間目には29g/、200時間目に
は18g/、250時間目には0g/であつた。
他方吐出口20より抜き出す方式を利用する場合
では、殺菌条件緩和後200時間目には40g/、
300時間目には41g/、500時間目には39g/
と急激な悪化は認められなかつた。
[Table] 900 ml of 6% wax methoxy pectin (manufactured by UniPectin) aqueous solution was added to the above culture solution, mixed well, and dripped onto the Raschig rings packed in the fermenter from the feed port 15 of the fermenter shown in FIG. Next, after sufficiently removing the excess mixed liquid, add 2% calcium chloride.
An aqueous solution was fed to perform gelation. After gelation, 500 ml of the following production medium (for up to 248 hours from the initial
sterilized at 120°C for 15 minutes) was sent and dropped onto the top of the immobilized microorganism gel layer. Ventilation was carried out at 18/min and 2/min from air inlets 25 and 16, respectively. Production medium composition Blackstrap molasses (as glucose) 150g / MgSO 4 7H 2 O 0.3g / KH 2 PO 4 0.7g / Soybean meal acid hydrolyzate 20g / Leucine 200mg / The flowing liquid of layer 18 is PH electrode 24 and 22% The pH was adjusted to 8.2 using the ammonia water supply port and the mixer 22, and the ammonia was returned to the top of the layer 18 through the recycle pipe 19. After 48 hours of culture, production medium was continuously supplied at a flow rate of 90 ml/hr. As in Example 2, the same operations as above were performed in parallel using two sets of devices. In each case, 120 hours after the start of continuous supply, 50 g of lysine hydrochloride was confirmed to be produced in the liquid extracted from the discharge port 20. Similarly, from the 150th hour onward, the discharge from one side was stopped from the discharge port 20, the discharge port 21 was opened, and the fermented liquid was discharged. On the other hand, the discharge port 21 was closed from the start of supply, and the fermented liquid was extracted from the discharge port 20. From the 200th hour after the start of continuous supply, the medium sterilization conditions were changed to 110℃15
Changed to minutes. Fifty hours after the sterilization conditions were relaxed, bacterial contamination was observed in the device that was extracted from the discharge port 21. In other words, the lysine content in the fermentation liquid was 48g/50 hours after relaxing the sterilization conditions, and 48g/100 hours after easing the sterilization conditions.
The amount was 35 g/, 29 g/ at the 150th hour, 18 g/ at the 200th hour, and 0 g/ at the 250th hour.
On the other hand, when using the method of extracting from the discharge port 20, 40g/200 hours after relaxing the sterilization conditions,
41g/at 300th hour, 39g/at 500th hour
No rapid deterioration was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る沈降集積部を有する発酵
槽を示す。 1:供給口、2:固定化微生物膜、3:沈降集
積部、4:排出口、5:ガス排出口。 第2図は従来の固定化球状担体を用いる発酵槽
の断面図である。 6:供給口、7:固定化球状担体、8:排出
口。 第3図は本発明に係る傾斜板沈降部分を有する
発酵槽を示す。 9:供給口、10:固定化球状担体、12:吐
出口、13:ガス排出口、14:金網。 第4図は、本発明及び従来の発酵槽を示す。 15:供給口、16:空気吹込口、17:空気
排出口、18:ラシヒリング、19:リサイクル
管、20,21:吐出口、22:PHコントロール
用のアンモニア水添加口及びミキサー、23:発
酵液の液面、24:PH電極、25:空気吹込口、
26:沈降集積部。 吐出口21を用いる場合従来の発酵槽、吐出口
20を用いる場合本発明方法で用いる発酵槽を示
す。
FIG. 1 shows a fermenter with a settling section according to the invention. 1: Supply port, 2: Immobilized microorganism membrane, 3: Sedimentation accumulation section, 4: Discharge port, 5: Gas discharge port. FIG. 2 is a sectional view of a fermenter using a conventional immobilized spherical carrier. 6: supply port, 7: immobilized spherical carrier, 8: discharge port. FIG. 3 shows a fermenter with an inclined plate settling section according to the invention. 9: supply port, 10: immobilized spherical carrier, 12: discharge port, 13: gas discharge port, 14: wire mesh. FIG. 4 shows a fermenter according to the present invention and a conventional fermenter. 15: Supply port, 16: Air inlet, 17: Air discharge port, 18: Raschig ring, 19: Recycle pipe, 20, 21: Discharge port, 22: Ammonia water addition port and mixer for PH control, 23: Fermentation liquid liquid level, 24: PH electrode, 25: air inlet,
26: Sedimentation accumulation part. A conventional fermenter is shown when the discharge port 21 is used, and a fermenter used in the method of the present invention is shown when the discharge port 20 is used.

Claims (1)

【特許請求の範囲】[Claims] 1 固定化微生物を用いる発酵槽において生成す
るフロツクを沈降集積する構造を有する発酵槽を
用いてフロツクを排出せしめつつ発酵することを
特徴とする連続発酵法。
1. A continuous fermentation method characterized in that fermentation is carried out while discharging flocs using a fermenter having a structure in which flocs produced in a fermenter using immobilized microorganisms are sedimented and accumulated.
JP10816281A 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism Granted JPS5813386A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10816281A JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism
CA000407101A CA1191098A (en) 1981-07-13 1982-07-12 Process for manufacturing alcohol by fermentation
AU85956/82A AU547698B2 (en) 1981-07-13 1982-07-13 Immobilization of micro organism and fermentation in single vessel
GB08220313A GB2104914B (en) 1981-07-13 1982-07-13 Process for manufacturing alcohol by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10816281A JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS5813386A JPS5813386A (en) 1983-01-25
JPS6358558B2 true JPS6358558B2 (en) 1988-11-16

Family

ID=14477531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10816281A Granted JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS5813386A (en)

Also Published As

Publication number Publication date
JPS5813386A (en) 1983-01-25

Similar Documents

Publication Publication Date Title
Mazumder et al. Production of extracellular vitamin B-12 compounds from methanol by Methanosarcina barkeri
US4413058A (en) Continuous production of ethanol by use of flocculent zymomonas mobilis
CA1239600A (en) Method of continuously producing ethanol from sugar- containing substrates
BRPI0915017B1 (en) a method for producing 2,3-butanediol by microbial fermentation of a gaseous substrate comprising co
JP4197754B2 (en) Method for producing lactic acid or succinic acid
CA1185551A (en) PROCESS FOR THE PREPARATION OF ISOMALTULOSE (6-0-.alpha.- D-GLUCOPYRANOSIDO-D-FRUCTOSE) BY THE USE OF IMMOBILIZED BACTERIAL CELLS
JPS6215198B2 (en)
JP2563004B2 (en) Treatment of wastewater containing methanol
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
SU1181555A3 (en) Method of producing ethanol ethanol
JPS6358558B2 (en)
FI85501C (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYOLER GENOM PAO INDUSTRIELL SKALA BASERAD FERMENTATION AV SOCKER.
CN117757859A (en) Method for co-producing L-isoleucine and L-valine through microbial fermentation
JPS60126083A (en) Production of phenylalanine ammonialiase
CN113249364B (en) Industrial fermentation production method of whole cell containing glutamate decarboxylase
CN1219071C (en) Method for producing yeast extracellular trehalose by two step fermentation method
JPH05137585A (en) Method for continuously culturing erythritol
Sembiring et al. Anaerobic degradation of phenylacetic acid by mixed and pure cultures
Ghommidh et al. Continuous production of vinegar I. Research strategy
Fukuzaki et al. Chemical composition and kinetic properties of granular methanogenic sludge grown on propionate
US5053328A (en) Process for the fermentative preparation of L-amino acids from α-keto carboxylic acids
CN1218043C (en) Method for producing L-glutamic acid by continuous fermentation
US4562154A (en) Continuous alcohol manufacturing process using yeast
Molina et al. Effect of corn steep liquor on xanthan production by Xanthomonas campestris
Grotenhuis et al. Immobilization of anaerobic bacteria in methanogenic aggregates