JPS6358522A - Data transfer device with back-up power supply - Google Patents

Data transfer device with back-up power supply

Info

Publication number
JPS6358522A
JPS6358522A JP61202774A JP20277486A JPS6358522A JP S6358522 A JPS6358522 A JP S6358522A JP 61202774 A JP61202774 A JP 61202774A JP 20277486 A JP20277486 A JP 20277486A JP S6358522 A JPS6358522 A JP S6358522A
Authority
JP
Japan
Prior art keywords
power supply
backup power
integrated circuit
storage device
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61202774A
Other languages
Japanese (ja)
Inventor
Sumio Yamada
澄夫 山田
Shinkichi Shimizu
信吉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61202774A priority Critical patent/JPS6358522A/en
Publication of JPS6358522A publication Critical patent/JPS6358522A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Power Sources (AREA)

Abstract

PURPOSE:To ensure an easy and sure back-up for a data transfer device with time points by using a large capacity capacitor to back up a memory device and a timepiece device. CONSTITUTION:Each of the memory devices 1 and timepiece devices of a device which transmits data with time points is backed up in a service interruption mode, etc. by a back-up power supply 41 a large capacity capacitor of a farad unit which is charged by a DC power supply 5 which rectifies a commercial power supply, etc., and another back-up power supply 42 with which a back-up current is prevented from conducting to the device 1 via a diode 9. Thus it is possible to avoid such a case where the satisfactory recharging is impossible in the application mode of a long time like a case a rechargeable battery is used as a back-up power supply. Then the simple, stable and sure back-up is secured with a data transfer device.

Description

【発明の詳細な説明】 [概要コ 情報センタに対し時刻を付してデータを送出するデータ
送出装置の集積回路による記憶装置・時計装置に対し、
ファラド単位の大容量コンデンサによるバックアップ電
源を各々接続して、停電復旧まで各装置をバックアンプ
するデータ送出装置である。
[Detailed Description of the Invention] [Summary] For a storage device/clock device using an integrated circuit of a data sending device that sends data with a time stamp attached to an information center,
This is a data transmission device that back-amps each device until power is restored by connecting backup power supplies using large-capacity capacitors in farad units.

[産業上の利用分野] 本発明は遠隔地に在る情報センタに対しデータを送出す
るための記憶装置・時計装置にバックアップ電源を接続
したデータ送出装置に関する。
[Industrial Application Field] The present invention relates to a data sending device in which a backup power source is connected to a storage device/clock device for sending data to an information center located in a remote location.

データ送出装置にバックアップ電源を接続し、電源が停
電したとき記憶していたデータについて消失することを
防止しているが、その電源装置として簡易な構成で確実
に動作するものが要望されている。
A backup power supply is connected to the data transmission device to prevent stored data from being lost in the event of a power outage, but there is a need for a power supply device that has a simple configuration and operates reliably.

し従来の技術] データ処理システムにおけるデータ記憶装置として半導
体集積回路を使用するとき、動作電源が停電などのため
断となったり、瞬間的な電圧降下が起こったとき、記憶
データが全て揮発してしまう。そのため記憶装置に対し
バンクアップ電源を接続し、データを保護している。第
3図は従来のデータ送出装置の構成を示す図で、1は揮
発性記憶装置集積回路、2はデータに時刻を挿入するた
めの時計装置集積回路、3は記憶装置集積回路の周辺回
路、4はバックアップ電源で、例えばニッケル・カドミ
ウム電池のように再充電可能な電池、5は商用電源を整
流して直流を得る直流電源、6はダイオードで停電時に
バックアップ電源4から直流電源5の方向へ電流が流れ
バックアップ電源4が直ぐ消耗することを防止する。
[Prior Art] When a semiconductor integrated circuit is used as a data storage device in a data processing system, when the operating power is cut off due to a power outage or when a momentary voltage drop occurs, all of the stored data is volatile. Put it away. Therefore, a bank-up power supply is connected to the storage device to protect the data. FIG. 3 is a diagram showing the configuration of a conventional data sending device, in which 1 is a volatile storage device integrated circuit, 2 is a clock device integrated circuit for inserting time into data, 3 is a peripheral circuit of the storage device integrated circuit, 4 is a backup power source, such as a rechargeable battery such as a nickel-cadmium battery, 5 is a DC power source that rectifies commercial power to obtain DC, and 6 is a diode that connects from the backup power source 4 to the DC power source 5 in the event of a power outage. This prevents the backup power source 4 from being quickly consumed due to current flow.

商用電源を整流して直流を得る直流電源5は、通常時に
各回路1.2.3に対し、直流電圧例えば+5vを供給
し、バックアンプ電源に充電を行っている。時計装置集
積回路2は記憶装置集積回路1のデータをセンタへ送出
するときなどに時刻を挿入するために使用する。直流電
源5の電源が断となったときバックアップ電源が動作す
る。
A DC power supply 5 that obtains DC by rectifying a commercial power supply normally supplies a DC voltage, for example, +5V, to each circuit 1.2.3 to charge the back amplifier power supply. The clock device integrated circuit 2 is used to insert the time when data in the storage device integrated circuit 1 is sent to the center. When the DC power supply 5 is powered off, the backup power supply operates.

[発明が解決しようとする問題点] 第3図に示すバックアップ電源の回路では、記憶装置集
積回路1と時計装置集積回路2とに共通のバックアップ
電源4を接続しているから、停電などのためバックアッ
プ直流が流れ続けてバンクアンプ動作ができなくなれば
、システム全体がストップすることとなった。またバッ
クアップ電源として再充電可能な電池を使用していると
、長時間使用して再充電が十分にできなくなって、デー
タ保護が不可能となった。
[Problems to be Solved by the Invention] In the backup power supply circuit shown in FIG. 3, since the common backup power supply 4 is connected to the storage device integrated circuit 1 and the clock device integrated circuit 2, it is difficult to solve the problem due to a power outage or the like. If the backup DC continued to flow and the bank amplifier could no longer operate, the entire system would stop. Also, if a rechargeable battery was used as a backup power source, it could not be recharged after long periods of use, making data protection impossible.

本発明の目的は前述の欠点を改善し、簡易な構成で長期
にわたりデータ保護が可能なバックアップ電源を使用す
る記憶装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and to provide a storage device using a backup power source that has a simple configuration and can protect data over a long period of time.

[問題点を解決するための手段] 第1図は本発明のデータ送出装置の原理構成をすブロッ
ク図である。第1図において、■は揮発性記憶装置集積
回路(例えばCMO3型半導体素子を使用するもの)、
2は時計装置集積回路(例えばCMO3型半導体素子を
使用するもの)、3は記憶装置集積回路の周辺回路、4
1は第1バツクアツプ電源でファラド単位の大容量コン
デンサ(例えば0.5フアラドを電気二重層コンデンサ
で得る)を使用し記憶装置集積回路1と接続するもの、
42は第2バツクアツプ電源で同じくファラド単位の大
容量コンデンサを使用し、時計装置集積回路2と接続す
るもの、5は商用電源を整流して直流を得る直流電源、
6はダイオード、71゜72.73はそれぞれ電圧検出
回路で図示する場所に接続されている。8はデータ送出
装置のマイクロプロセッサで記憶装置集積回路の周辺回
路3や時計装置集積回路2の動作を制御する。9はダイ
オードで、第2バツクアツプ電源42から電源41の方
へ電流が流れてバックアップ電源42が早く消耗するこ
とを防止する。
[Means for Solving the Problems] FIG. 1 is a block diagram showing the basic configuration of a data sending device of the present invention. In FIG. 1, ■ is a volatile memory device integrated circuit (for example, one using a CMO3 type semiconductor element);
2 is a clock device integrated circuit (for example, one using a CMO3 type semiconductor element); 3 is a peripheral circuit of a memory device integrated circuit; 4 is a peripheral circuit of a memory device integrated circuit;
1 is a first backup power supply that uses a large capacity capacitor in farad units (for example, 0.5 farad is obtained with an electric double layer capacitor) and is connected to the storage device integrated circuit 1;
42 is a second backup power supply which also uses a large capacity capacitor in farad units and is connected to the clock device integrated circuit 2; 5 is a DC power supply that rectifies the commercial power supply to obtain DC;
Reference numeral 6 is a diode, and reference numerals 71, 72, and 73 are voltage detection circuits connected to the locations shown in the figure. Reference numeral 8 denotes a microprocessor of the data sending device, which controls the operation of the peripheral circuit 3 of the storage device integrated circuit and the clock device integrated circuit 2. A diode 9 prevents current from flowing from the second backup power source 42 to the power source 41 and prevents the backup power source 42 from being quickly consumed.

[作用] 直流電源5が正常に動作しているとき、大容量コンデン
サは大略直流電源5の直流電圧値例えば5vに充電され
ている。直流電源5が商用電源の停電などのため直流電
圧が低下したとき、記憶装置集積回路1と周辺回路3は
バックアップ電源41により、時計装置集積回路2はバ
ックアップ電源42によりそれぞれバックアップされる
。即ち充電されていたコンンデンサが放電するまでの電
圧をバックアップ電源の電圧とする。そのため記憶装置
集積回路に格納されていたデータが直ぐ揮発することは
ない。なおバックアップ電源42からの消費電流は数μ
Aと非常に小さいから、同容量のコンデンサを使用して
バックアップ電源を構成したとき、バックアップ電源4
1の電圧降下の方が早い。
[Function] When the DC power supply 5 is operating normally, the large capacity capacitor is charged to approximately the DC voltage value of the DC power supply 5, for example, 5V. When the DC voltage of the DC power supply 5 decreases due to a power outage of the commercial power supply, etc., the storage device integrated circuit 1 and the peripheral circuit 3 are backed up by the backup power supply 41, and the clock device integrated circuit 2 is backed up by the backup power supply 42. That is, the voltage until the charged capacitor is discharged is set as the voltage of the backup power supply. Therefore, the data stored in the memory device integrated circuit does not immediately volatilize. Note that the current consumption from the backup power supply 42 is several μ.
Since A is very small, when a backup power supply is configured using capacitors of the same capacity, the backup power supply 4
1 voltage drop is faster.

マイクロプロセッサ8は停電のとき動作停止となるが、
フリップフロップ51.52には電圧検出回路71.7
2の状況即ちバックアップ電源の状況、を保持させて置
く。そのため電源が停電から復旧したときフリップフロ
ップ51.52の出力電位をマイクロプロセッサ8が読
取る。若し時計装置2の側が依然動作良好であることを
知れば、以後のマイクロプロセッサは自分の処理動作プ
ログラムを起動してシステムを自動立上りさせる。
The microprocessor 8 stops operating during a power outage, but
A voltage detection circuit 71.7 is installed in the flip-flop 51.52.
The second situation, that is, the backup power supply situation, is maintained. Therefore, when the power is restored from the power outage, the microprocessor 8 reads the output potentials of the flip-flops 51 and 52. If the microprocessor knows that the clock device 2 is still operating well, the subsequent microprocessor starts its own processing operation program to automatically start up the system.

その結果記憶装置集積回路1が直ぐ動作可能である。As a result, the memory device integrated circuit 1 is ready for operation.

[実施例] 第2図は本発明実施例の構成を示す図である。[Example] FIG. 2 is a diagram showing the configuration of an embodiment of the present invention.

第2図において51.52はフリップフロップで電圧検
出回路71.72の状態即ちバックアップ電源の電圧状
態を保持する。そのため図示するように各端子を接続す
る。53はトランジスタ回路で、第3図におけるダイオ
ード6と同様に動作する。その他第1図と同一の符号は
同様のものを示している。トランジスタ回路53は図の
下方のトランジスタが電源電圧の平常時に導通となるよ
うに入力側抵抗で分圧回路を構成し、したがって上方の
トランジスタが平常時は導通する。上方のトランジスタ
のエミッタ・コレクタ間の電位降下はダイオード6の電
位降下と比べて小さい。そしてバックアップ電源41.
42のコンデンサは充電されている。
In FIG. 2, reference numerals 51 and 52 are flip-flops that maintain the state of the voltage detection circuits 71 and 72, that is, the voltage state of the backup power source. Therefore, connect each terminal as shown. 53 is a transistor circuit, which operates in the same manner as the diode 6 in FIG. Other same reference numerals as in FIG. 1 indicate similar parts. The transistor circuit 53 constitutes a voltage dividing circuit with an input side resistor so that the lower transistor in the diagram is conductive during normal power supply voltage, and therefore the upper transistor is conductive during normal times. The potential drop between the emitter and collector of the upper transistor is smaller than the potential drop of the diode 6. and backup power supply 41.
42 capacitors are charged.

第2図における停電時の動作について説明する。The operation at the time of power outage in FIG. 2 will be explained.

電圧検出回路73は直流電源5例えば5■の電圧が4.
5v以下に低下したとき(停電のときなど)それを検出
して、マイクロプロセッサ8に知らせる。マイクロプロ
セッサ8は電圧検出回路73から電圧降下を検出した信
号“L”を受取り、内部RAMのデータのうち必要のも
のを記憶装置1へ転送する。その後マイクロプロセッサ
8はフリップフロップ51.52にクロックパルスを1
つ送りフリップフロップ51.52の出力Qを反転して
“H”とする。直流電源5の電圧低下のためトランジス
タ回路53の下方のトランジスタはオフとなり、上方の
トランジスタもオフとなる。記憶装置集積回路1・時計
装置集積回路2・記憶装置周辺回路3・フリップフロッ
プ51.52・電圧検出回路71・72に対するバンク
アンプ電源41.42のバンクアップが開始される。記
憶装置I、時計装置2に対するチップセレクト信号C8
を得る。チップセレクト信号C3が各集積回路に印加さ
れていると、消費電力を減少させることができる。電圧
検出回路71.72における電圧は2.5■以上存在す
るから、再度電源が正常となったときフリップフロップ
51.52の出力端子Qは”H”のままである。このと
きバックアップ電源が2.5v以下となると再度電源が
正常になったとき、フリップフロップ出力端子Qは“L
”となる。そこでフリップフロップ51,52の出力端
子Qの電位によりマイクロプロセッサが判断する。
The voltage detection circuit 73 detects that the voltage of the DC power supply 5, for example, 5.
When the voltage drops below 5V (such as during a power outage), it is detected and the microprocessor 8 is notified. The microprocessor 8 receives a signal "L" indicating a voltage drop from the voltage detection circuit 73, and transfers necessary data from the internal RAM to the storage device 1. The microprocessor 8 then sends one clock pulse to the flip-flops 51 and 52.
The outputs Q of the forwarding flip-flops 51 and 52 are inverted and set to "H". Due to the voltage drop of the DC power supply 5, the lower transistor of the transistor circuit 53 is turned off, and the upper transistor is also turned off. Bank-up of the bank amplifier power supplies 41 and 42 for the storage device integrated circuit 1, the clock device integrated circuit 2, the storage device peripheral circuit 3, the flip-flops 51 and 52, and the voltage detection circuits 71 and 72 is started. Chip select signal C8 for storage device I and clock device 2
get. If the chip select signal C3 is applied to each integrated circuit, power consumption can be reduced. Since the voltage in the voltage detection circuits 71 and 72 is 2.5 or more, the output terminals Q of the flip-flops 51 and 52 remain at "H" when the power supply becomes normal again. At this time, if the backup power supply becomes 2.5V or less, when the power supply becomes normal again, the flip-flop output terminal Q will be "L".
Therefore, the microprocessor makes a judgment based on the potentials of the output terminals Q of the flip-flops 51 and 52.

直流電源5は停電中は、記憶装置I、時計装置2がバッ
クアップ電源41.42により動作を継続する。即ち記
憶装置1内の格納データは揮発することなが無く、時計
装置2は計時動作を続ける。
During a power outage of the DC power supply 5, the storage device I and the clock device 2 continue to operate using the backup power supplies 41 and 42. That is, the data stored in the storage device 1 does not volatilize, and the clock device 2 continues its timekeeping operation.

前述のようにバックアンプ電源41の方が電源42より
早く消耗するため、停電が続くとバックアップ電源41
は電圧が2.5V以下に落ちることがある。そのため電
圧検出回路71叫電圧低下検出信号をフリップフロップ
51のプリセット端子PRに送り、再度電源が正常とな
ったとき出力端子Qは“L′となる。このときバックア
ップを源42はその電圧が低下したことを、電圧検出回
路72が検出できる程には低下してないとする。
As mentioned above, the backup amplifier power supply 41 wears out faster than the power supply 42, so if the power outage continues, the backup power supply 41
The voltage may drop below 2.5V. Therefore, the voltage detection circuit 71 sends a voltage drop detection signal to the preset terminal PR of the flip-flop 51, and when the power supply becomes normal again, the output terminal Q becomes "L'. At this time, the voltage of the backup source 42 decreases. It is assumed that the voltage has not decreased enough to be detected by the voltage detection circuit 72.

停電が復旧したときマイクロプロセッサ8は、その印加
直fL電圧が4■程度になったとき、動作を始めること
ができる。そのときフリップフロップ51,52のQ端
子は前者が“H″、後者が“L″となっていることをマ
イクロプロセッサ8は知る。即ち時計装置2に対するバ
ンクアップ電源42は正常状態であることを知り、時計
を読取って内部RAMに格納する。次いで記憶装置1の
データは不良と考えられるから、再格納することから処
理を再開する。そのためプロセッサ8の処理動作プログ
ラムを再スタートさせる。
When the power outage is restored, the microprocessor 8 can start operating when the applied direct fL voltage reaches about 4■. At this time, the microprocessor 8 knows that the Q terminals of the flip-flops 51 and 52 are at "H" and the latter at "L". That is, it knows that the bank-up power supply 42 for the clock device 2 is in a normal state, reads the clock, and stores it in the internal RAM. Next, since the data in the storage device 1 is considered to be defective, the process is restarted by re-storing the data. Therefore, the processing operation program of the processor 8 is restarted.

なおフリップフロップ51.52から共に正常であるこ
との信号が通知されたときは、格納データをそのまま使
用して、センタへ伝送するなど次の処理へ進むことが出
来る。
Note that when signals indicating that both flip-flops 51 and 52 are normal are notified, the stored data can be used as is and proceed to the next process, such as being transmitted to the center.

フリップフロップ51.52から共に不良であることの
信号であれば、時計装置2を再セットする動作を行って
から、記憶’jR置1に対する再格納の処理を行う。
If the signals from both flip-flops 51 and 52 indicate that the clock device 2 is defective, the clock device 2 is reset, and then the re-storing process is performed in the memory location 1.

[発明の効果] このようにして本発明によると、バンクアソプ電源に大
容量コンデンサを使用するという簡易な構成で、可成り
長期の停電に対しても保守が不要である。また時計装置
のバッファラフ電源を主記憶装置用のバックアンプ電源
と区別して設けたため、停電復旧のときの処理がやり易
くなっている。
[Effects of the Invention] As described above, the present invention has a simple configuration in which a large capacity capacitor is used for the bank associative power supply, and maintenance is not required even in the event of a fairly long power outage. Furthermore, since the buffer rough power supply for the clock device is provided separately from the back amplifier power supply for the main memory device, processing at the time of power failure recovery is facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成を示すブロック図、第2図は
本発明実施例の構成を示す図、第3図は従来の装置の構
成を示す図である。 1・−記憶装置集積回路 2・・・時計装置集積回路 3・−記憶装置集積回路の周辺回路 4.41.42・・−バックアップ電源5−・・商用電
源 8−・−マイクロプロセッサ 51.52・−フリップフロップ 71.72−・・−電圧検出回路 特許出願人    富士通株式会社 代理人    弁理士  鈴木栄祐 従未の講戚図 第3図
FIG. 1 is a block diagram showing the basic configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 3 is a diagram showing the configuration of a conventional device. 1.-Storage device integrated circuit 2...Clock device integrated circuit 3.--Peripheral circuit of storage device integrated circuit 4.41.42..-Backup power supply 5..-Commercial power supply 8-..-Microprocessor 51.52・-Flip-flop 71.72--Voltage detection circuit patent applicant Fujitsu Ltd. representative Patent attorney Eisuke Suzuki Jōmi's lecture diagram Figure 3

Claims (1)

【特許請求の範囲】 I 、集積回路による記憶装置(1)・時計装置(2)
を具備し、情報センタに対し時刻を付してデータを送出
するデータ送出装置において、 ファラド単位の大容量コンデンサをバックアップ電源(
41)(42)として記憶装置(1)・時計装置(2)
にそれぞれ接続することを特徴とするバックアップ電源
を有するデータ送出装置。 II、各バックアップ電源(41)(42)に対する電圧
検出回路(71)(72)とマイクロプロセッサ(8)
と、フリップフロップ(51)(52)とを具備し、電
源が停電から復旧したとき、前記電圧検出回路(71)
(72)の状態を保持しているフリップフロップ(51
)(52)の出力により、マイクロプロセッサ(8)は
時計装置(2)の良否を判断し、時計装置(2)が良の
場合マイクロプロセッサ(8)は以後の動作プログラム
により動作することを特徴とする特許請求の範囲第1項
記載のバックアップ電源を有するデータ送出装置。
[Claims] I. Storage device (1)/clock device (2) using an integrated circuit
In a data transmission device that is equipped with
41) Storage device (1) and clock device (2) as (42)
A data transmission device having a backup power supply, characterized in that each of the data transmission devices is connected to a backup power source. II. Voltage detection circuit (71) (72) and microprocessor (8) for each backup power supply (41) (42)
and flip-flops (51) and (52), and when the power supply is restored from a power outage, the voltage detection circuit (71)
The flip-flop (51) holds the state (72).
) (52), the microprocessor (8) determines whether the clock device (2) is good or bad, and if the clock device (2) is good, the microprocessor (8) operates according to the subsequent operating program. A data transmission device having a backup power source according to claim 1.
JP61202774A 1986-08-29 1986-08-29 Data transfer device with back-up power supply Pending JPS6358522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202774A JPS6358522A (en) 1986-08-29 1986-08-29 Data transfer device with back-up power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202774A JPS6358522A (en) 1986-08-29 1986-08-29 Data transfer device with back-up power supply

Publications (1)

Publication Number Publication Date
JPS6358522A true JPS6358522A (en) 1988-03-14

Family

ID=16462957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202774A Pending JPS6358522A (en) 1986-08-29 1986-08-29 Data transfer device with back-up power supply

Country Status (1)

Country Link
JP (1) JPS6358522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163846A (en) * 1997-10-17 2000-12-19 Nec Corporation Method and circuit for backing up memory and calender

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163846A (en) * 1997-10-17 2000-12-19 Nec Corporation Method and circuit for backing up memory and calender

Similar Documents

Publication Publication Date Title
US5414861A (en) Data protection system using different levels of reserve power to maintain data in volatile memories for any period of time
US6993680B2 (en) Backup power supply device for a storage device
CA1166352A (en) Backup power circuit for biasing bit lines of a static semiconductor memory
JPS6358522A (en) Data transfer device with back-up power supply
JPS63217455A (en) Ram back-up system
JP3396417B2 (en) Backup device
JPH0357077Y2 (en)
JPS61141059A (en) Terminal equipment
JP2646975B2 (en) Information processing system
JPS6234343Y2 (en)
US20090059455A1 (en) Method and apparatus for power interruption protection
JPS58139225A (en) Service interruption storage circuit
CN210490828U (en) BMC delay power-off circuit
JPS626315A (en) Memory back-up device for microcomputer
JPS6162156A (en) Electronic disc device with timer
JPS6364532A (en) Radio equipment
JPH0654451A (en) Charge/discharge managing apparatus for battery
JPH0253126A (en) Semiconductor file device
JPS60245012A (en) Backup power source for cpu and memory
JP2005215868A (en) Power suppliable interface card and computer system and method for supplying backup power
JPH059812B2 (en)
JPH02114827A (en) Backup power source equipment
JPH02245916A (en) Monitoring system for backing up source voltage
JPH02128209A (en) Memory back-up device
TWI261163B (en) Low power consumption micro computer system adaptive to non-lasting power source and operation method thereof