JPS6357841A - Air-fuel ratio controller for engine - Google Patents

Air-fuel ratio controller for engine

Info

Publication number
JPS6357841A
JPS6357841A JP20215886A JP20215886A JPS6357841A JP S6357841 A JPS6357841 A JP S6357841A JP 20215886 A JP20215886 A JP 20215886A JP 20215886 A JP20215886 A JP 20215886A JP S6357841 A JPS6357841 A JP S6357841A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
engine
purge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20215886A
Other languages
Japanese (ja)
Other versions
JPH0726575B2 (en
Inventor
Toshio Matsubara
松原 敏雄
Takashi Suzuki
敬 鈴木
Isao Shibata
勲 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP20215886A priority Critical patent/JPH0726575B2/en
Publication of JPS6357841A publication Critical patent/JPS6357841A/en
Publication of JPH0726575B2 publication Critical patent/JPH0726575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make the convergence of an air-fuel ratio onto the desired air-fuel ratio performable in a short time, by compensating a fundamental control variable at the point that a feedback compensation value exceeds the setting value when evaporated fuel is purged during feedback control over the air-fuel ratio. CONSTITUTION:According to the fundamental controlled variable found on the basis of output of a driving state detecting device 65, fuel is metered by a fuel metering device 79, while an air-fuel ratio of mixture is feedback- controlled to the desired value by an air-fuel ratio controlling device 80 according to the compensation value conformed to output of an air-fuel ratio sensor 54. In a suchlike device, there is provided with a purge controlling device 82 which controls a purge device 35 purging evaporated fuel to a suction system of an engine 1 according to an engine driving state. And, at a time when a detecting device 84 detects purge time of the evaporated fuel, when the compensation value of feedback control by the air-fuel ratio controlling device 80 exceeds the setting value, there is also provided with a fundamental controlled variable compensating device 85 compensating the fundamental controlled variable of the fuel metering device 79.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの空燃比制御装置に関し、特に、燃料
タンク等からの蒸発燃料をエンジンに供給するパージ時
における空燃比の制御性の向上対策に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air-fuel ratio control device for an engine, and in particular, measures to improve the controllability of the air-fuel ratio during purging to supply evaporated fuel from a fuel tank or the like to the engine. Regarding.

(従来の技術) 従来、燃料タンク等で発生した黒光燃料は、その大気へ
の拡散を防止すべく、例えば特開昭59−192858
号公報に調量されるように、−旦キャニスタ等の吸着装
置に吸着し、この吸着した蒸発燃料をエンジンの運転状
態に応じてエンジンの吸気系に供給するようになされて
いる。
(Prior Art) Conventionally, in order to prevent black light fuel generated in fuel tanks etc. from dispersing into the atmosphere, for example, Japanese Patent Laid-Open No. 59-192858
As determined in the above publication, vaporized fuel is adsorbed into an adsorption device such as a canister, and the adsorbed evaporated fuel is supplied to the intake system of the engine depending on the operating state of the engine.

(発明が解決しようとする問題点) しかしながら、上記の如き蒸発燃料のパージを、混合気
の空燃比制御を行うエンジンに適用する場合には、次の
如き欠点が生じる。つまり、混合気の空燃比制御では、
エンジンに供給された混合気の空燃比を検出する空燃比
センサを備え、該空燃比センサの出力に応じた補正量で
エンジンに供給する混合気の空燃比を目標値にフィード
バック制御している。そして、この空燃比のフィードバ
ック制御の補正量の大きさは、通常、空燃比センサの出
力信号へのノイズの侵入等に起因する空燃比制御の誤制
御を防止するために、予め定めた設定幅内に制限される
ものである。このため、空燃比のフィードバック制御時
、特に低吸気量時に蒸発燃料のパージが行われた場合に
は、この蒸発燃料のパージに起因して空燃比が大きく変
動してリンチになり易く、これに伴い上記空燃比制御の
フィードバック補正量がリーン側に大きくなって、上記
設定幅内の最大値に制限され、目標空燃比に対応する補
正量値と大きく相違することになるため、パージ時での
空燃比を目標空燃比に制御し青ず、制御性が低下すると
いう欠点が生じる。
(Problems to be Solved by the Invention) However, when the above-described purge of vaporized fuel is applied to an engine that controls the air-fuel ratio of the air-fuel mixture, the following drawbacks occur. In other words, in air-fuel ratio control of the mixture,
The air-fuel ratio sensor detects the air-fuel ratio of the air-fuel mixture supplied to the engine, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled to a target value by a correction amount according to the output of the air-fuel ratio sensor. The magnitude of the correction amount for this air-fuel ratio feedback control is usually set within a predetermined range in order to prevent incorrect air-fuel ratio control caused by noise entering the output signal of the air-fuel ratio sensor. It is limited within. For this reason, during feedback control of the air-fuel ratio, especially when purging of evaporated fuel is performed at a low intake air amount, the air-fuel ratio fluctuates greatly due to this purging of evaporated fuel, which tends to cause lynch. As a result, the feedback correction amount of the air-fuel ratio control increases toward the lean side, and is limited to the maximum value within the setting range, which is greatly different from the correction amount value corresponding to the target air-fuel ratio. The disadvantage is that the air-fuel ratio is not controlled to the target air-fuel ratio, resulting in poor controllability.

そこで、種々の解決方法が検討されるが、その場合にも
、蒸発燃料のパージが終了して空燃比のフィードバック
制御のみに戻った時には、その後の空燃比が即座に目標
値に収束するよう、空燃比制御を応答性良く行い得るこ
とが必要になる。
Therefore, various solutions are being considered, but even in that case, when the purge of vaporized fuel is completed and only feedback control of the air-fuel ratio is returned to, the air-fuel ratio should immediately converge to the target value. It is necessary to be able to perform air-fuel ratio control with good responsiveness.

本光明は斯かる点に鑑みてなされたものであり、その目
的は、空燃比のフィードバック制御中に、同時に蒸発燃
料のパージを行う場合、空燃比制御の補正量が所定値を
越えて大きくなった時には、エンジン運転状態に応じて
決定される基本制御jI]ffl、例えば燃料噴射式エ
ンジンにおける基本燃料噴射量等を非パージ時とは異な
る値に変更することにより、蒸発燃料のパージ時にも、
基本制御量とフィードバック制御の補正量とを含む全体
をして、空燃比を目標空燃比に良好に収束させるととも
に、その後のパージの終了時には、フィードバック補正
うをその基準値付近から大小調整し得て、その調整幅の
少ない範囲内で空燃比を目標空燃比に収束制御できて、
空燃比制御の応答性の向上を図ることにある。
This light was developed in view of the above, and its purpose is to prevent the correction amount of air-fuel ratio control from exceeding a predetermined value when purge of evaporated fuel is performed simultaneously during air-fuel ratio feedback control. At times, by changing the basic control jI]ffl determined according to the engine operating state, for example, the basic fuel injection amount in a fuel injection type engine, to a value different from that during non-purging, even when purging evaporated fuel,
The overall air-fuel ratio, including the basic control amount and feedback control correction amount, can be converged to the target air-fuel ratio, and at the end of the subsequent purge, the feedback correction amount can be adjusted from around its reference value. The air-fuel ratio can be controlled to converge to the target air-fuel ratio within a small adjustment range.
The purpose is to improve the responsiveness of air-fuel ratio control.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示すように、エンジンの運転状態を検出する運転状態
検出手段65と、該運転状態検出手段65の出力を受け
、エンジン運転状態に応じた基本制6111に基いて上
記エンジン1に供給される燃料を調量する燃料調量手段
79と、上記エンジン1に供給された混合気の空燃比を
検出する空燃比センサ54と、該空燃比センサ54の出
力に応じた補正量でエンジン1に供給する混合気の空燃
比を目標値にフィードバック制御する空燃比制御手段8
oとを備えたエンジンの空燃圧制t!!l装置を前提と
する。そして、蒸発燃料をエンジン1の吸気系にパージ
するパージ手段35と、上記運転状態検出手段65の出
力を受け、エンジン運転状態に応じて蒸発燃料をエンジ
ン1にパージするよう上記パージ手段35を制御するパ
ージ制御手段82とを備えるとともに、蒸光然料のパー
ジ時を検出するパージ時検出手段84と、該パージ時検
出手段84の出力を受け、蒸発燃料のパージ時に、上記
空燃比制御手段80によるフィードバック1IilJ御
の補正量が設定値を越えたとき、上記燃料調量手段79
の基本制御量を補正する基本制御量補正手段85とを備
える構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. A fuel metering device 79 receives the output of the device 65 and adjusts the amount of fuel supplied to the engine 1 based on a basic control 6111 depending on the engine operating state, and an air-fuel ratio of the air-fuel mixture supplied to the engine 1. an air-fuel ratio sensor 54 that detects the air-fuel ratio; and an air-fuel ratio control means 8 that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine 1 to a target value with a correction amount according to the output of the air-fuel ratio sensor 54.
Air/fuel pressure control of an engine with o and t! ! 1 device is assumed. Then, in response to the outputs of the purge means 35 for purging the evaporated fuel into the intake system of the engine 1 and the operating state detection means 65, the purge means 35 is controlled to purge the evaporated fuel into the engine 1 according to the engine operating state. The air-fuel ratio control means 80 receives the output of the purge time detection means 84 and detects when the vaporized natural material is purged. When the correction amount controlled by feedback 1IilJ exceeds the set value, the fuel metering means 79
The basic control amount correction means 85 corrects the basic control amount.

(作用) 以上の構成により、本発明では、混合気の空燃比のフィ
ードバック制御のみが行われる場合には、エンジン1に
供給される燃料量が燃料調量手段79で基本制御]1で
もってエンジン運転状態に応じた所定量に調量されつつ
、空燃比センサ54によりエンジンに供給された混合気
の空燃比が検出され、該空燃比センサ54の出力に応じ
たフィードバック補正量が算出されて、このフィードバ
ック補正量に応じて上記基本制御0ffiがフィードバ
ック制御されて、エンジンに供給される混合気の空燃比
が空燃比制御手段80により目標空燃比に調整されるこ
とになる。
(Function) With the above configuration, in the present invention, when only the feedback control of the air-fuel ratio of the air-fuel mixture is performed, the amount of fuel supplied to the engine 1 is controlled by the fuel metering means 79 by the basic control. The air-fuel ratio of the air-fuel mixture supplied to the engine is detected by the air-fuel ratio sensor 54 while being adjusted to a predetermined amount according to the operating condition, and a feedback correction amount is calculated according to the output of the air-fuel ratio sensor 54. The basic control Offi is feedback-controlled in accordance with this feedback correction amount, and the air-fuel ratio of the air-fuel mixture supplied to the engine is adjusted to the target air-fuel ratio by the air-fuel ratio control means 80.

また、上記の如き空燃比のフィードバック制御時におい
て、エンジン1の運転状態に応じて蒸発燃料のパージが
同時に行われた場合には、このパ−ジに伴い空燃比がリ
ッチになって目標空燃比と大きく隔たることになるもの
の、この際には、上記燃料調量手段79の基本制御]f
fiが基本11i1J111吊補正手段85によりリー
ン側に補正されるので、フィードバック補正量は基準値
付近に保持されたまま、空燃比が素早く目標空燃比に制
御される。
In addition, during feedback control of the air-fuel ratio as described above, if purging of vaporized fuel is simultaneously performed depending on the operating state of the engine 1, the air-fuel ratio becomes rich due to this purge, and the target air-fuel ratio In this case, basic control of the fuel metering means 79] f
Since fi is corrected to the lean side by the basic 11i1J111 suspension correction means 85, the air-fuel ratio is quickly controlled to the target air-fuel ratio while the feedback correction amount is maintained near the reference value.

そして、蒸発燃料のパージが終了し、空燃比のフィード
バック制御のみに戻った場合には、その基本制御p吊の
値が元に戻り、この基本制御iがフィードバック補正量
で逐次補正されて、空燃比が目標空燃比に収束する。そ
の際、フィードバック補正量は基準値近傍にあるので、
その後の外乱による空燃比の変動に対しても、フィード
バック補正量を逐次大小変更する幅は可及的に少なくて
済み、その結果、空燃比は可及的速やかに目標空燃比に
収束することになる。
When the purge of evaporated fuel is completed and the air-fuel ratio feedback control is returned to, the value of the basic control p is returned to the original value, and the basic control i is successively corrected by the feedback correction amount. The fuel ratio converges to the target air-fuel ratio. At that time, since the feedback correction amount is near the reference value,
Even when the air-fuel ratio changes due to subsequent disturbances, the range of successive changes in the feedback correction amount is as small as possible, and as a result, the air-fuel ratio converges to the target air-fuel ratio as quickly as possible. Become.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は燃料噴射式エンジンの空燃比制御装置の全体構
成を示し、1はエンジン、2はエンジン1のシリンダ3
に摺動自在に嵌挿したピストン4により容積可変に形成
された燃焼室、5は一端がエアクリーナ6を介して大気
に連通し、他端が上記燃焼室2に開口して吸気をエンジ
ン1に供給するための吸気通路、7は一端が上記燃焼室
2に間口し、他端が大気に開放されて排気を排出するた
めの排気通路であって、上記吸気通路5の途中には、吸
入空気量を制御するスロットル弁8と、該スロットル弁
8の下流側で燃焼室2の近傍に燃料を噴射供給する燃料
噴射弁9とが各々配設されている一方、排気通路7の途
中には、排気ガスを浄化する触媒装置10が配設されて
いる。
Figure 2 shows the overall configuration of the air-fuel ratio control device for a fuel injection engine, where 1 is the engine, and 2 is the cylinder 3 of the engine 1.
A combustion chamber 5 is formed with a variable volume by a piston 4 slidably inserted into the combustion chamber 5. One end of the combustion chamber 5 communicates with the atmosphere via an air cleaner 6, and the other end opens into the combustion chamber 2 to supply intake air to the engine 1. An intake passage 7 for supplying air is an exhaust passage whose one end opens into the combustion chamber 2 and whose other end is open to the atmosphere to discharge exhaust air. A throttle valve 8 for controlling the amount of fuel and a fuel injection valve 9 for injecting and supplying fuel to the vicinity of the combustion chamber 2 on the downstream side of the throttle valve 8 are respectively disposed, while in the middle of the exhaust passage 7, A catalyst device 10 for purifying exhaust gas is provided.

また、15は燃料タンクであって、該燃料タンク15の
内部燃料は、該燃料タンク15内に配設した燃料ポンプ
16および燃料フィルタ17、並びに他の燃料フィルタ
18を介設した燃料供給通路19を介して上記燃料噴射
弁9に供給されていて、燃料タンク15内の燃料を燃料
噴射弁9から吸気通路5に噴射供給可能になっている。
Reference numeral 15 denotes a fuel tank, and the fuel inside the fuel tank 15 is supplied through a fuel pump 16 and a fuel filter 17 disposed inside the fuel tank 15, and a fuel supply passage 19 through which another fuel filter 18 is interposed. The fuel in the fuel tank 15 can be injected into the intake passage 5 from the fuel injection valve 9.

また、上記燃料噴射弁9の燃料供給通路19には、燃料
噴射弁9に連通ずる圧力調整通路20を介して、燃料圧
力を調整するプレッシャーレギュレータ21が接続され
ていて、該プレッシャーレギュレータ21により余剰燃
料を燃料戻し通路22を介して燃料タンク15に戻して
、燃料噴射弁11に供給される燃料の圧力を設定値に調
整するようにしている。
Further, a pressure regulator 21 for regulating fuel pressure is connected to the fuel supply passage 19 of the fuel injection valve 9 through a pressure regulation passage 20 communicating with the fuel injection valve 9. The fuel is returned to the fuel tank 15 via the fuel return passage 22, and the pressure of the fuel supplied to the fuel injection valve 11 is adjusted to a set value.

さらに、上記燃料タンク15の内部は、一方向弁25を
介設した蒸発燃料流通通路26を介して′蒸発燃料を吸
着する活性炭内蔵のキャニスタ27が連通接続されてい
る。該キャニスタ27の内部は、蒸発燃料供給通路28
を介して上記吸気通路5のスロットル弁8下流側に連通
されているとともに、大気圧及び負圧の作用に応じて開
閉するパージ制御弁29を有し、該パージ制御弁29に
は、バーシェア導入通路30を介して三方弁32が接続
されていて、該三方弁32により、パージエア導入油M
30ffi負圧導入通路33を介して吸気通路5のスロ
ットル弁8下流側に連通して負圧が導入されたときには
、パージ制御弁29を閉じて、蒸発燃料のパージを停止
する一方、三方弁32によりバーシェア導入通路30が
大気に連通されたときには、大気(パージエア)により
パージ制御弁2つを開かせたのち、キャニスタ27内の
蒸発燃料を蒸発燃料供給3[!!路28を介して吸気通
路5のスロットル弁8下流側にパージするようにしたパ
ージ手段35を構成している。
Furthermore, a canister 27 containing activated carbon that adsorbs evaporated fuel is connected to the inside of the fuel tank 15 through an evaporated fuel distribution passage 26 in which a one-way valve 25 is interposed. The inside of the canister 27 is connected to an evaporated fuel supply passage 28.
The purge control valve 29 is connected to the downstream side of the throttle valve 8 of the intake passage 5 through the intake passage 5 and opens and closes according to the action of atmospheric pressure and negative pressure. A three-way valve 32 is connected through the passage 30, and the three-way valve 32 allows purge air to be introduced into the oil M.
30ffi When negative pressure is introduced into the intake passage 5 downstream of the throttle valve 8 through the negative pressure introduction passage 33, the purge control valve 29 is closed to stop purging of evaporated fuel, while the three-way valve 32 When the bar share introduction passage 30 is communicated with the atmosphere, the two purge control valves are opened by the atmosphere (purge air), and then the evaporative fuel in the canister 27 is transferred to the evaporative fuel supply 3 [! ! A purge means 35 is configured to purge the intake passage 5 downstream of the throttle valve 8 via the passage 28.

さらに、上記蒸発燃料供給通路28の途中には、蒸発燃
料のパージ呈を制限する第1オリフイス37が介設され
、該第1オリフィス37の前後はバイパス通路38でバ
イパスされ、該バイパス通路3・8の途中には、上記第
1オリフイス37よりも径の大きい第2オリフイス39
と、バイパス通路38を開閉する開開弁40とが介設さ
れていて、該開閉弁40には、その開閉制御用の三方弁
41が接続され、該三方弁41により、大気圧を開開弁
40に作用させたときには、該開閉弁40を閉じさせて
、蒸発燃料をバイパスせずに第1オリフイス37を介し
てパージすることにより、所定のパージ速度を得る一方
、三方弁41により吸気通路5のスロットル弁8下流側
の負圧を開開弁40に作用させたときには、該開閉弁4
0を開かせて、蒸発燃料をバイパス通路38の第2オリ
フイス39を介してエンジン1にパージすることにより
、パージ速度を上記所定速度よりも速くして、パージ速
度を2段階に切換え可能にている。
Further, a first orifice 37 for restricting purging of the vaporized fuel is interposed in the middle of the vaporized fuel supply passage 28, and a bypass passage 38 is provided before and after the first orifice 37, and the bypass passage 3. 8, there is a second orifice 39 with a larger diameter than the first orifice 37.
and an on-off valve 40 that opens and closes the bypass passage 38. A three-way valve 41 for controlling the opening and closing of the on-off valve 40 is connected to the three-way valve 41, and the three-way valve 41 opens and closes atmospheric pressure. When the valve 40 is actuated, the on-off valve 40 is closed and the vaporized fuel is purged through the first orifice 37 without bypassing, thereby obtaining a predetermined purge speed, while the three-way valve 41 closes the on-off valve 40 and purges the vaporized fuel through the first orifice 37. When the negative pressure on the downstream side of the throttle valve 8 of No. 5 is applied to the opening/closing valve 40, the opening/closing valve 4
0 is opened and vaporized fuel is purged into the engine 1 through the second orifice 39 of the bypass passage 38, the purge speed is made faster than the predetermined speed, and the purge speed can be switched to two stages. There is.

加えて、50は吸気通路5のスロットル弁8上流側で吸
入空気量を検出するエアフローセンサ、51はスロット
ル弁8の開度を検出する開度センサ、52はエンジン回
転数を検出する回転数センサとしてのディストリビュー
タ、53はエンジン冷却水温度を検出する冷却水温度セ
ンサ、54は排気通路7に配設されて排気ガス中のM水
濃度成分によりエンジンに供給された混合気の空燃比を
検出する空燃比センサ、55は運転者により操作される
スタートスイッチ、56はスロットル弁8の開度により
エンジン1のアイドル運転時を検出するアイドルスイッ
チ、57は変速機の中立位置を検出するニュートラルス
イッチ、58は運転者により足踏み操作されるクラッチ
の接続状態を検出するクラッチスイッチ、59は車載ク
ーラの作動時を検出するクーラスイッチ、60はパワー
ステアリング装置の作動時を検出するパワーステアリン
グスイッチ、61は電気負荷の作動時を検出する電気負
荷スイッチ、62はスロットル弁8の開度により高負荷
時を検出するパワースイッチ、63はエンジン冷却水温
度が所定温度(例えば5o’c>JX上の状態を検出す
る水温スイッチであって、上記エア70−センサ50及
びディストリビュータ52により、エンジン1の運転状
態を検出するようにした運転状態検出手段65を構成し
ている。そして、上記各センサ及びスイッチ50〜63
の検出信号は各々CPU等を内蔵するコントローラ70
に入力されていて、該コント0−770により上記燃料
噴射弁9および2個の三方弁32.41が各々作動制御
される。尚、図中、75はブローバイガスを吸気通路5
のスロットル弁8下流側に戻すPCVバルブ、76は吸
気通路5のスロットル弁8をバイパスするバイパス通路
77の途中に介設されて、バイパス吸気量の調整により
エンジンのアイドル回転数を調整するアイドル調整バル
ブである。
In addition, 50 is an air flow sensor that detects the amount of intake air on the upstream side of the throttle valve 8 in the intake passage 5, 51 is an opening sensor that detects the opening of the throttle valve 8, and 52 is a rotation speed sensor that detects the engine speed. 53 is a cooling water temperature sensor that detects the engine cooling water temperature; 54 is disposed in the exhaust passage 7 and detects the air-fuel ratio of the air-fuel mixture supplied to the engine based on the M water concentration component in the exhaust gas. An air-fuel ratio sensor, 55 is a start switch operated by the driver, 56 is an idle switch that detects when the engine 1 is idling based on the opening degree of the throttle valve 8, 57 is a neutral switch that detects the neutral position of the transmission, 58 59 is a cooler switch that detects when the in-vehicle cooler is activated; 60 is a power steering switch that detects when the power steering device is activated; 61 is an electric load. 62 is a power switch that detects high load based on the opening degree of the throttle valve 8. 63 is a power switch that detects when the engine coolant temperature is above a predetermined temperature (for example, 5o'c>JX). The air 70-sensor 50 and distributor 52 constitute an operating state detection means 65 that detects the operating state of the engine 1.The sensors and switches 50 to 63 are water temperature switches.
The detection signals of the controllers 70 each have a built-in CPU, etc.
The control 0-770 controls the operation of the fuel injection valve 9 and the two three-way valves 32 and 41, respectively. In addition, in the figure, 75 directs the blow-by gas to the intake passage 5.
The PCV valve 76, which returns the downstream side of the throttle valve 8, is installed in the middle of the bypass passage 77 that bypasses the throttle valve 8 in the intake passage 5, and is an idle adjustment valve that adjusts the idle speed of the engine by adjusting the amount of bypass intake air. It's a valve.

そして、上記コントローラ70は、上記エア70−セン
サ50及びディストリごユータ52(運転状態検出手段
65)の出力を受け、エンジン1の運転状態に応じた基
本燃料噴射量τ。を、予め記憶するエンジン運転状態に
応じた燃料噴射量マツプから続出し算出し、この読出し
た基本燃料噴射量τ。を燃料噴射弁9から噴射するよう
燃料噴射弁9を作動制御して、エンジン1に供給される
燃料を調量する湛料調量手段79としての機能を有して
いる。
Then, the controller 70 receives the outputs of the air 70-sensor 50 and the distributor 52 (operating state detection means 65), and determines the basic fuel injection amount τ according to the operating state of the engine 1. is successively calculated from a pre-stored fuel injection amount map corresponding to the engine operating state, and this read basic fuel injection amount τ is obtained. It has a function as a filling metering means 79 that adjusts the amount of fuel supplied to the engine 1 by controlling the operation of the fuel injection valve 9 so that the fuel is injected from the fuel injection valve 9.

また、上記コントローラ70は、上記空燃比センサ54
の検出信号(空燃比信号)を受け、該空燃比信号値を目
標空燃比と大小比較して、その大小に応じてフィードバ
ック補正ff1cFs(基準値−〇)を微小母増減して
変更し、このフィードバック補正量CFaでもって燃料
噴射弁9からの燃料噴04吊τを基本燃料噴射量τ。に
基いて下式%式%) C^;蒸発燃料のパージ時に おける補正係数(後述) で演算して増減調整して、エンジン1に供給する混合気
の空燃比を目標空燃比にフィードバック制御するように
した空燃比制御手段80を構成している。また、上記コ
ントローラ70は、空燃比の誤制御を防止するために、
上記フィードバック補正ff1cFsの大きさの上下限
値を+25%(±0゜25)の設定幅内(−25%≦C
FB≦+25%)に制限する機能を有し、フィードバッ
ク補正量c゛FBがこの設定幅を越える場合には、その
値を設定幅内の上限値(+25%)または下限値(−2
5%)に制限するようにしている。
The controller 70 also controls the air-fuel ratio sensor 54.
The detection signal (air-fuel ratio signal) is received, the air-fuel ratio signal value is compared in magnitude with the target air-fuel ratio, and the feedback correction ff1cFs (reference value - 〇) is changed by a small increase or decrease according to the magnitude. The fuel injection amount τ from the fuel injection valve 9 is set as the basic fuel injection amount τ using the feedback correction amount CFa. Based on the following formula (% formula %) C^; Correction coefficient when purging vaporized fuel (described later), the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is feedback-controlled to the target air-fuel ratio by increasing or decreasing it. The air-fuel ratio control means 80 is configured as follows. Further, the controller 70 has the following functions in order to prevent erroneous control of the air-fuel ratio:
The upper and lower limits of the magnitude of the feedback correction ff1cFs are within the setting range of +25% (±0°25) (-25%≦C
If the feedback correction amount c゛FB exceeds this set range, the value is set to the upper limit (+25%) or lower limit (-2) within the set range.
5%).

さらに、上記コントローラ70は、上記フィードバック
制御時において、上記エアフローセンサ50、ディスト
リビュータ52、冷却水温度センサ53、ニュートラル
スイッチ57及びクラッチスイッチ58の各検出信号を
受け、これら検出信号に基いてエンジン1が有負荷時で
エンジン冷却水温が506C以上のエンジン運転状態時
を判別したときに、パージエア導入通路30に大気を導
入するよう、上記パージ用の三方弁32を切換え制御し
て、蒸発燃料をエンジン運転状態に応じてエンジン1の
吸気系にパージするようにしたパージ制御手段82を構
成している。
Further, during the feedback control, the controller 70 receives detection signals from the air flow sensor 50, the distributor 52, the coolant temperature sensor 53, the neutral switch 57, and the clutch switch 58, and controls the engine 1 based on these detection signals. When it is determined that the engine is operating under load and the engine cooling water temperature is 506C or higher, the three-way purge valve 32 is switched and controlled so as to introduce atmospheric air into the purge air introduction passage 30, and the vaporized fuel is used for engine operation. A purge control means 82 is configured to purge the intake system of the engine 1 depending on the state.

次に上記コントローラ70によるフィードバック制御の
基本制御量、つまり燃料噴射弁9からの燃料噴射量の変
更制御を第3図のフローチャートに基いて説明する。ス
タートして、ステップS1で空燃比のフィードバック制
御時か否かを判別するとともに、ステップS2で蒸発燃
料のパージ時か否かを判別し、フィードバック制御時の
YESで且つ蒸発燃料のパージ時のYESの場合には、
ステップS3でフィードバック補正ff1cFsの大き
さが一側の設定値−X%(lx%l <l 25%;)
を越えたか否かを判別し、−X%を越えて大きくなった
CF8<−X%のYES場合には、蒸発燃料のパージに
より空燃比が大きくリッチになったと判断して、ステッ
プS4で補正係数CAを基準値のパ○”から所定値だけ
減算して、基本燃料噴射量で。を所定量だけ減量すると
ともに、フィードバック制afJcFsの値を“′O″
値に戻して、ステップS6に進む。
Next, the basic control amount of the feedback control by the controller 70, that is, the change control of the fuel injection amount from the fuel injection valve 9 will be explained based on the flowchart of FIG. After starting, in step S1, it is determined whether the air-fuel ratio is being controlled by feedback control, and in step S2, it is determined whether or not the evaporated fuel is being purged. In Case of,
In step S3, the magnitude of the feedback correction ff1cFs is set to one side - X% (lx%l <l 25%;)
If CF8 exceeds -X% and is larger than -X% (YES), it is determined that the air-fuel ratio has become rich due to vaporized fuel purge, and correction is made in step S4. By subtracting the coefficient CA by a predetermined value from the reference value P○'', the basic fuel injection amount is reduced by a predetermined amount, and the value of the feedback control afJcFs is reduced to "'O".
The value is returned to the original value and the process proceeds to step S6.

そして、このように基本燃料噴射量τ。を減量したのち
は、フィードバック補正ff1cFaが“0″値である
ので、上記ステップS3での判定がN。
And, like this, the basic fuel injection amount τ. After reducing the amount, the feedback correction ff1cFa has a value of "0", so the determination in step S3 is N.

になってステップS5に進み、該ステップS5で、蒸発
燃料のパージ童が時間経過に応じて減量するのに対応し
てフィードバック補正量CF eが大きくなる状況を把
握すべく、フィードバック補正量CFEIが+側の所定
値X%(X%〈25%)を越えたか否かを判別し、CF
、B≦+X%のNoの場合には、基本燃料噴射量τ。を
減量したまま、ステップS6でフィードバック補正ff
1cFeでもって混合気の空燃比を目標空燃比に制σp
する一方:フィードバック補正量CFBがその設定値(
+X%)を越えたCF、>+X%のYESの場合には、
目標空燃比に対する空燃比のズレ吊が大きくなったと判
断して、ステップS7で上記補正係数CAをM単鎖の“
On値に戻して、基本燃料噴射量τ。
In step S5, the feedback correction amount CFEI is changed in order to grasp the situation in which the feedback correction amount CF e increases as the amount of vaporized fuel purge decreases over time. Determine whether or not the predetermined value X% (X% <25%) on the + side has been exceeded, and CF
, in the case of No, B≦+X%, the basic fuel injection amount τ. While reducing the amount, the feedback correction ff is performed in step S6.
Control the air-fuel ratio of the mixture to the target air-fuel ratio with 1 cFe σp
On the other hand: The feedback correction amount CFB is set to its setting value (
CF exceeding +X%), if >+X% YES,
It is determined that the deviation of the air-fuel ratio from the target air-fuel ratio has become large, and in step S7 the correction coefficient CA is adjusted to
Return to the On value and set the basic fuel injection amount τ.

を元に戻したのち、ステップS6に進んで混合気の空燃
比をフィードバック補正mcFaでもって目標空燃比に
制御する。
After returning to the original value, the process proceeds to step S6, where the air-fuel ratio of the air-fuel mixture is controlled to the target air-fuel ratio using the feedback correction mcFa.

そして、上記ステップS2で蒸発燃料のパージが終了し
たNOの場合、またはステップS1でエンジン運転状態
の変化に伴い空燃比のフィードバック制御が行われなく
なったNOの場合には、ステップS8で次のフィードバ
ック制御に備えるべく、現在のフィードバック補正fJ
cFeの値をキャンセルして基準値の“0″値に戻して
、終了する。
Then, in the case of NO in which the purge of vaporized fuel has been completed in step S2, or in the case of NO in which feedback control of the air-fuel ratio is no longer performed due to a change in the engine operating state in step S1, the next feedback control is performed in step S8. In preparation for control, the current feedback correction fJ
The value of cFe is canceled and returned to the reference value "0", and the process ends.

よって、上記第2図のフローにおいて、ステップS2よ
り、M元燃料のパージ時を検出するパージ時検出手段8
4を構成しているとともに、ステップS* 、84によ
り、上記パージ時検出手段84の出力を受け、蒸発燃料
のパージ時に、上記空燃比制御手段80によるフィード
バック補正ff1cF日の大きさが空燃比のリッチ側へ
の移行に伴いその設定値(−X%)を越えたときには、
補正係数CAを負値にして、上記燃料調量手段79の基
本料tIl吊(基本燃料噴射量τ。)を所定量だけ減量
するよう補正するようにした基本制御11補正手段85
を構成している。
Therefore, in the flow shown in FIG. 2, from step S2, the purge time detection means 8 detects the time when the M source fuel is purged.
In addition, in step S*, 84, the output of the purge detection means 84 is received, and the magnitude of the feedback correction ff1cF day by the air-fuel ratio control means 80 is determined by the air-fuel ratio when purging the vaporized fuel. When the set value (-X%) is exceeded due to a shift to the rich side,
Basic control 11 correction means 85 which sets the correction coefficient CA to a negative value and corrects the basic charge tIl (basic fuel injection amount τ) of the fuel metering means 79 by a predetermined amount.
It consists of

したがって、上記実施例においては、当初、エンジン運
転状態に応じた燃料調量手段79の基本燃料噴射量τ。
Therefore, in the embodiment described above, the basic fuel injection amount τ of the fuel metering means 79 initially corresponds to the engine operating state.

でもってエンジン1に供給された混合気の空燃比が空燃
比センサ54で検出されると、その空燃比信号に基いて
フィードバック補正ff1cFeが大小変更されて、こ
のフィードバック補正ff1cFaに応じて燃料噴射弁
9からの燃料噴射量τが増減調整されて、エンジン1に
供給する混合気の空燃比が目標空燃比にフィードバック
制御される。
When the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is detected by the air-fuel ratio sensor 54, the feedback correction ff1cFe is changed in size based on the air-fuel ratio signal, and the fuel injection valve is adjusted according to the feedback correction ff1cFa. The fuel injection amount τ from 9 is adjusted to increase or decrease, and the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is feedback-controlled to the target air-fuel ratio.

また、以上のフィードバック制御時において、特定のエ
ンジン運転状態(つまり有負荷時でエンジン冷却水温が
50’ C以上の状態)では、パージ制御手段82によ
りパージ手段35が作動制御されて、キャニスタ27内
の蒸発燃料が蒸発燃料供給通路28を介して吸気通路5
のスロットル弁8下流側にパージされて、蒸発燃料の大
気への拡散が防止される。
Further, during the feedback control described above, in a specific engine operating state (that is, a state where the engine cooling water temperature is 50'C or higher under load), the purge means 35 is operated and controlled by the purge control means 82, and the inside of the canister 27 is controlled. The evaporated fuel is supplied to the intake passage 5 via the evaporated fuel supply passage 28.
The evaporated fuel is purged downstream of the throttle valve 8 to prevent the evaporated fuel from diffusing into the atmosphere.

その際、特に低吸気量時には、蒸発燃料のパージの空燃
比に対する影響が大きくて、空燃比はリッチ側に大きく
変動するが、この時には、フィードバック補正量CFB
が設定値(−X%)にまで大きくなった時点で、基本燃
料噴射量τ。(基本11i17 ?nnクン基本制御量
補正手段85で補正係数CAにより減量調整されるので
、空燃比に素早く目標空燃比近傍に近づいたのち、フィ
ードバック補正ff1cFsの大小変更によりフィード
バック制御されて、精度良く目標空燃比に収束する。こ
の場合、空燃比の目標値への接近は、補正係数C^によ
る基本燃料噴射量で。の減ffi調整により行われるの
で、フィードバック補正ff1cFeは、第4図(イ)
に示すように、−亘設定値(−X%)に至って燃料噴射
量τか減量されると、基準値の″0”値に戻されたのち
、この“′○”値近傍を上下して、空燃比が目標値に収
束する。その後、フィードバック補正量GFBは、同図
(ロ)に示す如く、蒸発燃料のパージ量の減量変化に伴
い+側に大きくなって所定値(+X%)に至ると、補正
係数CAが基準値の0″値に戻って基本燃料噴射量τ。
In this case, especially when the intake air amount is low, the effect of purging the vaporized fuel on the air-fuel ratio is large, and the air-fuel ratio fluctuates greatly toward the rich side, but at this time, the feedback correction amount CFB
When the amount of fuel increases to the set value (-X%), the basic fuel injection amount τ. (Basic 11i17 ?nn Since the basic control amount correction means 85 makes a reduction adjustment using the correction coefficient CA, the air-fuel ratio quickly approaches the target air-fuel ratio, and then feedback control is performed by changing the size of the feedback correction ff1cFs, with high accuracy. The air-fuel ratio converges to the target air-fuel ratio.In this case, the air-fuel ratio approaches the target value by adjusting the reduction ffi of the basic fuel injection amount using the correction coefficient C^, so the feedback correction ff1cFe is )
As shown in , when the fuel injection amount τ is reduced to reach the -Wata setting value (-X%), it is returned to the standard value of "0" and then increases and decreases around this "'○" value. , the air-fuel ratio converges to the target value. Thereafter, as shown in the figure (b), the feedback correction amount GFB increases to the + side as the purge amount of vaporized fuel decreases and reaches a predetermined value (+X%), when the correction coefficient CA becomes smaller than the reference value. The basic fuel injection amount τ returns to the 0″ value.

が増量するのに伴い、再び減少して“′0値近傍で上下
に変化して、空燃比が目標空燃比に収束する。
As the amount increases, the air-fuel ratio decreases again and changes up and down near the '0 value, and the air-fuel ratio converges to the target air-fuel ratio.

その結果、蒸発燃料のパージが終了した時には、フィー
ドバック補正ff1cFsは“0値付近にあって、空燃
比のフィードバック制御のみに状況が変化しても、空燃
比は短時間で目標空燃比にフィードバック制御されるこ
とになる。よって、蒸発燃料のパージ時には空燃比を目
標空燃比に良好に制御できるとともに、このパージ終了
後も空燃比のズレを生じることなく、空燃比を目標空燃
比に短時間で良好に収束させることができ、空燃比の制
御性の向上を図ることができる。
As a result, when the purge of evaporated fuel is completed, the feedback correction ff1cFs is near the 0 value, and even if the situation changes only to feedback control of the air-fuel ratio, the air-fuel ratio is feedback-controlled to the target air-fuel ratio in a short time. Therefore, when purging evaporated fuel, the air-fuel ratio can be well controlled to the target air-fuel ratio, and even after this purge is finished, the air-fuel ratio can be brought to the target air-fuel ratio in a short time without causing any deviation in the air-fuel ratio. Good convergence can be achieved, and the controllability of the air-fuel ratio can be improved.

尚、上記実施例では、燃料噴射弁9を備えたエンジンに
対して適用したが、本発明は気化器を備えたエンジンに
対しても同様に適用できるのは勿論である。
In the above embodiment, the present invention is applied to an engine equipped with a fuel injection valve 9, but it goes without saying that the present invention can be similarly applied to an engine equipped with a carburetor.

(発明の効果) 以上説明したように、本発明によれば、空燃比のフィー
ドバック制御中に同時に蒸発燃料のパージを行う場合に
は、フィードバック補正量が設定値を越えた時点で、エ
ンジンの運転状態に応じた基本制御I吊を補正して、フ
ィードバック補正量の小さい範囲で空燃比を目標空燃比
に制御したので、蒸発燃料のパージ時での空燃比を目標
値に良好に制御できるとともに、このパージ時から非パ
ージ領域に移行して空燃比のフィードバック制御のみと
なる場合にも、空燃比のズレを生じることなく、空燃比
を目標空燃比に短時間で良好に収束させることができる
(Effects of the Invention) As explained above, according to the present invention, when purge of vaporized fuel is performed simultaneously during feedback control of the air-fuel ratio, when the feedback correction amount exceeds the set value, the engine operation is started. Since the basic control I suspension is corrected according to the state and the air-fuel ratio is controlled to the target air-fuel ratio within a small feedback correction amount range, the air-fuel ratio can be well controlled to the target value when purging evaporated fuel, and Even when the air-fuel ratio shifts from the purge to the non-purge region and only feedback control of the air-fuel ratio is performed, the air-fuel ratio can be satisfactorily converged to the target air-fuel ratio in a short time without causing any deviation in the air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の組成を示すブロック図である。 第2図ないし第4図は本光明の実施例を示し、第2図は
全体構成図、第3図はコントローラの作動を示すフロー
チャート図、第4図(イ)および(ロ)は作動説明図で
ある。 7・・・排気通路、9・・・燃料噴射弁、15・・・燃
料タンク、27・・・キャニスタ、28・・・蒸発燃料
供給通路、29・・・パージ制御弁、30・・・パージ
エア導入通路、32・・・三方弁、35・・・パージ手
段、54・・・空燃比センサ、63・・・水温スイッチ
、65・・・運転状態検出手段、70・・・コントロー
ラ、79・・・燃料調量手段、80・・・空燃比制御手
段、82・・・パージ制御手段、83・・・フィードバ
ック制御時検出手段、84・・・パージ時検出手段、8
5・・・基本制御量補正手段。
FIG. 1 is a block diagram showing the composition of the present invention. Figures 2 to 4 show embodiments of this light, Figure 2 is an overall configuration diagram, Figure 3 is a flowchart diagram showing the operation of the controller, and Figures 4 (a) and (b) are operation explanatory diagrams. It is. 7... Exhaust passage, 9... Fuel injection valve, 15... Fuel tank, 27... Canister, 28... Evaporated fuel supply passage, 29... Purge control valve, 30... Purge air Introduction passage, 32... Three-way valve, 35... Purge means, 54... Air-fuel ratio sensor, 63... Water temperature switch, 65... Operating state detection means, 70... Controller, 79... - Fuel metering means, 80... Air-fuel ratio control means, 82... Purge control means, 83... Feedback control detection means, 84... Purge detection means, 8
5...Basic control amount correction means.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの運転状態を検出する運転状態検出手段
と、該運転状態検出手段の出力を受け、エンジン運転状
態に応じた基本制御量に基いて上記エンジンに供給され
る燃料を調量する燃料調量手段と、上記エンジンに供給
された混合気の空燃比を検出する空燃比センサと、該空
燃比センサの出力に応じた補正量でエンジンに供給する
混合気の空燃比を目標値にフィードバック制御する空燃
比制御手段とを備えるとともに、蒸発燃料をエンジンの
吸気系にパージするパージ手段と、上記運転状態検出手
段の出力を受け、エンジン運転状態に応じて蒸発燃料を
エンジンの吸気系にパージするよう上記パージ手段を制
御するパージ制御手段と、蒸発燃料のパージ時を検出す
るパージ時検出手段と、該パージ時検出手段の出力を受
け、蒸発燃料のパージ時に、上記空燃比制御手段による
フィードバック制御の補正量が設定値を越えたとき、上
記燃料調量手段の基本制御量を補正する基本制御量補正
手段とを備えたことを特徴とするエンジンの空燃比制御
装置。
(1) Operating state detecting means for detecting the operating state of the engine, and fuel for receiving the output of the operating state detecting means and metering the fuel to be supplied to the engine based on a basic control amount according to the engine operating state. a metering means, an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture supplied to the engine, and feedback of the air-fuel ratio of the air-fuel mixture supplied to the engine to a target value with a correction amount according to the output of the air-fuel ratio sensor. and purge means for purging the evaporated fuel into the intake system of the engine, and receiving the output of the operating state detection means to purge the evaporated fuel to the intake system of the engine according to the engine operating state. a purge control means for controlling the purge means so as to purge the fuel vapor; a purge time detection means for detecting when the evaporated fuel is purged; and a purge time detection means that receives the output of the purge time detection means and provides feedback by the air-fuel ratio control means when the evaporated fuel is purged. An air-fuel ratio control device for an engine, comprising basic control amount correction means for correcting the basic control amount of the fuel metering means when the control correction amount exceeds a set value.
JP20215886A 1986-08-28 1986-08-28 Air-fuel ratio controller for engine Expired - Fee Related JPH0726575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20215886A JPH0726575B2 (en) 1986-08-28 1986-08-28 Air-fuel ratio controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20215886A JPH0726575B2 (en) 1986-08-28 1986-08-28 Air-fuel ratio controller for engine

Publications (2)

Publication Number Publication Date
JPS6357841A true JPS6357841A (en) 1988-03-12
JPH0726575B2 JPH0726575B2 (en) 1995-03-29

Family

ID=16452917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20215886A Expired - Fee Related JPH0726575B2 (en) 1986-08-28 1986-08-28 Air-fuel ratio controller for engine

Country Status (1)

Country Link
JP (1) JPH0726575B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245441A (en) * 1989-03-20 1990-10-01 Toyota Motor Corp Internal combustion engine
US5143040A (en) * 1990-08-08 1992-09-01 Toyota Jidosha Kabushiki Kaisha Evaporative fuel control apparatus of internal combustion engine
US5216997A (en) * 1991-08-23 1993-06-08 Toyota Jidosha Kabushiki Kaisha Fuel supply control device of an engine
US5469833A (en) * 1993-02-01 1995-11-28 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
JP2007057002A (en) * 2005-08-24 2007-03-08 Sekisui Chem Co Ltd Constant power expansion device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245441A (en) * 1989-03-20 1990-10-01 Toyota Motor Corp Internal combustion engine
US5143040A (en) * 1990-08-08 1992-09-01 Toyota Jidosha Kabushiki Kaisha Evaporative fuel control apparatus of internal combustion engine
US5216997A (en) * 1991-08-23 1993-06-08 Toyota Jidosha Kabushiki Kaisha Fuel supply control device of an engine
US5469833A (en) * 1993-02-01 1995-11-28 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5546922A (en) * 1993-02-01 1996-08-20 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5611320A (en) * 1993-02-01 1997-03-18 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5619973A (en) * 1993-02-01 1997-04-15 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5634452A (en) * 1993-02-01 1997-06-03 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5638795A (en) * 1993-02-01 1997-06-17 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
JP2007057002A (en) * 2005-08-24 2007-03-08 Sekisui Chem Co Ltd Constant power expansion device

Also Published As

Publication number Publication date
JPH0726575B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US9759153B2 (en) Control apparatus for internal combustion engine
US6478015B2 (en) Vaporized fuel treatment apparatus of internal combustion engine
JP3194670B2 (en) Electronic control unit for internal combustion engine
JPH08254142A (en) Fuel vapor processing device for engine
JPS6357841A (en) Air-fuel ratio controller for engine
JPS62206262A (en) Electronic air-fuel ratio controlling method for internal combustion engine
JPS6345442A (en) Air-fuel ratio controller for engine
JP3487163B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3909621B2 (en) Engine speed control device
US6273063B1 (en) Apparatus and method for controlling idle rotation speed of an internal combustion engine
JP2534995B2 (en) Air-fuel ratio controller for engine with automatic transmission
JP2621032B2 (en) Fuel injection control device
JPH0437244Y2 (en)
JPH06611Y2 (en) Idle rotation speed controller for alcohol internal combustion engine
JP3564945B2 (en) Fuel supply control device for internal combustion engine
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JPH0791295A (en) Air-fuel ratio controller of engine
JP2694272B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6179833A (en) Intake-air device in engine
JPH04166633A (en) Air-fuel ratio control method for internal combustion engine
JPH0533707A (en) Air-fuel ratio control device for internal combustion engine
JP2007285121A (en) Fuel selection control device of bi-fuel type engine
JPH0436037A (en) Idle speed controller of engine
JPH0988737A (en) Evaporated fuel treatment device of engine
JPH06257491A (en) Air/fuel ratio control device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees