JPS6358190A - Iron detector - Google Patents

Iron detector

Info

Publication number
JPS6358190A
JPS6358190A JP61201142A JP20114286A JPS6358190A JP S6358190 A JPS6358190 A JP S6358190A JP 61201142 A JP61201142 A JP 61201142A JP 20114286 A JP20114286 A JP 20114286A JP S6358190 A JPS6358190 A JP S6358190A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
magnetic
saturable coil
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61201142A
Other languages
Japanese (ja)
Inventor
Saburo Uemura
植村 三良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macome Corp
Original Assignee
Macome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macome Corp filed Critical Macome Corp
Priority to JP61201142A priority Critical patent/JPS6358190A/en
Publication of JPS6358190A publication Critical patent/JPS6358190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To accurately measure a distance in a direction perpendicular to the surface of an object to be detected and enable the eccentricity of a rotating body or the vibration of a magnetic body to be measured by laying a saturable coil in parallel to a flat detecting surface in a nonmagnetic material container having the flat detecting surface. CONSTITUTION:A saturable coil 2 is laid in parallel to a flat detecting surface in a nonmagnetic material container 1 having the flat detecting surface and two permanent magnets A and B magnetized in reverse directions to each other are provided on substantially the same plane as the coil 2 and in directions perpendicular to the detecting surface while sandwiching the coil 2, composing a detecting head. The coil 2 responds to a magnetic field in an X-axis direction but no to magnetic fields in Y- and Z-axis directions. The magnetic field in the X-axis direction applied to the coil 2 by the magnet pieces A and B changes in accordance with the position of the coil 2 on a Z-axis. When the coil 2 is in a midpoint between the magnet pieces A and B in the Z-axis direction, an X-axis direction magnetic field applied to the coil 2 is equal to zero. However, when the coil 2 is deviated from the coil 2 is equal to zero. However, when the coil 2 is deviated from the midpoint, a positive or negative magnetic field is applied to the coil 2 in the X-axis direction. When an iron plate 3 to be detected approaches the flat detecting surface, a change in the magnetic field applied to the coil 2 is detected by a magnetic detector and outputted as a change in a voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄などの磁性物体の接近を検出する鉄検出装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an iron detection device that detects the approach of a magnetic object such as iron.

〔発明の概要〕[Summary of the invention]

本発明は、非磁性容器の中に間隔をおいて配置した2個
の永久磁石の中間に可飽和コイルを設けた検出ヘッドを
使用することにより、非接触・高感度で磁性物体の接近
を検出しうるようにしたものである。
The present invention detects the approach of a magnetic object in a non-contact and highly sensitive manner by using a detection head that has a saturable coil between two permanent magnets placed at a distance in a non-magnetic container. It was made so that it could be done.

〔従来の技術〕[Conventional technology]

従来、磁性物体を検出しうる方法として次のようなもの
がある。
Conventionally, there are the following methods for detecting magnetic objects.

(イ)高周波の渦流損失を利用した金属検出器を用いる
もの。
(a) One that uses a metal detector that utilizes high-frequency eddy current loss.

仲) ホール素子又は磁気抵抗素子等の半導体センサに
永久磁石によるバイアスを加えた検出器を用いるもの。
A detector that uses a semiconductor sensor such as a Hall element or magnetoresistive element biased by a permanent magnet.

(ハ)可飽和コイルと高周波発振器と検波器を組合せた
磁気センサを用いるもの。
(c) A magnetic sensor that combines a saturable coil, a high-frequency oscillator, and a detector.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これら従来の技術には次のような欠点が
ある。
However, these conventional techniques have the following drawbacks.

(イ)の方法は、鉄などの金属磁性体の検出に利用でき
るが、検出距離が小さく且つ距離を定量的に精密に検出
することが難しい。
Method (a) can be used to detect metal magnetic materials such as iron, but the detection distance is small and it is difficult to quantitatively and accurately detect the distance.

(ロ)の方法は、検出器を小さくできるが、強いバイア
ス磁界が必要である上に検出器と磁性物体を0.1ミ!
J程度に接近させて使用するので、使用範囲が制限され
工作機械や産業機械には使いにくい。
Method (b) allows the detector to be made smaller, but requires a strong bias magnetic field and the distance between the detector and the magnetic object is 0.1 mm!
Since they are used close to J, the range of use is limited and it is difficult to use for machine tools and industrial machinery.

(ハ)の方法は、磁気センサが高感度で弱い磁界に感す
るので小さい磁石片を数ミリ以−ヒ離れて検出でき、産
業機械に多く使用されているが、磁界又は磁石の検出に
限定されておシ、鉄片のように磁束を生じない磁性物体
の検出には使用されない。
Method (c) has a highly sensitive magnetic sensor that senses weak magnetic fields, so it can detect small magnet pieces from a distance of several millimeters or more, and is often used in industrial machinery, but is limited to the detection of magnetic fields or magnets. However, it is not used to detect magnetic objects that do not produce magnetic flux, such as pieces of iron.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、検出平面をもつ非磁性容器の中に検出平面に
平行に可飽和コイルを置き、この可飽和コイルとほぼ同
じ平面に可飽和コイルを挾んで2個の永久磁石を設けた
検出ヘッドと、この可飽和コイルに加わる磁界の変化を
電圧の変化に変換する磁気検出回路とを設けた。
The present invention includes a detection head in which a saturable coil is placed parallel to the detection plane in a non-magnetic container having a detection plane, and two permanent magnets are provided with the saturable coil sandwiched in substantially the same plane as the saturable coil. and a magnetic detection circuit that converts changes in the magnetic field applied to the saturable coil into changes in voltage.

〔実施例〕〔Example〕

第1図は本発明に用いうる検出ヘッドの例を示す側断面
図、第2図は同検出ヘッドの上面図である。これらの図
において、(1)は金属又はプラスチックの非磁性容器
、(2)は可飽和コイル、(21)はそのコア、A及び
Bは断面矩形秋の磁石片、(3)は被検出磁性物体(例
えば鉄板)を示す。磁石片A及びBは、容器(1)に一
定の間隔をおいて固定され、厚さ方向に互いに逆向きに
磁化されている。すなわち、検出面側から見たとき、磁
石片Aが例えばN極であれば、磁石片BはS極とする。
FIG. 1 is a side sectional view showing an example of a detection head that can be used in the present invention, and FIG. 2 is a top view of the same detection head. In these figures, (1) is a metal or plastic non-magnetic container, (2) is a saturable coil, (21) is its core, A and B are magnet pieces with a rectangular cross section, and (3) is a magnetic field to be detected. Indicates an object (e.g. a steel plate). Magnet pieces A and B are fixed to the container (1) at regular intervals and are magnetized in opposite directions in the thickness direction. That is, when viewed from the detection surface side, if the magnet piece A is, for example, a north pole, the magnet piece B is a south pole.

これらの磁石片A、Bとほぼ同じ平面上でその中間に、
磁束検出用の可飽和コイル(2)を固定する。図には、
説明に便利なようにX、Y及びZ軸を示しである。
On almost the same plane as these magnet pieces A and B, in between them,
Fix the saturable coil (2) for magnetic flux detection. In the diagram,
The X, Y, and Z axes are shown for convenience of explanation.

磁石片A及びBば、例えば幅10ミリ、長さ14ミリ、
厚さ2ミリのプラスチック磁石とし、例えば厚さ1ミリ
の非磁性ステンレス(SO8−304)の容器(1)の
中に10ミリ間隔で貼シ付ける。可飽和コイル(2)は
、例えば長さ5ミリ、幅3ミリ、厚さ100ミクロンの
穴のあいたパーマロイ(可飽和)コア(2,)に互いに
逆向きに2つの巻線を巻回したものである。
Magnet pieces A and B, for example, width 10 mm, length 14 mm,
Plastic magnets with a thickness of 2 mm are used, and are pasted at intervals of 10 mm into a container (1) made of non-magnetic stainless steel (SO8-304) with a thickness of 1 mm, for example. The saturable coil (2) is made by winding two windings in opposite directions around a permalloy (saturable) core (2,) with a hole of, for example, 5 mm in length, 3 mm in width, and 100 microns in thickness. It is.

巻回数は、例えば100回とする。可飽和コイル(2)
を磁石片A、Bの中間(X=0 、 Y=O)にコア(
21)が両磁石片と平行になるように固定すると、可飽
和コイル(2)は、X軸方向の磁界に感応するがY及び
Z軸方向の磁界に対しては殆ど感応しない。
The number of turns is, for example, 100 times. Saturable coil (2)
Insert the core (
21) is fixed so as to be parallel to both magnet pieces, the saturable coil (2) is sensitive to the magnetic field in the X-axis direction, but hardly sensitive to the magnetic fields in the Y- and Z-axis directions.

そして、可飽和コイル(2)がZ軸上のどの位置にある
かによって、磁石片A、Bによシ可飽和コイル(2)に
加わるX方向磁界が変化する。可飽和コイル(2)が2
方向に磁石片A、Bの中心にあるとき(このときをZ=
Oとする。)、可飽和コイル(2)に加わるX方向磁界
はOであるが、中心からずれるとX方向に正又は負の磁
界が加わるようになる。
The X-direction magnetic field applied to the saturable coil (2) by the magnet pieces A and B changes depending on the position of the saturable coil (2) on the Z-axis. 2 saturable coils (2)
When it is at the center of magnet pieces A and B in the direction (this time is Z=
Let it be O. ), the X-direction magnetic field applied to the saturable coil (2) is O, but if it deviates from the center, a positive or negative magnetic field will be applied in the X-direction.

第3図は、上記検出ヘッドに鉄板(3)が接近したとき
磁界に及ぼす影響を説明する図である。図示のように可
飽和コイル(2)をZ=Oの位置に置き、Z軸上で磁石
片A、BのみによるX方向の磁界を測定すると、第4図
における曲線Iのようになる。
FIG. 3 is a diagram illustrating the effect on the magnetic field when the iron plate (3) approaches the detection head. When the saturable coil (2) is placed at the position Z=O as shown in the figure and the magnetic field in the X direction due to only the magnet pieces A and B is measured on the Z axis, the result is a curve I in FIG. 4.

したがって、可飽和コイル(2)の位置を2軸−ヒで僅
かにずらせば、正又は負のバイアス磁界を可飽和コイル
(2)に加えることができる。次に、鉄板(3)が磁石
片の前面よpdの距離に置かれた場合を考える。この場
合の磁界は、鉄板(3)が磁石片に対し十分に大きいと
き、鉄板(3)の代わシに磁石片A、Hの鏡@A’、B
’の位置にA、Bと同じ強さの磁石片があるときの磁界
と等しい。このとき、Z軸上のX方向磁界は第4図の曲
線Hのようになる。すなわち曲線Iをほぼ2dだけ左側
にシフトしたものとなる。
Therefore, by slightly shifting the position of the saturable coil (2) along two axes - H, a positive or negative bias magnetic field can be applied to the saturable coil (2). Next, consider the case where the iron plate (3) is placed at a distance pd from the front surface of the magnet piece. In this case, when the iron plate (3) is sufficiently large compared to the magnet pieces, the magnetic field of the magnet pieces A and H is replaced by mirrors @A', B
It is equal to the magnetic field when there are magnet pieces of the same strength as A and B at position '. At this time, the X-direction magnetic field on the Z-axis becomes like curve H in FIG. 4. In other words, the curve I is shifted to the left by approximately 2d.

第4図は、鉄板の接近により可飽和コイル(2)に加わ
るX方向磁界の変化を示す曲線図である。同図の曲線I
及び■について社、既に述べた。可飽和コイル(2)は
ほぼZ−0の所にあるため、可飽和コイル(2)には曲
線■上の点Pで表わされるX方向磁界が加わる。よって
、距離dを変化させたときて可飽和コイル(2)に加わ
るX方向磁界が変化する秋況を表わすものである。
FIG. 4 is a curve diagram showing changes in the X-direction magnetic field applied to the saturable coil (2) due to the approach of the iron plate. Curve I in the same figure
As for and ■, I have already mentioned it. Since the saturable coil (2) is located approximately at Z-0, the X-direction magnetic field represented by the point P on the curve 2 is applied to the saturable coil (2). Therefore, it represents the autumn situation in which the X-direction magnetic field applied to the saturable coil (2) changes when the distance d is changed.

第5図は、上記検出ヘッドと組合ゼで使用する磁気検出
回路の例を示す回路図である。可飽和コイル(2)は上
記検出ヘッドの可飽和コイルで、Ll及びL2はその巻
線を示す。OSCは高周波(例えば50 kHz)のパ
ルス発振器で、その出力は同一極性のパルス列(例えば
パルス幅1μS)である。Rは直列抵抗、Dl及びD2
はダイオード、r、及びr2は出力抵抗、C4,C2及
びC3は容量である。巻線り、及びL2は高周波ノeル
スによシ互いに逆方向の磁束を生じ、可飽和コイル(2
)にX方向磁界が加わると、コンデンサC3の両端の出
力端子(4) t (5)に出力電圧を発生する。X方
向磁界が例えば±50ガウスの範囲であれば、直線的に
±6vの出力電圧を生じ、±100ガウスでは飽和して
±10 Vの出力電圧を生じる。
FIG. 5 is a circuit diagram showing an example of a magnetic detection circuit used in combination with the detection head. The saturable coil (2) is a saturable coil of the detection head, and Ll and L2 indicate its windings. The OSC is a high frequency (for example, 50 kHz) pulse oscillator, and its output is a pulse train of the same polarity (for example, a pulse width of 1 μS). R is series resistance, Dl and D2
is a diode, r and r2 are output resistances, and C4, C2, and C3 are capacitors. The windings and L2 generate magnetic fluxes in opposite directions due to high frequency e-irrus, and the saturable coil (2
), an output voltage is generated at the output terminals (4) and t (5) at both ends of the capacitor C3. For example, if the X-direction magnetic field is in the range of ±50 Gauss, an output voltage of ±6 V is produced linearly, and at ±100 Gauss, it is saturated to produce an output voltage of ±10 V.

第6図は、鉄板(3)が2方向に接近したときの磁気検
出回路の出力変化を示す特性曲線図である。
FIG. 6 is a characteristic curve diagram showing changes in the output of the magnetic detection circuit when the iron plate (3) approaches in two directions.

曲線Aは、可飽和コイル(2)にバイアス磁界を加えず
、したがって検出回路出力にバイアス電圧をかけない場
合のもので、出力電圧(図では負方向電圧)は、鉄板が
ないとき0で、鉄板の接近と共に増加し間隔dが小さく
なるとまた減少する。可飽和コイル(2)に加わるX方
向磁界が大きすぎると、コア(2,)が飽和して出力は
IOVに限定される。したがって、曲線Aでは、出力の
大きい所で飽和している。曲線Bは、可飽和コイルに+
6v相当のバイアス磁界を加えた場合の特性を示し、最
大出力部分の飽和が緩和され出力電圧の幅が大きくなっ
ている。すなわち、バイアス磁界をかけることによシ、
磁気検出回路の動作域を拡げることができる。上記の出
力特性の測定に使用した鉄板は、幅30ミリ、長さ50
ミリ、厚さ0.2ミリの軟鉄板であった。鉄板をこれよ
シ大きくしたり厚くしたりしても、検出回路出力には差
がなかった。また、測定時に検出ヘッドの検出面に漏れ
て出る磁界の強さは180ガウスであったが、第6図に
示す如く、比較的弱い漏れ磁界であるのに大きい間隔で
も大きな出力電圧が得られた。磁石片A、Bの寸法及び
間隔を大きくしたり、各磁石片の強さを増したりすれば
、−層検出可能距離を犬きくできる。
Curve A is for the case where no bias magnetic field is applied to the saturable coil (2) and therefore no bias voltage is applied to the detection circuit output.The output voltage (negative direction voltage in the figure) is 0 when there is no iron plate. It increases as the iron plate approaches, and decreases again as the distance d becomes smaller. If the X-direction magnetic field applied to the saturable coil (2) is too large, the core (2,) will become saturated and the output will be limited to IOV. Therefore, curve A is saturated where the output is large. Curve B is +
This shows the characteristics when a bias magnetic field equivalent to 6V is applied, and the saturation at the maximum output portion is alleviated and the output voltage width is widened. In other words, by applying a bias magnetic field,
The operating range of the magnetic detection circuit can be expanded. The iron plate used to measure the above output characteristics was 30 mm wide and 50 mm long.
It was a soft iron plate with a thickness of 0.2 mm. Even if the iron plate was made larger or thicker, there was no difference in the detection circuit output. Also, the strength of the magnetic field leaking to the detection surface of the detection head during measurement was 180 Gauss, but as shown in Figure 6, a large output voltage was obtained even with a relatively weak leakage magnetic field even at large intervals. Ta. By increasing the dimensions and spacing of the magnet pieces A and B, or by increasing the strength of each magnet piece, the -layer detectable distance can be increased.

これまで、本発明を検出ヘッドの検出面と鉄板の2方向
距離dを検出する場合について述べたが、本発明は、d
を一定に保ち、検出面に平行KY軸方向に移動する鉄片
の端を検出することができる。
Up to now, the present invention has been described for detecting the distance d in two directions between the detection surface of the detection head and the iron plate.
can be kept constant and the end of the iron piece moving in the KY-axis direction parallel to the detection surface can be detected.

第7図に示すように、鉄板(例えば幅30ミリ、長さ5
0ミリ、厚さ0.2ミリ)を検出ヘッドとの間隔dを一
定に保ちなからY方向に移動させた場合、第8図に示す
ような出力電圧が得られる。この図に示すように、鉄板
の端の変位に対してほぼ直線的に大きい出力を生じるの
で、端位置検出器として利用できる。
As shown in Figure 7, an iron plate (e.g. 30mm wide, 5mm long
0 mm, thickness 0.2 mm) is moved in the Y direction while keeping the distance d from the detection head constant, an output voltage as shown in FIG. 8 is obtained. As shown in this figure, a large output is generated almost linearly with respect to the displacement of the edge of the iron plate, so it can be used as an edge position detector.

第9図は本発明に用いうる検出ヘッドの他の例を示す上
面図で、第1O図はこの検出ヘッドと組合せて用いるス
イッチング回路の例を示す回路図である。第9図の検出
ヘッドにおける磁石片A、Bと可飽和コイル(2)の配
置関係は第1及び第2図の検出ヘッドと同じであるが、
可飽和コイル(2)が■字形コアに1つの巻線りを巻回
したものである点が異なる。第10図において、Ql及
びC2はトランジスタ、(6)及び(7)は出力端子を
示す。鉄片が近づくと0点の電圧が変化するので、これ
を利用してトランジスタQ1 + C2にオン・オフの
スイッチング作用を行わせることができる。第6図の曲
線Bでは3ミリ離れた所の電圧傾斜が4v/1mmに達
し、これは1μmの変位に対し4’mVの変化になるの
で、非接触で高精度(繰返し精度1μm)のリミット・
スイッチに利用できる。
FIG. 9 is a top view showing another example of a detection head that can be used in the present invention, and FIG. 1O is a circuit diagram showing an example of a switching circuit used in combination with this detection head. The arrangement relationship between the magnet pieces A, B and the saturable coil (2) in the detection head of FIG. 9 is the same as in the detection head of FIGS. 1 and 2,
The difference is that the saturable coil (2) is a single winding wound around a ■-shaped core. In FIG. 10, Ql and C2 are transistors, and (6) and (7) are output terminals. When the iron piece approaches, the voltage at the zero point changes, and this can be used to cause the transistors Q1 + C2 to perform an on/off switching action. In curve B of Fig. 6, the voltage slope at a distance of 3 mm reaches 4 V/1 mm, which is a change of 4' mV for a displacement of 1 μm, so it is a non-contact and highly accurate limit (repeatability of 1 μm).・
Can be used for switches.

以上の説明では、被検出体を鉄板又は鉄片としたが、こ
れらに限らずフェライト或いは鋳鉄の構造物のような高
透磁率の物体ならば検出することができる。
In the above description, the object to be detected is an iron plate or an iron piece, but the object is not limited to these, and any object with high magnetic permeability such as a ferrite or cast iron structure can be detected.

〔発明の効果〕〔Effect of the invention〕

本発明は、次の如き種々の顕著な効果を奏する。 The present invention has the following various remarkable effects.

(a)被検出体の面に垂直方向の距離を0〜10ミリ以
上の範囲にわた9はぼ直線的に精度よく測定することが
できる。
(a) The distance 9 in the direction perpendicular to the surface of the object to be detected can be measured almost linearly and accurately over a range of 0 to 10 mm or more.

(b)  検出回路出力に一定電圧でオン・オフするス
イッチング回路を組合せることによす、非接触・高精度
のリミット・スイッチが得られる。
(b) A non-contact, highly accurate limit switch can be obtained by combining the detection circuit output with a switching circuit that turns on and off at a constant voltage.

(c)鉄製ロールの面から数ミリの距離に検出ヘッドを
おくと、ロール回転時の偏心量を測定することができる
。回転体では波形が繰返し生じるのでOオフセットが問
題にならず、出力を大きくして増幅して1μm以下の偏
心を測定できる。
(c) If the detection head is placed at a distance of several millimeters from the surface of the iron roll, the amount of eccentricity during roll rotation can be measured. Since waveforms occur repeatedly in a rotating body, O offset is not a problem, and eccentricity of 1 μm or less can be measured by increasing the output and amplifying it.

(d)  磁性体の振動を測定することができる。本検
出装誼の応答速度は4 kHz以上あり、数μmの小振
幅から数ミリの大振幅の振動まで精度よく測定できる。
(d) Vibrations of magnetic materials can be measured. The response speed of this detection device is over 4 kHz, and it can accurately measure vibrations ranging from small amplitudes of several micrometers to large amplitudes of several millimeters.

(e)連続したベルト秋の鉄板の端位置を検出すること
ができる。
(e) The end position of the iron plate where the belt falls continuously can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いうる検出ヘッドの例を示す側断面
図、第2図は同検出ヘッドの上面図、第3図は鉄板の接
近による磁界への影響を説明する図、第4図は鉄板の接
近によシ可飽和コイルに加わるX方向磁界の変化を示す
曲線図、第5図は検出ヘッドと組合せて使用する磁気検
出回路の例を示す回路図、第6図は鉄板の接近による磁
気検出回路の出力変化を示す曲線図、第7図は鉄板をY
方向に移動させるときの配置図、第8図は鉄板のY方向
変位による出力変化を示す曲線図、第9図は検出ヘッド
の他の例を示す上面図、第10図は同検出ヘッドと組合
せて用いるスイッチング回路の例を示す回路図である。 cl、c2.c3) 、 (osc、r、、Ql、Q2
)・・・磁気検出回路、(3)・・・鉄板(磁性物体)
Fig. 1 is a side sectional view showing an example of a detection head that can be used in the present invention, Fig. 2 is a top view of the detection head, Fig. 3 is a diagram illustrating the influence on the magnetic field due to the approach of a steel plate, and Fig. 4 is a curve diagram showing changes in the X-direction magnetic field applied to the saturable coil as the iron plate approaches, Figure 5 is a circuit diagram showing an example of a magnetic detection circuit used in combination with a detection head, and Figure 6 is a curve diagram showing changes in the X-direction magnetic field applied to the saturable coil as the iron plate approaches. Figure 7 is a curve diagram showing the output change of the magnetic detection circuit according to
Figure 8 is a curve diagram showing output changes due to displacement of the iron plate in the Y direction, Figure 9 is a top view showing another example of the detection head, and Figure 10 is a combination with the same detection head. FIG. 2 is a circuit diagram showing an example of a switching circuit used in the present invention. cl, c2. c3) , (osc,r,,Ql,Q2
)...Magnetic detection circuit, (3)...Iron plate (magnetic object)
.

Claims (1)

【特許請求の範囲】 検出平面をもつ非磁性体の容器の中に上記検出平面に平
行に可飽和コイルを置き、この可飽和コイルとほぼ同じ
平面に上記可飽和コイルを挾んで上記検出平面に垂直な
方向に互いに逆向きに磁化された2個の永久磁石を設け
て成る検出ヘッドと、上記可飽和コイルに加わる磁界の
変化を電圧の変化に変換する磁気検出回路とを具え、 上記検出平面に磁性物体が接近したとき直線的電圧変化
を生ずることを特徴とする鉄検出装置。
[Claims] A saturable coil is placed parallel to the detection plane in a non-magnetic container having a detection plane, and the saturable coil is sandwiched in substantially the same plane as the saturable coil, so that the saturable coil is placed in parallel to the detection plane. The detection head includes two permanent magnets magnetized in opposite directions in a perpendicular direction, and a magnetic detection circuit that converts a change in the magnetic field applied to the saturable coil into a change in voltage, An iron detection device characterized by producing a linear voltage change when a magnetic object approaches.
JP61201142A 1986-08-27 1986-08-27 Iron detector Pending JPS6358190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201142A JPS6358190A (en) 1986-08-27 1986-08-27 Iron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201142A JPS6358190A (en) 1986-08-27 1986-08-27 Iron detector

Publications (1)

Publication Number Publication Date
JPS6358190A true JPS6358190A (en) 1988-03-12

Family

ID=16436096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201142A Pending JPS6358190A (en) 1986-08-27 1986-08-27 Iron detector

Country Status (1)

Country Link
JP (1) JPS6358190A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136440A (en) * 1975-05-22 1976-11-25 Nippon Steel Corp A detecting device of the extreme point of a coiled metal strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136440A (en) * 1975-05-22 1976-11-25 Nippon Steel Corp A detecting device of the extreme point of a coiled metal strip

Similar Documents

Publication Publication Date Title
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
US6160395A (en) Non-contact position sensor
US6404192B1 (en) Integrated planar fluxgate sensor
US6541960B2 (en) Position detector utilizing magnetic sensors and a bias magnetic field generator
US7218092B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US6549003B2 (en) Position detector utilizing two magnetic field sensors and a scale
JP3487452B2 (en) Magnetic detector
Sasada et al. Noncontact torque sensors using magnetic heads and a magnetostrictive layer on the shaft surface-application of plasma jet spraying process
US4603295A (en) Two-headed DC magnetic target proximity sensor
JPS6358190A (en) Iron detector
JPS63115001A (en) Position detector for hydraulic or pneumatic cylinder
JPH03131717A (en) Linear position detector
JPH03296615A (en) Detecting apparatus of position of moving body
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
JP2514338B2 (en) Current detector
JPS6338101A (en) Iron detecting device
JP3607447B2 (en) Magnetic field sensor
JPH05223910A (en) Measuring method for magnetism
JPH0721536B2 (en) Magnetic sensor
JPH08122422A (en) Magnetic field sensor utilizing reversible susceptibility
JPH06180204A (en) Position detection sensor
JPH03179217A (en) Position detecting apparatus
RU2131131C1 (en) Magnetosensitive element
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JPH048728B2 (en)