JPS6358220B2 - - Google Patents

Info

Publication number
JPS6358220B2
JPS6358220B2 JP55001869A JP186980A JPS6358220B2 JP S6358220 B2 JPS6358220 B2 JP S6358220B2 JP 55001869 A JP55001869 A JP 55001869A JP 186980 A JP186980 A JP 186980A JP S6358220 B2 JPS6358220 B2 JP S6358220B2
Authority
JP
Japan
Prior art keywords
processing
less
temperature
treatment
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55001869A
Other languages
Japanese (ja)
Other versions
JPS5698464A (en
Inventor
Toshio Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP186980A priority Critical patent/JPS5698464A/en
Publication of JPS5698464A publication Critical patent/JPS5698464A/en
Publication of JPS6358220B2 publication Critical patent/JPS6358220B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、JIS G 4901又はJIS G 4902の
NCF 750(通称インコネルX−750)Ni基合金の
耐応力腐食割れ性を向上する処理方法に関する。 〔従来の技術〕 NCF 750は、従来、伝燃管支持ピン等軽水炉
炉内構造材に高温高圧水中で用いられている。軽
水炉での支持ピンは、高温高圧水中で応力が加え
られるものであり、また、軽水炉内での部品交換
の手間や部品の破損の及ぼす影響の重大性から、
耐応力腐食割れ性に優れたものであることが要求
される。そこで本発明者は、先にNi基合金の耐
応力腐食割れ性を向上させる処理方法として、
800〜1000℃の温度でかつ10%以上の加工率で加
工処理を施し、その後800〜1000℃で溶体化処理
を施す処理方法を提案した。(特開昭55−141553
号) 〔発明が解決しようとする問題点〕 ところが、Ni基合金の再結晶温度が比較的高
いために、加工処理条件によつては、溶体化処理
による再結晶が不完全となり、応力腐食割れを起
すことがわかつた。一方再結晶を完全にするため
に、溶体化処理温度を従来実施されている1135〜
1165℃と高めると結晶粒が粗大化して強度低下を
きたす不具合があつた。 そこで、本発明は、強度低下を防ぐため結晶粒
が粗大化せず、しかも応力腐舎割れ性にすぐれた
Ni基合金の処理方法を提供することを目的とす
る。 〔問題点を解決するための手段〕 すなわち本発明は、Ni70%以上、Cr14〜17%、
C0.08%以下、Mn1%以下、Si0.5%以下、S0.015
%以下、Co1%以下、Nb0.7〜1.2%、Ti2.25〜
2.75%、Al0.4〜1%、Fe5〜9%、Cu0.5%以下
を含有するNi基合金を1150℃以上の温度でかつ
1h以上の時間で加熱処理し、1100〜850℃の温度
領域にかかる温度範囲で、かつ30%以上の加工率
で加工処理を行い、溶体化処理及び時効処理を施
すことを特徴とするNi基合金の耐応力腐食割れ
性向上処理方法とした。 〔作用〕 本発明は、JIS G 4901又はJIS G 4902の
NCF 750材の処理方法の改良であり、本発明の
目的として少なくともNCF 750材の高温強度、
延性、耐食性等の基本的特性を備える必要があ
る。従つて、本発明の原料は、JISに規定される
NCF 750材の組成範囲のものに限定する。尚、
JISには、Coが適宜含まれて良い旨記載されてあ
つて、特に、組成範囲は規定されていないが、
NCF 750に相当する市販のINCONEL X−750
(Huntington Alloys社商標)には、Coが1%を
上限として含有されていることが明示されている
ので、本発明の原料組成もそれに従つてCo1%以
下とした。 熱間加工前の加熱処理は、原料の軟化を進めて
次工程以後の加工の加工率を高めることができる
ようにするためのものであるが、1150℃未満では
この加熱が不充分となり、また、時間も1h未満
では不充分となるので所期の目的を達成できな
い。従つて、加熱処理は、1150℃以上の温度でか
つ1h以上の時間とした。 加工処理は、高い加工率でも加工割れが発生し
ないよう1100〜850℃の温度領域にかかる温度範
囲で結晶粒を十分微細化できるよう30%以上の加
工率とした。溶体化処理は、Ni基合金の延性を
高め、時効処理は析出強化をはかるものである
が、本発明では、特にこの工程で再結晶を完成さ
せる意義を有するので、必要であれば、溶体化処
理温度を高めに設定して再結晶を促進させる。 上記一連の工程を経て行う本発明によれば、加
工処理前の加熱処理によつて加工処理における加
工割れを防止しながら加工率を高めて結晶粒を微
細化し、溶体化処理温度を高めて再結晶を完全に
し結晶粒が粗大化しないようにできる。そしてこ
の完全な再結晶と結晶粒の微細化とにより、耐応
力腐食割れ性を高めるとともに強度の向上をはか
ることができる。 尚、ここで加工率は第1図をもとに次のように
定義する 加工率(%)=a×b−a′×b′/a×b×100 〔実施例〕 以下に実施例によつて本発明を具体的に説明す
る。第1表に示す化学成分を有するNCF 750材
に第2表のNo.1〜No.4の方法を施こして試験片を
作製した。なお、第2表の時効処理の欄における
破線によつて分割したものは二段時効を示すもの
で、816℃×2h+704℃×20hである。これらにつ
いて耐応力腐食割れ性を調べるため、軽水炉中の
内部構造材料の使用環境である高温高圧純水環境
を模擬しその条件を厳しくして試験時間を加速す
ると考えられている350℃の非脱気NaOH中にて
試験片に応力を加えながら浸漬する試験を行つた
ところ第2表に示す結果が得られた。 この結果より、本実施例である加熱処理を1150
℃にて1h施こしたNo.1、No.2のものは、加熱温
度が1050℃と低いNo.4や、加熱時間が1/12hと短
いNo.3と比較して耐応力腐食割れ性に優れている
ことがわかる。また加工処理の加工条件は、加工
率が高い程耐応力腐食割れ性に優れる。例えば、
加工率60%のNo.2は加工率33%のNo.1にくらべて
耐応力腐食割れ性に優れる。 以上の本実施例によれば、加工処理前の加熱処
理を1150℃以上の温度で、かつ1時間以上の時間
で行い1100〜850℃の温度領域で30%以上の加工
率で加工処理を施すことにより耐応力腐食割れ性
にすぐれることがわかる。 尚、溶体化処理が1065℃1時間、時効処理が
719℃16時間のものは、特に耐応力腐食割れ性に
すぐれている。この場合、溶体化処理温度が高
く、加工処理後の再結晶が促進され、機械的な強
靭性も特にすぐれるものと考えられる。
[Industrial Application Field] The present invention complies with JIS G 4901 or JIS G 4902.
This invention relates to a treatment method for improving the stress corrosion cracking resistance of NCF 750 (commonly known as Inconel X-750) Ni-based alloy. [Prior Art] NCF 750 has conventionally been used in high-temperature, high-pressure water for internal structural materials of light water reactors, such as combustion tube support pins. Support pins in light water reactors are subjected to stress in high-temperature, high-pressure water, and due to the hassle of replacing parts in light water reactors and the serious effects of component damage,
It is required to have excellent stress corrosion cracking resistance. Therefore, the present inventor first developed a treatment method for improving the stress corrosion cracking resistance of Ni-based alloys.
We proposed a processing method in which processing is performed at a temperature of 800 to 1000°C and a processing rate of 10% or more, followed by solution treatment at 800 to 1000°C. (Unexamined Japanese Patent Publication No. 55-141553
[Problem to be solved by the invention] However, because the recrystallization temperature of Ni-based alloys is relatively high, recrystallization due to solution treatment may be incomplete depending on processing conditions, resulting in stress corrosion cracking. It was found that it causes On the other hand, in order to complete recrystallization, the solution treatment temperature was changed from 1135 to
When the temperature was increased to 1165°C, the crystal grains became coarser, resulting in a decrease in strength. Therefore, the present invention has been developed to prevent the crystal grains from becoming coarse in order to prevent a decrease in strength, and which has excellent stress cracking resistance.
The purpose of this invention is to provide a method for treating Ni-based alloys. [Means for Solving the Problems] That is, the present invention has a method of solving the problems by using Ni 70% or more, Cr 14 to 17%,
C0.08% or less, Mn1% or less, Si0.5% or less, S0.015
% or less, Co1% or less, Nb0.7~1.2%, Ti2.25~
2.75%, Al0.4~1%, Fe5~9%, Cu0.5% or less at a temperature of 1150℃ or higher and
A Ni-based product that is heat treated for 1 hour or more, processed in a temperature range of 1100 to 850°C and at a processing rate of 30% or more, and subjected to solution treatment and aging treatment. This is a treatment method for improving the stress corrosion cracking resistance of alloys. [Operation] The present invention complies with JIS G 4901 or JIS G 4902.
It is an improvement of the processing method of NCF 750 material, and the purpose of the present invention is to improve at least the high temperature strength of NCF 750 material,
It is necessary to have basic properties such as ductility and corrosion resistance. Therefore, the raw materials of the present invention meet the requirements specified in JIS.
Limited to materials within the composition range of NCF 750 materials. still,
JIS states that Co may be included as appropriate, but does not specifically specify the composition range.
Commercial INCONEL X-750 equivalent to NCF 750
(Trademark of Huntington Alloys) clearly states that the upper limit of Co content is 1%, so the raw material composition of the present invention was also set to 1% or less Co accordingly. Heat treatment before hot processing is intended to soften the raw material and increase the processing rate in the next process, but below 1150℃, this heating will be insufficient and However, if the time is less than 1 hour, it will be insufficient and the intended purpose cannot be achieved. Therefore, the heat treatment was carried out at a temperature of 1150° C. or higher and for a period of 1 hour or longer. The processing rate was set at a processing rate of 30% or higher to sufficiently refine the crystal grains in the temperature range of 1100 to 850°C so that processing cracks would not occur even at high processing rates. Solution treatment increases the ductility of the Ni-based alloy, and aging treatment aims to strengthen the precipitation, but in the present invention, it is particularly important to complete recrystallization in this step, so if necessary, solution treatment is performed. The treatment temperature is set high to promote recrystallization. According to the present invention, which is performed through the series of steps described above, heat treatment before processing prevents processing cracks during processing, increases the processing rate to refine grains, and increases the solution treatment temperature to recycle. It can make crystals perfect and prevent crystal grains from becoming coarse. By this complete recrystallization and grain refinement, stress corrosion cracking resistance and strength can be improved. The machining rate is defined as follows based on Figure 1: Machining rate (%) = a x b - a' x b' / a x b x 100 [Example] The following is an example. Therefore, the present invention will be specifically explained. Test pieces were prepared by applying the methods No. 1 to No. 4 in Table 2 to NCF 750 material having the chemical components shown in Table 1. In addition, the division by the broken line in the aging treatment column of Table 2 indicates two-stage aging, which is 816°C x 2h + 704°C x 20h. In order to investigate the stress corrosion cracking resistance of these materials, we simulated the high-temperature, high-pressure pure water environment in which the internal structural materials in light water reactors are used, and the conditions were severed to accelerate the test time. A test was conducted in which the test piece was immersed in NaOH while applying stress, and the results shown in Table 2 were obtained. From this result, the heat treatment in this example was performed at 1150°C.
No. 1 and No. 2, which were heated at ℃ for 1 hour, have better stress corrosion cracking resistance than No. 4, which has a lower heating temperature of 1050℃, and No. 3, which has a shorter heating time of 1/12 hour. It can be seen that it is excellent. Furthermore, regarding the processing conditions of the processing treatment, the higher the processing rate, the better the stress corrosion cracking resistance. for example,
No. 2 with a processing rate of 60% has better stress corrosion cracking resistance than No. 1 with a processing rate of 33%. According to the above embodiment, the heat treatment before processing is performed at a temperature of 1150°C or more and for a time of 1 hour or more, and processing is performed at a processing rate of 30% or more in a temperature range of 1100 to 850°C. This shows that it has excellent stress corrosion cracking resistance. In addition, solution treatment was performed at 1065℃ for 1 hour, and aging treatment was performed at 1065℃ for 1 hour.
The one that is heated at 719℃ for 16 hours has particularly excellent stress corrosion cracking resistance. In this case, the solution treatment temperature is high, recrystallization after processing is promoted, and mechanical toughness is also considered to be particularly excellent.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明法によれば、NCF 750
材の機械的特性を保つたまますぐれた耐応力腐食
割れ性のあるNi基合金を得ることができる。
As described above, according to the method of the present invention, NCF 750
It is possible to obtain a Ni-based alloy with excellent stress corrosion cracking resistance while maintaining the mechanical properties of the material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、加工率を説明するための
説明図であつて、第1図は加工処理前の被加工材
の形状を示し、第2図は加工処理後の被加工材の
形状を示す。
Figures 1 and 2 are explanatory diagrams for explaining the machining rate. Figure 1 shows the shape of the workpiece before processing, and Figure 2 shows the shape of the workpiece after processing. Show shape.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni70%以上、Cr14〜17%、C0.08%以下、
Mn1%以下、Si0.5%以下、S0.015%以下、Co1%
以下、Nb0.7〜1.2%、Ti2.25〜2.75%、Al0.4〜
1%、Fe5〜9%、Cu0.5%以下を含有するNi基
合金を、1150℃以上の温度でかつ1h以上の時間
で加熱処理し、1100 850℃の温度領域にかかる温
度範囲でかつ30%以上の加工率で加工処理を行
い、溶体化処理及び時効処理を施すことを特徴と
するNi基合金の耐応力腐食割れ性向上処理法。
1 Ni70% or more, Cr14-17%, C0.08% or less,
Mn 1% or less, Si 0.5% or less, S 0.015% or less, Co1%
Below, Nb0.7~1.2%, Ti2.25~2.75%, Al0.4~
A Ni-based alloy containing 1% Fe, 5 to 9% Fe, and 0.5% or less Cu is heat treated at a temperature of 1150°C or higher for 1 hour or more, and in a temperature range of 1100 to 850°C and 30°C. A treatment method for improving the stress corrosion cracking resistance of Ni-based alloys, which is characterized by performing processing at a processing rate of % or more, followed by solution treatment and aging treatment.
JP186980A 1980-01-11 1980-01-11 Treating method for improving resistance to stress and corrosion cracking of ni-based alloy Granted JPS5698464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP186980A JPS5698464A (en) 1980-01-11 1980-01-11 Treating method for improving resistance to stress and corrosion cracking of ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP186980A JPS5698464A (en) 1980-01-11 1980-01-11 Treating method for improving resistance to stress and corrosion cracking of ni-based alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15039287A Division JPS62297446A (en) 1987-06-17 1987-06-17 Heat treatment of ni alloy

Publications (2)

Publication Number Publication Date
JPS5698464A JPS5698464A (en) 1981-08-07
JPS6358220B2 true JPS6358220B2 (en) 1988-11-15

Family

ID=11513551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP186980A Granted JPS5698464A (en) 1980-01-11 1980-01-11 Treating method for improving resistance to stress and corrosion cracking of ni-based alloy

Country Status (1)

Country Link
JP (1) JPS5698464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250129A (en) * 1988-05-17 1990-02-20 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110856A (en) * 1983-11-21 1985-06-17 Sumitomo Metal Ind Ltd Production of precipitation hardening nickel-base alloy
JPS60131958A (en) * 1983-12-20 1985-07-13 Sumitomo Metal Ind Ltd Production of precipitation strengthening type ni-base alloy
JPS6386841A (en) * 1987-06-26 1988-04-18 Hitachi Ltd Structure having superior resistance to stress corrosion cracking
JP5792500B2 (en) * 2011-04-11 2015-10-14 株式会社日本製鋼所 Ni-base superalloy material and turbine rotor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AERONAUTICAL MATERIAL SPECIFICATION=1953 *
ALLOY DIGEST=1966 *
INCONEL ALLOY718 WORKING INSTRURUCTION=1968 *
METALS HANDBOOK FORGING AND CASTING=1970 *
METALS HANDBOOK=1970 *
THE NIMONIC ALLOYS=1959 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250129A (en) * 1988-05-17 1990-02-20 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel

Also Published As

Publication number Publication date
JPS5698464A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
CN101600814B (en) Processing method for cracking desensitisation using a nickel based alloy environment, and part made of the alloy thus processed
US3660177A (en) Processing of nickel-base alloys for improved fatigue properties
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JPS6358220B2 (en)
CN110760763A (en) Forging method of steel ring forging for nuclear power equipment
US4081295A (en) Fabricating process for high strength, low ductility nickel base alloys
US2679466A (en) Surface decarburization of carboncontaining alloys
US4662951A (en) Pre-HIP heat treatment of superalloy castings
JPS5819732B2 (en) Kid's day job
JPS63162811A (en) Manufacture of precipitation-hardening steel
JPH0517303B2 (en)
JPH02294454A (en) Manufacture of forging made of al alloy
JPS5877559A (en) Manufacture of spring for nuclear reactor with superior stress corrosion cracking resistance
JPS6323263B2 (en)
US1961330A (en) Process for improving the resistance to corrosion of articles made of magnesium-manganese-alloys
JPS5985850A (en) Heat treatment of ni alloy
JPS63241150A (en) Heat treatment for titanium alloy
JPH04210457A (en) Manufacture of fe-ni base precipitation hardened superalloy
CN117448715A (en) N09925 nickel-based alloy bar and heat treatment method thereof
JPS5956567A (en) Production of heat-resistant member
JPS5917188B2 (en) Heat treatment method for Ni-based alloy
SU1177381A1 (en) Method of treating two-phase magnesium alloys
JPH03258433A (en) Hot forging method for beryllium copper alloy
JPS6250409A (en) Manufacture of stainless steel castings
JPS6256548A (en) Nickel-base alloy excellent in stress corrosion cracking resistance and its production