JPS5813386A - Continuous fermentation using immobilized microorganism - Google Patents

Continuous fermentation using immobilized microorganism

Info

Publication number
JPS5813386A
JPS5813386A JP10816281A JP10816281A JPS5813386A JP S5813386 A JPS5813386 A JP S5813386A JP 10816281 A JP10816281 A JP 10816281A JP 10816281 A JP10816281 A JP 10816281A JP S5813386 A JPS5813386 A JP S5813386A
Authority
JP
Japan
Prior art keywords
fermentation
fermenter
tank
discharging
floc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10816281A
Other languages
Japanese (ja)
Other versions
JPS6358558B2 (en
Inventor
Sadao Noguchi
野口 貞夫
Minoru Nagashima
長島 實
Masayuki Azuma
眞幸 東
Rei Furukawa
令 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP10816281A priority Critical patent/JPS5813386A/en
Priority to CA000407101A priority patent/CA1191098A/en
Priority to AU85956/82A priority patent/AU547698B2/en
Priority to GB08220313A priority patent/GB2104914B/en
Publication of JPS5813386A publication Critical patent/JPS5813386A/en
Publication of JPS6358558B2 publication Critical patent/JPS6358558B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the contamination of the titled cntinuous fermentation system with various germs, and to enable the continuous operation stably for a long period, by accumulating and discharging the produced and precipitated floc from the reaction tank through the part placed in the tank. CONSTITUTION:A precipitate accumulation part 3 composed of inclined plates is attached to the bottom of the reactor (the sign 1 is the feeding port of the raw material and 5 is exhaust port of the produced gas) containing a number of vertical membranes 2 of immobilized microorganisms. The precipitating suspensoid (floc) produced in the tank is accumulated in the part 3, and the fermentation is continued while discharging the accumulated floc through the discharging line 4.

Description

【発明の詳細な説明】 固定化微生物を用いる連続発酵は従来の連続発酵におけ
ると同様に雑菌の汚染による目的物の収率低下に問題が
ある。これに対してこれまでとられている実用的な対策
は雑菌侵入の経路を殺菌強化することである。連続発酵
技術はその目的から長期間の安定運転が必須要件であシ
、雑菌汚染の防御が必要である。固定化微生物を用いる
連続発酵においてもこの課題は同様である。アルコール
発酵、アセトン・ブタノール発酵、乳酸発酵などの嫌気
発酵は菌体自体の炭素源消費速度が好気発酵に比し高く
、固定化微生物を用いる方法によって反応榴内浦留時間
は極めて短縮されることが知られている。しかし雑菌汚
染はか\る反応槽にても従来の連続発酵に比べれば多少
軽減されるものの避は細い問題である。雑菌汚染は、ま
ず固定化に用いる生産菌、あるいは雑菌の凝集によって
微少フロックが生成し、反応槽内に蓄積し、槽外へ排出
されにくいことが一因となっている。
DETAILED DESCRIPTION OF THE INVENTION Continuous fermentation using immobilized microorganisms has the same problem as conventional continuous fermentation in that the yield of the target product decreases due to contamination with various bacteria. The practical countermeasure that has been taken so far is to strengthen the sterilization of the routes of microbial invasion. Due to its purpose, continuous fermentation technology requires stable operation over a long period of time, and protection against bacterial contamination is necessary. This problem is also the same in continuous fermentation using immobilized microorganisms. In anaerobic fermentation such as alcohol fermentation, acetone/butanol fermentation, and lactic acid fermentation, the carbon source consumption rate of the bacterial cells themselves is higher than in aerobic fermentation, and the reaction time is extremely shortened by the method using immobilized microorganisms. It has been known. However, although bacterial contamination can be somewhat reduced compared to conventional continuous fermentation even in such a large reaction tank, it is still a problem that cannot be avoided. One of the causes of bacterial contamination is that minute flocs are generated by the aggregation of production bacteria or bacteria used for immobilization, accumulate in the reaction tank, and are difficult to discharge outside the tank.

このフロックの除去方法について検討の結果反応槽内に
フロックの沈降集積部分を設けて槽外へ排出し発酵を行
えば雑菌汚染の影響を大巾に減少できることを見い出し
た。
As a result of research into a method for removing flocs, it was found that the influence of bacterial contamination could be greatly reduced by providing a sedimentary accumulation area for flocs in the reaction tank and discharging the flocs outside the tank for fermentation.

本発明によれば生成するフロックを沈降集積せしめる構
造を有する発酵槽を用いてフロックを集積し槽外へ適宜
排出することによって長期間安定に発酵を行うことがで
きる。
According to the present invention, fermentation can be carried out stably for a long period of time by using a fermenter having a structure that allows the produced flocs to settle and accumulate, and by accumulating the flocs and appropriately discharging them outside the tank.

本発明で用いられる檜の例を以下に示す。Examples of cypress used in the present invention are shown below.

(1)傾斜板を反応槽下部に設置し傾斜板の底部に沈降
性の懸濁物質を集め、反応槽流出液をここから抜き出す
反応槽。(第1図) (2)円錐型の沈降槽単独又はHの傾斜板を併用する方
法。(第3図) これらの発酵槽について以下に説明する。
(1) A reaction tank in which an inclined plate is installed at the bottom of the reaction tank, sedimentary suspended matter is collected at the bottom of the inclined plate, and the reaction tank effluent is extracted from there. (Fig. 1) (2) Method of using a conical sedimentation tank alone or in combination with an H inclined plate. (Figure 3) These fermenters will be explained below.

第1図はフロックの沈降集積構造を有し、固定化膜を用
いる発酵槽を示す。フロックは沈降集積部3に築められ
排出ログから排出される。
FIG. 1 shows a fermenter having a floc sedimentation and accumulation structure and using an immobilized membrane. The flocs are built up in the settling section 3 and discharged from the discharge log.

第3図は粒状の固定化菌体を用いる例を示しフロックは
金網/≠を通して沈降集積部/lに集められ排出口/、
2から系外へ排出される。
Figure 3 shows an example of using granular immobilized bacterial cells, and the flocs are collected through a wire mesh /≠ into a sedimentation accumulation part /l and an outlet /.
2 is discharged from the system.

比較のため第2図に従来用いられる粒状固定化菌体を用
いる例を示す。
For comparison, FIG. 2 shows an example using conventionally used granular immobilized bacterial cells.

本発明で用いられる反応槽としては、フィルム状、球状
などの担体を用いる流動床反応槽ばかりでなく膜状に固
定した固定膜反応槽にも適用でき特に後者では担体流動
のない点で懸濁物の沈降が妨害されにくく沈S槽の機能
向上が期待できる。
The reaction vessel used in the present invention can be applied not only to a fluidized bed reaction vessel using a carrier in the form of a film or a sphere, but also to a fixed membrane reaction vessel in which the carrier is fixed in the form of a membrane. The sedimentation of substances is less likely to be disturbed, and the functionality of the sedimentation S tank can be expected to improve.

本発明方法によれば原料の殺菌温度を通常よシ低下して
も雑菌汚染は殆んどない。すなわち通常原料培地の殺菌
方法は、発酵の種類、使用する菌種、雑菌汚染の影譬度
から判断して決定され、例えば固定化微生物を用いるア
ルコール連続発酵では原料殺菌を2θ〜ioo”c、、
を分程度の殺菌で行っている。しかし本方法による場合
には、70℃程度まで低下しても雑菌汚染の悪影響がみ
られない。雑菌汚染の対策に要す原料殺菌のエネルギー
は負担が大きく、不法は軽減具体策として意義が大きい
ものといえる。
According to the method of the present invention, there is almost no bacterial contamination even if the sterilization temperature of the raw material is lower than usual. In other words, the method of sterilizing the raw material medium is usually determined based on the type of fermentation, the type of bacteria used, and the likelihood of bacterial contamination. For example, in continuous alcoholic fermentation using immobilized microorganisms, the method of sterilizing the raw material is ,
The sterilization process takes about minutes. However, in the case of this method, no adverse effects of bacterial contamination are observed even when the temperature drops to about 70°C. The energy required to sterilize raw materials to prevent bacterial contamination is a heavy burden, and illegal use can be said to be of great significance as a concrete mitigation measure.

以下に本発明の態様を実施例によって説明する。Aspects of the present invention will be explained below using examples.

実施例t 81〜3図に示される各装置を滅菌処理した。Example t Each device shown in Figures 81-3 was sterilized.

別途滅菌処理を行つfc / 0 %アルギン酸ソーダ
水溶液/好に協会2号ブドウ酒酵母の麹汁培養Mコ容を
加えて混合した。該混合液を第1図に示す発酵槽に送り
込み、膜に液を浸漬させた後、2優塩化カルシウム水溶
液を送り、膜状にゲルを形成させた。然る後、り0℃に
1分間加熱保持した/jqlr糖含有糖蜜を送シ込み連
続運転を行った(実9/)。また第2図(実験、2)、
第3図(実験3)に示す各々の発酵槽に殺菌した塩化カ
ルシウム水溶液をはり込み、上の酵母を含むアルギン酸
混合液を滴下しビーズ状担体を、液量の6に相幽するか
さ容積(/、 z t )調製した。次いで、別途i、
2o℃/J”分加熱殺菌した糖液を供給し連続運転を行
った。第1〜3図における各発酵槽吐出口の糖線度がコ
01/l1程度となるように徐々にフィード量を増加し
、1日后に各々1roo屑1 / h rにていずれも
tl、2〜A’、4(V/V%のアルコール濃度のもろ
みが得られた。このま\通塔を継続し雑菌汚染の影響を
観察した。t 00時間目まで、いずれも消費糖に対す
る転換収率(理論値を100%とした比率、以后、収率
と略記する)はりjチを維持し雑菌の増殖は認められな
かった。そこでj00時間目から実験−13の糖液殺菌
温度も実験/と同じ20℃!分間とした。通算100時
間目では、実験λは収率が10−に低下しカラム中に雑
菌のフロックが観察された。これに対し、<z> 実験/、3け、いずれも収率はり5%で雑菌フロックは
観察されなかった。更に70℃!分に粘液殺菌温度を低
下し、通算/λ0θ時間通塔后、実験/では収率は、り
/チ、実験コではJ/優、実験3では13%であった。
A separately sterilized fc/0% sodium alginate aqueous solution/M volume of koji juice culture of Association No. 2 grape wine yeast was added and mixed. The mixed solution was sent to the fermenter shown in FIG. 1, and after the membrane was immersed in the liquid, a dibasic calcium chloride aqueous solution was sent to form a gel in the form of a membrane. After that, molasses containing sugar, which had been heated and maintained at 0° C. for 1 minute, was pumped in and continuous operation was performed (Reply 9/). Also, Figure 2 (Experiment, 2),
Fill each fermenter shown in Figure 3 (Experiment 3) with a sterilized calcium chloride aqueous solution, drop the above yeast-containing alginic acid mixture dropwise, and add the bead-like carriers to a bulk volume ( /, z t ) was prepared. Next, separately i,
Continuous operation was performed by supplying a sugar solution heated and sterilized for 2oC/J".The feed amount was gradually increased so that the sugar linearity at each fermenter outlet in Figures 1 to 3 was approximately 01/11. After 1 day, mash with alcohol concentration of tl, 2~A', 4 (V/V%) was obtained with 1roo waste 1/hr each. The effect of conversion was observed. Until the 00th hour, the conversion yield (ratio based on the theoretical value of 100%, hereinafter abbreviated as "yield") relative to consumed sugar remained constant, and no bacterial growth was observed. Therefore, from the j00th hour onwards, the sugar solution sterilization temperature in Experiment-13 was set at 20°C! minutes, the same as in the experiment.At the total 100th hour, the yield of experiment λ decreased to 10-1, and the number of bacteria in the column increased. Flocs were observed. On the other hand, in the <z> experiment/, three samples, the yield was 5% and no bacterial flocs were observed. Furthermore, the mucus sterilization temperature was lowered to 70°C! minutes, and the total / After a period of λ0θ, the yield was Li/T in run 1, J/excellent in run 2, and 13% in run 3.

更に実験/では/100100時間目収率りoqtrが
維持できた。このとき実験−では収率to%、実験3で
は収率rコチとなった。
Furthermore, in the experiment/100/100th hour, the yield oqtr could be maintained. At this time, the yield was 10% in experiment-3, and the yield was r-1 in experiment 3.

実施例2 第V図に示す空容量31から成る発酵槽に金網製ラシヒ
リング(東京特殊金#j麹製、DiXOn型径jm)λ
22を充填した。まず発酵槽全体を殺菌した。イノシン
生産菌ブレビバクテリウム・アンモニアゲネスATCC
/j/17の種培養液(培地組成ニゲルコース20(1
/l、ペプトン10i/l、酵母エキス109/I!、
塩化ナトリウム311/l、30℃、コ≠時間培養)1
00111および市販アルギン酸ソーダ(富士化学@#
スノーアルギンL)3.3%水溶液りo。
Example 2 A wire mesh Raschig ring (manufactured by Tokyo Tokushu Kin #j Koji, DiXOn type diameter jm) was placed in a fermenter consisting of the empty capacity 31 shown in Figure V.
22 was filled. First, the entire fermenter was sterilized. Inosine-producing bacterium Brevibacterium ammoniagenes ATCC
/j/17 seed culture solution (medium composition Nigel course 20 (1
/l, peptone 10i/l, yeast extract 109/l! ,
Sodium chloride 311/l, 30°C, time culture) 1
00111 and commercially available sodium alginate (Fuji Chemical @#
Snow Algin L) 3.3% aqueous solution o.

−の混合液を当該発酵槽に上部より平均的に滴(j) 下しラシヒングを当該混合液で滴らした。当該発酵槽下
部より余剰混合液を抜き出し、次いで塩化カルシウム2
襲水溶液を送り込みゲル化を行った。ゲル化後、直ちに
、下記生産培地を発酵槽に送り込み、流下液を約/lj
/brにて循環し、発酵を開始させた。空気吹込管−2
j及び空気吹込管/lに空気をそれぞれ/4’//’m
in、/ l / min送シ込んだ。空気は排出管/
7より排出される。
The mixed solution (j) was evenly dropped into the fermenter from the top, and the mixed solution was added to the lashings. Excess liquid mixture is extracted from the lower part of the fermenter, and then calcium chloride 2
A water attack solution was sent in to form a gel. Immediately after gelation, the following production medium is sent to the fermenter, and the flowing liquid is approximately /lj
/br to start fermentation. Air blowing pipe-2
J and air blowing pipe /l respectively /4'//'m
in, /l/min. Air is a discharge pipe/
It is discharged from 7.

生産培地 グルコース l夕011/1.ちHPO□    j 
l/IKB、Po、     31/l、 Mt3SO
,・7H20311/1肉エキス  101//l、 
Fe50.−7H2010*ti/1ZndO,−7H
,O/Q/l 、 Mn804t・!H,O/ OR9
/1ビタミンB、    /41香自ζノシトテン酸カ
ルシウム/の曜/lシスチン  20m9/1.ビオチ
ン  30γ/10aOz、・jH,2rJ(別蒸#)
、tl/l、尿]o++i煮)λ11/l※初発のみ、
連続供給では除外 生産培地は予め120℃30分殺菌し使用した。塔底液
のp 11を、2.2%のアンモニア水を用いて711
に調節した。発酵開始・後/を時間目よシ培地を連続供
給した。吐出口−20からの発酵液の糖残量を111/
lとなるように供給量を徐々に増大した。該発酵液は供
給量IQul/hrにてイノシン311//lが生成し
、これ以上の供給量ではイノシン含量は低下した。
Production Medium Glucose l 011/1. ChiHPO□ j
l/IKB, Po, 31/l, Mt3SO
,・7H20311/1 meat extract 101//l,
Fe50. -7H2010*ti/1ZndO, -7H
, O/Q/l, Mn804t・! H,O/OR9
/1 Vitamin B, /41 Calcium zeta-nocytothenate/L cystine 20m9/1. Biotin 30γ/10aOz, ・jH, 2rJ (separately steamed #)
, tl/l, urine] o++i boiled) λ11/l *first onset only,
For continuous feeding, the excluded production medium was sterilized in advance at 120°C for 30 minutes before use. The p 11 of the bottom liquid was converted to 711 using 2.2% aqueous ammonia.
It was adjusted to After and after the start of fermentation, the medium was continuously supplied. The remaining amount of sugar in the fermented liquid from the discharge port-20 is 111/
The supply amount was gradually increased to 1. In the fermentation liquid, 311/l of inosine was produced at a feed rate of IQul/hr, and the inosine content decreased when the feed rate was higher than this.

イノシンの分析は高速液体クロマトグラフィーを用いた
。コ連の発酵槽を用い、上記迄の操作を併行して行った
。一方の発酵槽は、上記の操作を継続した。他方の発酵
槽は吐出口を、供給開始后りO時間目にて吐出ロコ/に
変更し吐出口20は閉とした。供給開始後コミO時間後
までのイノシンカ価はいずれも3jg7tであシ、雑菌
汚染は認められなかった。
High performance liquid chromatography was used for analysis of inosine. The above operations were carried out in parallel using a Koren fermenter. One fermenter continued the above operation. The discharge port of the other fermenter was changed to the discharge loco/at time O after the start of supply, and the discharge port 20 was closed. The inosinium value from the start of supply to the end of the hour was 3jg7t in all cases, and no bacterial contamination was observed.

いずれの発酵槽も、24tO時間目より、培地殺菌条件
をioo℃/)分間に変更した。殺菌条件緩和後、吐出
0.2〉1・↓シ抜き出す発酵槽では雑菌汚染が急速に
進行し、イノシンカ価は、殺菌条件緩和後/θO時間目
で、2/、!//l、/jθ時間目で1011/1,2
00時間目で0971となった。他方、本発明に係る装
置では雑菌汚染が同様に発生したが、殺菌条件緩和後1
00時間目でイノシンカ価:t、zll/l、/jO時
間目で3o11/l、 2oo時間目で21#/lに低
下したが、雑菌による悪化は比較的緩慢であった。
In both fermenters, the medium sterilization conditions were changed to ioo°C/) minutes from the 24th tO hour. After relaxation of sterilization conditions, bacterial contamination rapidly progresses in the fermenter from which discharge 0.2>1.↓ is extracted, and the inosinka value is 2/,! //l, /jθ time 1011/1,2
It became 0971 at the 00th hour. On the other hand, with the device according to the present invention, bacterial contamination similarly occurred, but after relaxing the sterilization conditions,
Inosinka titer: t, zll/l at 00 hours, decreased to 3o11/l at /j0 hours, and 21 #/l at 2oo hours, but the deterioration due to contaminants was relatively slow.

実施例3 下記の種培養培地/60−を21容三角フラスコに入れ
、L−リジン生産菌コリネバクテリウム・グルタミカム
ATOOλ/j/3を接種して培養温度、2j℃で、2
4A時間振盪培養を行った。別に第V図の発酵槽を用意
し、殺菌した。
Example 3 The following seed culture medium /60- was placed in a 21-volume Erlenmeyer flask, and the L-lysine producing bacterium Corynebacterium glutamicum ATOOλ/j/3 was inoculated and cultured at a culture temperature of 2j°C.
Shaking culture was performed for 4A hours. Separately, a fermenter shown in Figure V was prepared and sterilized.

種培養培地組成 り−グルコース グ011/l、に、2HPO,/、!
g/IKH,PO4Io、zl/l 、尿  素  3
11/lMg5O,・7H:20 0.J′ll/l 
、ペプトン 、20II/I!肉エキス    II/
1.ビオチン jOf、Q上の培養液に6%ロウメトキ
シペクチン(Unipectin社製)水溶液り00d
を加え、よく混合し、第1図の発酵槽の供給口/jから
発酵槽に(り) 詰めたラシヒリング上に滴下した。次いで、余剰の混合
液を充分抜き去った後、塩化カルシウムJ%水溶液を送
り込みゲル化を行った。ゲル化後、次に示す生産培地z
oow(初発よりハリ時間までは/コO℃lj分殺菌以
後は変更)を送り、固定化微生物ゲル層の上部に滴下し
た。空気吹込ロコj及び16よりそれぞれ/ r / 
/min、 2 l /minの通気を行った。
Seed culture medium composition - Glucose 011/l, 2HPO,/!
g/IKH, PO4Io, zl/l, urea 3
11/lMg5O, 7H:20 0. J′ll/l
, Peptone, 20II/I! Meat extract II/
1. Biotin jOf, add 6% wax methoxy pectin (manufactured by Unipectin) aqueous solution to the culture medium on Q00d
was added, mixed well, and dripped onto the Raschig rings packed in the fermenter from the feed port /j of the fermenter shown in Figure 1. Next, after sufficiently removing the excess liquid mixture, a J% calcium chloride aqueous solution was fed to perform gelation. After gelation, the following production medium z
oow (changed after sterilization at 0° C. lj minutes from initial onset to firming time) and dropped onto the top of the immobilized microorganism gel layer. From air blowing loco j and 16 respectively / r /
Aeration was performed at 2 l/min and 2 l/min.

生産培地組成 廃糖蜜(グルコースとして)   1101171Mg
5Oゲj7HJOO,39/11#KH,2POダ  
           0.711/l大豆粕酸加水分
解物     、2011/10イシン       
   +200即/を層/lの流下液はI)H電極、2
+を及び22%アンモニア水供給口及びミキサー、22
を用いてpHtλに調節し、リサイクル管lりを通して
層/rの上部に戻した。at待時間培養後ら生産培地を
20+j/hrの流量で連続供給した。実施例λと同様
に、上記と同じ操作をコ連の装置を用い併(/17) 行実施した。連続供給開始後いずれもん日時量目にて吐
出口−〇からの抜取液中にリジン塩酸塩109/lの生
成を確認した。同じ</jO時間目から一方は吐出口2
0からの抜出しを止め吐出口λ/を開き、発酵液を抜き
出した。他方は、供給開始時から吐出口2/を閉とし吐
出0.20より発酵液を抜き出した。連続供給開始から
、200時間目より培地殺菌条件を110℃71分に変
更した。殺菌条件緩和後10時間目には、吐出口21よ
シ抜出す装置で雑菌汚染が認められた。すなわち、発酵
液中のリジン含量は、殺菌条件緩和後10時間目にはa
rl/ノ、ioo時間目には311/l、/jO時間目
にはコク9/11λoo時間目には/ri/l、210
時間目には01/lであった。他方吐出ロコOよ如抜き
出す方式を利用する場合では、殺菌条件緩和後−200
時間、目1には≠oi7t。
Production medium composition Blackstrap molasses (as glucose) 1101171Mg
5Ogej7HJOO, 39/11#KH, 2POda
0.711/l soybean meal acid hydrolyzate, 2011/10 Ishin
+200 layers/l of flowing liquid is I) H electrode, 2
+ and 22% ammonia water supply port and mixer, 22
was used to adjust the pH to tλ and returned to the top of layer/r through the recycle pipe. After culturing for the at waiting period, the production medium was continuously supplied at a flow rate of 20+j/hr. As in Example λ, the same operations as above were carried out in parallel (/17) using Koren's apparatus. After the start of continuous supply, the production of 109/l of lysine hydrochloride was confirmed in the liquid extracted from the discharge port ◯ at every date and time. From the same </jO time, one side is discharge port 2
The extraction from 0 was stopped, the discharge port λ/ was opened, and the fermented liquid was extracted. On the other hand, the discharge port 2/ was closed from the start of supply, and the fermented liquid was extracted from the discharge 0.20. From 200 hours after the start of continuous supply, the medium sterilization conditions were changed to 110°C for 71 minutes. Ten hours after the sterilization conditions were relaxed, bacterial contamination was observed in the device for extracting from the discharge port 21. In other words, the lysine content in the fermentation liquid was a
rl/ノ, 311/l at ioo hour, richness at /jO hour, 9/11, /ri/l, 210 at λoo hour
At the hour, it was 01/l. On the other hand, when using the discharge loco O method, -200
Time, ≠oi7t for eye 1.

300時間時間上≠/i/l、100時間目には3り1
1/lと急激な悪化は認められなかった。
300 hours above /i/l, 3ri1 at 100th hour
1/l, and no rapid deterioration was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は本発明に係る沈降集積部を有する発酵槽を示す
。 l:供給口、2=固定化微生物膜、3:沈降集積部、4
t=排出口、j:ガス排出口。 第2図は従来の固定化球状担体を用いる発酵槽の断面図
である。 t:供給口、7:固定化球状担体、r:排出口。 第3図は本発明に係る傾斜板沈降部分を有する発酵槽を
示す。 P:供給口、10:固定化球状担体、//:傾斜板沈降
部、/コニ吐出口、13:ガス排出口、/ダニ金網。 第7図は、本発明及び従来の発酵槽を示す。 /j:供給口、/フ:空気吹込口、17:空気排出口、
/l:ラシヒリング、/り:リサイクル管、20.λ/
:1□′1□1・14.吐出口、λコニpHコントロー
ル用のアンモニア水添加口及びミキサー。 コ3:発酵液の液面、λ4’:pH電極、2よ:空気吹
込口、−6:沈降集積部。 吐出0.2/を用いる場合従来の発酵槽、吐出口20を
用いる場合本発明方法で用いる発酵槽を示す。 特許出願人:新燃料油開発技術研究組合(/3)
FIG. 7 shows a fermenter with a settling section according to the invention. l: Supply port, 2 = Immobilized microorganism membrane, 3: Sedimentation accumulation part, 4
t=discharge port, j: gas discharge port. FIG. 2 is a sectional view of a fermenter using a conventional immobilized spherical carrier. t: supply port, 7: immobilized spherical carrier, r: discharge port. FIG. 3 shows a fermenter with an inclined plate settling section according to the invention. P: Supply port, 10: Immobilized spherical carrier, //: Inclined plate settling part, / Coni discharge port, 13: Gas discharge port, / Dust mite wire mesh. FIG. 7 shows a fermenter according to the present invention and a conventional fermenter. /j: Supply port, /F: Air inlet, 17: Air outlet,
/l: Raschig ring, /li: recycling pipe, 20. λ/
:1□'1□1・14. Discharge port, ammonia water addition port for λKoni pH control, and mixer. 3: Liquid level of fermentation liquor, λ4': pH electrode, 2: Air inlet, -6: Sedimentation accumulation section. A conventional fermenter is shown when a discharge of 0.2/ is used, and a fermenter used in the method of the present invention is shown when a discharge port of 20 is used. Patent applicant: New Fuel Oil Development Technology Research Association (/3)

Claims (1)

【特許請求の範囲】[Claims] 固定化微生物を用いる発酵槽において生成するフロック
を沈降集積する構造を有する発酵槽を用いてフロックを
排出せしめつつ発酵することを特徴とする連続発酵法。
A continuous fermentation method characterized by carrying out fermentation while discharging flocs using a fermenter having a structure in which flocs generated in a fermenter using immobilized microorganisms are sedimented and accumulated.
JP10816281A 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism Granted JPS5813386A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10816281A JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism
CA000407101A CA1191098A (en) 1981-07-13 1982-07-12 Process for manufacturing alcohol by fermentation
AU85956/82A AU547698B2 (en) 1981-07-13 1982-07-13 Immobilization of micro organism and fermentation in single vessel
GB08220313A GB2104914B (en) 1981-07-13 1982-07-13 Process for manufacturing alcohol by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10816281A JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS5813386A true JPS5813386A (en) 1983-01-25
JPS6358558B2 JPS6358558B2 (en) 1988-11-16

Family

ID=14477531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10816281A Granted JPS5813386A (en) 1981-07-13 1981-07-13 Continuous fermentation using immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS5813386A (en)

Also Published As

Publication number Publication date
JPS6358558B2 (en) 1988-11-16

Similar Documents

Publication Publication Date Title
Wiegant et al. Thermophilic anaerobic digestion of sugars in upflow anaerobic sludge blanket reactors
Guo et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor
Mazumder et al. Production of extracellular vitamin B-12 compounds from methanol by Methanosarcina barkeri
US4413058A (en) Continuous production of ethanol by use of flocculent zymomonas mobilis
CN101307333B (en) Process for integrated utilization of the energy and material contents of hydrolysates
Gijzen et al. High‐Rate two‐phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis
BR112018012444B1 (en) METHOD FOR PRODUCING ORTHO-AMINOBENZOIC ACID
GB2062003A (en) Process for producing alcohol and yeast by continuous fermentation
CN102459563A (en) Bioreactor process for production of hydrogen from biomass
JPS6215198B2 (en)
US3251749A (en) Fermentation process for preparing polysaccharides
CN116716231B (en) Escherichia coli and application thereof in fermentation production of tryptophan
Switzenbaum The anaerobic attached film expanded bed reactor for the treatment of dilute organic wastes
CN101619290A (en) Method and apparatus for supplying and recycling oxygen in process of high-density fermentation of aerobic microorganism
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
JPS6291293A (en) Treatment of waste water based on anaerobic treatment
JPS5813386A (en) Continuous fermentation using immobilized microorganism
JPS60126083A (en) Production of phenylalanine ammonialiase
Endo et al. Ecological study on anaerobic sludge bulking caused by filamentous bacterial growth in an anaerobic contact process
Grotenhuis et al. Immobilization of anaerobic bacteria in methanogenic aggregates
US4562154A (en) Continuous alcohol manufacturing process using yeast
JPS62111693A (en) Production of l-amino acid from alpha-ketocarboxilic acid byfermentation
JP3149000B2 (en) Bioreactor
KR950008042B1 (en) Methane fermentation method
JPH0198500A (en) Method for refining sucrose solution