JPH03258433A - Hot forging method for beryllium copper alloy - Google Patents

Hot forging method for beryllium copper alloy

Info

Publication number
JPH03258433A
JPH03258433A JP5934190A JP5934190A JPH03258433A JP H03258433 A JPH03258433 A JP H03258433A JP 5934190 A JP5934190 A JP 5934190A JP 5934190 A JP5934190 A JP 5934190A JP H03258433 A JPH03258433 A JP H03258433A
Authority
JP
Japan
Prior art keywords
forging
copper alloy
alloy
temperature
beryllium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5934190A
Other languages
Japanese (ja)
Other versions
JPH0724904B2 (en
Inventor
Toshiaki Ishihara
敏明 石原
Kazuhiro Yamamoto
和弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2059341A priority Critical patent/JPH0724904B2/en
Publication of JPH03258433A publication Critical patent/JPH03258433A/en
Publication of JPH0724904B2 publication Critical patent/JPH0724904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To efficiently form the finer crystals of the alloy with min. stages by press-forging a Be-Cu alloy material at a specific temp. and forging ratio, then reheating the alloy material. CONSTITUTION:The casting material of the Be-Cu alloy consisting, by weight %, of 1.8 to 2.0% Be, 0.2 to 0. 6% Co+Ni and the balance Cu is practically prepd. This Be-Cu alloy is press forged at >=2.5 forging ratio at 450 to 700 deg.C. The material is thereafter reheated to 700 to 840 deg.C. The uniform and fine crystal structure is formed in this way, by which the Be-Cu alloy material having excellent reliability and ultrasonic flaw detectability is obtd. with the fewer stages.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度型のベリリウム銅合金の熱間鍛造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for hot forging a high-strength beryllium copper alloy.

(従来の技術) ベリリウム銅合金の加工材は高強度、高伝導性、耐食性
等の優れた性質を生かして、導電ばね材板外にも高信顛
性機械部品としても広く用いられている。このような高
信輔性機械部品としては、信転性及び超音波探傷性を向
上させるために熱間鍛造により、鋳造時の粗大な結晶組
織を壊し、均質、微細な結晶粒とすることが必要とされ
る。これは鍛流線が残された状態等の不均一組織では機
械特性が劣り、また材料に方向性が生ずるとともに、簡
単な超音波による探傷が困難となり欠陥のチエツクがで
きない等の問題が生ずるためであるこのための結晶粒径
の目安としては、平均粒径で2mm以下とすることが好
ましい。
(Prior Art) Beryllium-copper alloy processed materials are widely used as highly reliable mechanical parts as well as conductive spring plates due to their excellent properties such as high strength, high conductivity, and corrosion resistance. For such high-reliability mechanical parts, it is necessary to use hot forging to break the coarse crystal structure during casting and create homogeneous, fine crystal grains in order to improve reliability and ultrasonic flaw detection. It is said that This is because a non-uniform structure, such as a state where grain flow lines remain, has poor mechanical properties, and the material becomes directional, making simple ultrasonic flaw detection difficult and causing problems such as the inability to check for defects. As a guideline for the crystal grain size for this purpose, it is preferable that the average grain size is 2 mm or less.

このような結晶粒を得るために、従来はへリリウム銅合
金材乙こ650〜800℃の領域で総鍛錬比8以上のハ
ンマー鍛造が行われていた。しかしハンマー鍛造はその
騒音及び振動の問題に加え、素材の内部にまで十分な結
晶の微細化効果を得るためには、伸ばし、据込、横目伸
ばし等の方向性を考慮しつつトータルで8以上の鍛錬比
となるように鍛錬を繰り返す必要があり、多くの工数が
かかるという問題があった。また騒音、振動を防止する
ためにプレス鍛造を行う方法もあるが、プレス鍛造はハ
ンマー鍛造に比較して加工歪を与える速度が遅いため、
ハンマー鍛造と同様の温度条件や鍛錬比を与えても十分
な結晶微細化効果を得ることができない欠点があった。
In order to obtain such crystal grains, conventionally, helium copper alloy materials were hammer forged at a temperature of 650 to 800° C. with a total forging ratio of 8 or more. However, in addition to the problem of noise and vibration, hammer forging requires a total of 8 or more, taking into consideration the directionality of stretching, upsetting, cross-grain stretching, etc., in order to obtain sufficient crystal refinement effects even inside the material. There was a problem in that it was necessary to repeat training to obtain the training ratio of , which required a large number of man-hours. There is also a method of press forging to prevent noise and vibration, but press forging has a slower rate of applying strain than hammer forging, so
Even if the temperature conditions and forging ratios similar to those of hammer forging were given, a sufficient crystal refinement effect could not be obtained.

(発明が解決しようとする課題) 本発明は上記した従来の問題点を解決して、プレス鍛造
法によりベリリウム銅合金の結晶を最少の工数で効率よ
<2m+以下まで微細化することができるベリリウム銅
合金の熱間鍛造方法を提供するために完成されたもので
ある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and makes it possible to efficiently refine the crystals of beryllium copper alloy to <2m+ or less using a press forging method with a minimum of man-hours. It was completed to provide a method for hot forging copper alloys.

(課題を解決するための手段) 上記の課題を解決するためになされた本発明は、重量%
でBe 1.6〜2.0%、Co+Ni 0.2〜0.
6%を含有し、残部が実質的にCuからなるベリリウム
銅合金材を450℃以上700℃以下の温度で2.5以
上の鍛錬比でプレス鍛造し、その後700 ”C以上8
40℃以下の温度に再加熱することを特徴とするもので
ある。
(Means for Solving the Problems) The present invention has been made to solve the above problems.
Be 1.6-2.0%, Co+Ni 0.2-0.
A beryllium-copper alloy material containing 6% Cu and the remainder substantially Cu is press-forged at a temperature of 450°C or higher and 700°C or lower with a forging ratio of 2.5 or higher, and then heated to 700"C or higher 8
It is characterized by being reheated to a temperature of 40°C or lower.

本発明において用いられるベリリウム銅合金は、高力型
ベリリウム銅合金として市販されているJIS C1,
700、C1720の通常組成のベリリウム銅合金に相
当するものである。本発明においてこの材料に限定した
のは、機械的強度、電気伝導性、経済性等から工業的に
最も実用性に冨むためである。Be、 Co、 Niが
上記の数値限定範囲よりも少ないと所望の強度が得られ
ず、逆にこの範囲を超えて含有させても増量に見合う特
性向上は得られないばかりか、鍛造中に割れが入り易く
なる。なお、CoとNiについてはCoが0.2%以上
含まれていれば、Niはほとんど含まれなくても所望の
特性が得られるが、Coが0.2%を切る場合はその分
をNiでおぎなうことができるものである。
The beryllium copper alloy used in the present invention is JIS C1, which is commercially available as a high strength beryllium copper alloy.
700 and C1720, which correspond to beryllium copper alloys of normal composition. The reason why the present invention is limited to this material is that it is industrially most practical in terms of mechanical strength, electrical conductivity, economical efficiency, etc. If Be, Co, and Ni are less than the above numerical limit range, the desired strength cannot be obtained, and conversely, if the content exceeds this range, not only will the properties not improve commensurate with the increased amount, but cracks may occur during forging. becomes easier to enter. Regarding Co and Ni, if Co is contained at 0.2% or more, the desired characteristics can be obtained even if Ni is hardly contained, but if Co is less than 0.2%, the amount is replaced by Ni. It is something that can be enjoyed.

本発明においては、このようなベリリウム銅合金材に対
して前記のとおり熱間プレス鍛造と再加熱処理が行われ
る。鍛造温度は450℃以上700℃以下であるが、こ
れは450℃未満では加工性の悪化により鍛造が著しく
困難となり、かつ割れが発生し易くなるためであって、
鍛造性を考慮すれば500 ℃以上とすることが好まし
い。また700℃を超えると結晶を微細化させる効果が
ほとんど得られなくなる。
In the present invention, such beryllium copper alloy material is subjected to hot press forging and reheating treatment as described above. The forging temperature is 450°C or more and 700°C or less, because if it is less than 450°C, forging becomes extremely difficult due to deterioration of workability and cracks are likely to occur.
Considering forgeability, the temperature is preferably 500°C or higher. Moreover, if the temperature exceeds 700°C, the effect of making the crystals finer will hardly be obtained.

鍛錬比を2.5以上としたのは、これ以下では均一な微
細化状態が得られないためである。しかしトータルで1
0を超える鍛錬比を与えても特性向上は得られず、工数
増加を招くのみであるから、2゜5〜10の鍛錬比とす
ることが好ましい。なお、1回の加熱における鍛造は鍛
錬比を8以下とすることが好ましく、8を趙えると後工
程での再加熱時に結晶の成長や粗大化が発生する可能性
が生ずる次にベリリウム銅合金材は700℃以上840
℃以下の温度に再加熱される。この温度が700℃未満
であると再結晶による均一な微細化状態が得られない。
The reason why the forging ratio is set to 2.5 or more is because a uniformly refined state cannot be obtained if it is less than this. But in total 1
Even if a training ratio exceeding 0 is given, no improvement in characteristics will be obtained, but only an increase in the number of man-hours, so a training ratio of 2°5 to 10 is preferable. In addition, for forging in one heating process, it is preferable to set the forging ratio to 8 or less. The material is 700℃ or higher 840℃
reheated to a temperature below °C. If this temperature is less than 700°C, a uniformly refined state cannot be obtained by recrystallization.

もっとも、後に700”C以上B40”C以下の範囲に
加熱すれば問題はない。また再加熱温度が820′Cを
超えると部分的な結晶の成長や粗大化が生ずる。
However, if it is later heated to a temperature of 700"C or more and B40"C or less, there will be no problem. Furthermore, if the reheating temperature exceeds 820'C, partial crystal growth or coarsening will occur.

なお、この再加熱工程はベリリウム銅合金に対して施さ
れる通常の最終溶体化処理(700〜800 ℃に加熱
後水冷)を兼ねてもよい。
Note that this reheating step may also serve as the usual final solution treatment (heating to 700 to 800° C. and then water cooling) performed on beryllium copper alloys.

上記したようなプレス鍛造→再加熱の工程は任意の段階
において行えばよく、例えば本発明の条件でプレス鍛造
を行い中間形状とした後に従来条件の650〜800℃
の温度で最終形状まで鍛造を行う方法や、中間形状まで
を従来の650〜800℃の鍛造を行い、最終形状まで
を本発明の条件による鍛造を行っても同様の均一微細組
織が得られる。
The process of press forging → reheating as described above may be performed at any stage; for example, after press forging is performed under the conditions of the present invention to form an intermediate shape, the process is performed at 650 to 800 °C under conventional conditions.
A similar uniform microstructure can be obtained by forging the material up to the final shape at a temperature of 200° C., or by forging the intermediate shape at 650 to 800° C. in the conventional manner, and then performing the forging up to the final shape under the conditions of the present invention.

このように、従来の比較的鍛錬が容易な650℃以上の
温度での鍛造工程の中に本発明の条件を必要最小限付加
することによっても、目的とする微細結晶組織が得られ
る。
In this way, the desired fine crystal structure can be obtained even by adding the necessary minimum conditions of the present invention to the conventional forging process at a temperature of 650° C. or higher, where forging is relatively easy.

なお本発明における鍛造方向は一方向のみでもよいが、
より効率的に均一な結晶組織を得るためには例えば伸ば
しと据込のような2方向の鍛造を加えた方が好ましい。
Note that the forging direction in the present invention may be only one direction, but
In order to more efficiently obtain a uniform crystal structure, it is preferable to add forging in two directions, such as elongation and upsetting.

以上の条件下で得られたベリリウム銅合金材は従来品と
同様、通常の溶体化処理後(再加熱を兼ねる場合も含む
)に時効硬化処理を施すことにより、ベリリウム銅合金
として要求される機械的特性を得ることができる。
The beryllium-copper alloy material obtained under the above conditions is subjected to an age hardening treatment after normal solution treatment (including reheating) in the same way as conventional products. characteristics can be obtained.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

(実施例) 実施例1 重量%で、Be 1.8%、Co 0.25%、Ni 
0.1%、残部が実質的にCuからなり、外寸が230
 wrφ×30Qm+’の鋳造品を用意し、第1表に示
す各種の条件でプレス鍛造を行った。これらの鍛造品に
対して780℃で3時間加熱した後に水冷する溶体化処
理を行い、中心部断面のマクロ組織の観察を行った。そ
の結果を第1表に記号で示した。◎は最大結晶粒径が1
.5閣以下の均一微細な再結晶組織が得られたもの、○
は最大結晶粒径が2薗以下の均一微細な再結晶組織が得
られたもの、△は再結晶組織が部分的に成長、粗大化し
た状態となったもの、×は鋳造時の粗大な結晶が残るか
それが伸びた状態となっただけで均一な再結晶組織とな
っていないものである。なお本実施例では鍛造方向は伸
ばし方向のみである。
(Example) Example 1 In weight%, Be 1.8%, Co 0.25%, Ni
0.1%, the remainder substantially consists of Cu, and the outer dimension is 230
A cast product of wrφ×30Qm+′ was prepared and press forged under various conditions shown in Table 1. These forged products were subjected to solution treatment by heating at 780° C. for 3 hours and then cooling with water, and the macrostructure of the cross section of the center was observed. The results are shown in Table 1 using symbols. ◎ means the maximum grain size is 1
.. A uniform fine recrystallized structure of 5 or less is obtained, ○
△ means that the recrystallized structure has partially grown and become coarse, × means coarse crystals at the time of casting. In this case, the crystal structure is not a uniform recrystallized structure, but only remains or is elongated. In this example, the forging direction is only the stretching direction.

このようにして本発明の方法により得られた試料につい
て315℃X5時間の時効硬化処理を行ったところ、全
てHRC35〜40の範囲の硬度となり、ベリリウム銅
合金材として問題のない特性を得ることができた。
When the samples thus obtained by the method of the present invention were subjected to age hardening treatment at 315°C for 5 hours, all of them had hardness in the HRC range of 35 to 40, indicating that they had satisfactory properties as a beryllium copper alloy material. did it.

第1表(プレス鍛造時の温度と鍛練比の関係)*は45
0 ℃を切った後の鍛錬でワレ発生実施例2 実施例1で用いたと同じベリリウム銅合金の鋳造品に対
し、第2表に示される■〜■の条件で鍛造を行い、その
後780℃に再加熱し放冷したものについて実施例Jと
同様の評価を行った。■は従来のハンマー鍛造であり、
鍛錬比が不足し組織が不均一であった。■はハンマー鍛
造で温度を下げた場合を示し、鍛造中に割れが発生する
とともに再加熱後&m部分的に結晶が粗大化した組織と
なった。■は本発明の方法であり、実施例1における同
一鍛錬比(4,0)のものに比較して更に良好な結果と
なった。これは実施例2では鍛錬の方向が変化している
ためである。
Table 1 (Relationship between temperature and forging ratio during press forging) * is 45
Cracking occurs during forging after the temperature drops below 0°C Example 2 The same beryllium copper alloy casting used in Example 1 was forged under the conditions of ■ to ■ shown in Table 2, and then heated to 780°C. The same evaluation as in Example J was performed on the product that was reheated and allowed to cool. ■ is conventional hammer forging,
The training ratio was insufficient and the organization was uneven. (2) shows the case where the temperature was lowered during hammer forging, and cracks occurred during forging, and after reheating, the structure became partially coarsened. Method (2) is the method of the present invention, and the result was even better than that of Example 1 with the same training ratio (4,0). This is because the direction of training is changed in Example 2.

第2表(鍛造方法の効果) また■の条件によりプレス鍛造を行ったものに、第3表
に示す条件で再加熱を行い、組織を評価した。680 
℃の再加熱では再結晶が不十分である。
Table 2 (Effects of Forging Methods) In addition, the press forged products under the conditions (2) were reheated under the conditions shown in Table 3, and their structures were evaluated. 680
Recrystallization is insufficient by reheating at ℃.

但し、この後に700℃以上840℃以下の加熱を行え
ば良好な結晶組織が得られる。850℃の再加熱を行う
と、再結晶組織が粗大に成長したものとなった。
However, a good crystal structure can be obtained by heating at a temperature of 700° C. or more and 840° C. or less after this. When reheated at 850° C., the recrystallized structure grew coarsely.

なおいずれについても冷却条件による差は認められなか
った。
In any case, no difference was observed depending on the cooling conditions.

第3表(実施例2の条件■で鍛造した後の加熱条実施例
3 本発明の工程を従来の高温鍛造条件と組合せた例を第4
表に示す。いずれの場合にも良好な均一微細な組織が得
られた。
Table 3 (Example 3 of heated strips after forging under condition ① of Example 2)
Shown in the table. In all cases, a good uniform fine structure was obtained.

第4表(本発明の各条件の組合せ適用例)(発明の効果
) 本発明は以上に説明したように、ベリリウム銅合金材を
プレス鍛造法により熱間鍛造して均一微細な結晶組織を
得ることができるもので、信頼性及び超音波探傷性に優
れたベリリウム銅合金材を少ない工数で得ることができ
る。また本発明によれば振動や騒音の少ないプレス鍛造
法を用いて熱間鍛造を行えるので、作業環境の点からも
好ましいものである。よって本発明は従来の問題点を一
掃したベリリウム銅合金の熱間鍛造方法として、産業の
発展に寄与するところは極めて大である。
Table 4 (Example of application of combinations of conditions of the present invention) (Effects of the invention) As explained above, the present invention hot forges a beryllium copper alloy material by a press forging method to obtain a uniform fine crystal structure. As a result, a beryllium-copper alloy material with excellent reliability and ultrasonic flaw detection properties can be obtained with a small number of man-hours. Further, according to the present invention, hot forging can be performed using a press forging method with less vibration and noise, which is preferable from the viewpoint of the working environment. Therefore, the present invention greatly contributes to the development of industry as a hot forging method for beryllium-copper alloys that eliminates the problems of the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 重量%でBe1.6〜2.0%、Co+Ni0.2〜0
.6%を含有し、残部が実質的にCuからなるベリリウ
ム銅合金材を450℃以上700℃以下の温度で2.5
以上の鍛錬比でプレス鍛造し、その後700℃以上84
0℃以下の温度に再加熱することを特徴とするベリリウ
ム銅合金の熱間鍛造方法。
Be 1.6-2.0%, Co+Ni 0.2-0 in weight%
.. 6% and the remainder is substantially Cu at a temperature of 450°C or more and 700°C or less.
Press forged with the above forging ratio, then heated to 700℃ or above 84
A method for hot forging beryllium copper alloy, characterized by reheating to a temperature of 0°C or lower.
JP2059341A 1990-03-09 1990-03-09 Hot forging method for beryllium copper alloy Expired - Lifetime JPH0724904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059341A JPH0724904B2 (en) 1990-03-09 1990-03-09 Hot forging method for beryllium copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059341A JPH0724904B2 (en) 1990-03-09 1990-03-09 Hot forging method for beryllium copper alloy

Publications (2)

Publication Number Publication Date
JPH03258433A true JPH03258433A (en) 1991-11-18
JPH0724904B2 JPH0724904B2 (en) 1995-03-22

Family

ID=13110514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059341A Expired - Lifetime JPH0724904B2 (en) 1990-03-09 1990-03-09 Hot forging method for beryllium copper alloy

Country Status (1)

Country Link
JP (1) JPH0724904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181744A (en) * 2011-04-27 2011-09-14 东莞市嘉盛铜材有限公司 High-performance beryllium-copper alloy and preparation method thereof
CN103706741A (en) * 2013-12-18 2014-04-09 江西鸥迪铜业有限公司 Hot forging and molding process for oxygen free copper material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614909A (en) * 1984-06-20 1986-01-10 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional size of clothes
JPS61144233A (en) * 1984-12-18 1986-07-01 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Manufacture of metallic article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614909A (en) * 1984-06-20 1986-01-10 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional size of clothes
JPS61144233A (en) * 1984-12-18 1986-07-01 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Manufacture of metallic article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181744A (en) * 2011-04-27 2011-09-14 东莞市嘉盛铜材有限公司 High-performance beryllium-copper alloy and preparation method thereof
CN103706741A (en) * 2013-12-18 2014-04-09 江西鸥迪铜业有限公司 Hot forging and molding process for oxygen free copper material

Also Published As

Publication number Publication date
JPH0724904B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JP6057363B1 (en) Method for producing Ni-base superalloy
US10190201B2 (en) Method of producing a copper-nickel-tin alloy
KR860008295A (en) Copper base alloy and its manufacturing method
JP2017508880A (en) 6000 series aluminum alloy
JP4906313B2 (en) High-strength aluminum alloy extruded tube excellent in tube expansion workability, its manufacturing method, and tube expansion material
CN101939452A (en) Copper-nickel-silicon alloys
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
JP2019143232A (en) Manufacturing method of flexure molded article using aluminum alloy
TWI434939B (en) Aluminium alloy and process of preparation thereof
WO2002063059A1 (en) High strenght aluminum alloy
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JP2010150624A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JPH03258433A (en) Hot forging method for beryllium copper alloy
JPS6057497B2 (en) Heat resistant high strength aluminum alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
US20070267113A1 (en) Method and process of non-isothermal aging for aluminum alloys
JPH10130754A (en) Heat resistant copper base alloy
JPH04346639A (en) Method for hot-forging high conduction type beryllium coper alloy
JP2001226731A (en) Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
JP2019019373A (en) Manufacturing method of aluminum alloy-made piston of compressor, and the aluminum alloy for piston
CN110923524A (en) Aluminum alloy for oil drill pipe, manufacturing method of pipe and pipe for oil drill pipe
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
TWI612143B (en) Precipitation-hardened nickel-based alloy and method of producing the same
US2319538A (en) Heat treatment of copper-chromium alloy steels
CN115584417B (en) Aluminum alloy with high strength and high toughness and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 15

EXPY Cancellation because of completion of term