JPH0533707A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH0533707A
JPH0533707A JP21468191A JP21468191A JPH0533707A JP H0533707 A JPH0533707 A JP H0533707A JP 21468191 A JP21468191 A JP 21468191A JP 21468191 A JP21468191 A JP 21468191A JP H0533707 A JPH0533707 A JP H0533707A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21468191A
Other languages
Japanese (ja)
Inventor
Katsuhiko Toyoda
克彦 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP21468191A priority Critical patent/JPH0533707A/en
Publication of JPH0533707A publication Critical patent/JPH0533707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance the exhaust purification performance, the output, and the operation performance by providing an exhaust sensor to a branch exhaust passage communicated with a corresponding air cylinder, and adjusting the quantity of fuel and/or air for each air cylinder by use of a detection signal inputted from each corresponding exhaust sensor. CONSTITUTION:When feedback control of the air-fuel ratio is started, the air-fuel correction quantity is corrected, as a learned value, with respect to each air cylinder, and this corrected value is stored in a storage region for each corresponding air cylinder to renew the learned value. The conditions for executing the renewal of this learned value are two in number, one being that air-fuel ratio feedback control is being made, the other being that a load, which is other than the acceleration/deceleration of an internal combustion engine 2 and which is constant, continues for a specified, or a larger than the specified, time length. A control section 64 operates under control a first to a fourth injection valves 30-1...30-4 provided with respect to a corresponding first to a corresponding fourth air cylinders 18-1...18-4 in response to the detection signals inputted from a first to a fourth oxygen sensors 82-1...82-4 respectively provided to a first to a fourth branch exhaust passages 6-1 to 6-4 communicated with a first to a fourth air cylinders 18-1...18-4 of the engine 2, thereby controlling the air-fuel ratio of an air-fuel mixture being fed to the first to fourth air cylinders 18-1...18-4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関の空燃比制御
装置に係り、特に内燃機関の各気筒に供給される混合気
の空燃比を均等化し得て、これにより、排気浄化性能や
出力性能及び運転性能の向上を果たし得る内燃機関の空
燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly, it can equalize the air-fuel ratio of the air-fuel mixture supplied to each cylinder of the internal combustion engine. The present invention also relates to an air-fuel ratio control device for an internal combustion engine, which can improve driving performance.

【0002】[0002]

【従来の技術】車両に搭載される内燃機関には、空燃比
制御装置を設けたものがある。空燃比制御装置は、排気
通路に排気成分値を検出する排気センサを設け、この排
気ガスの検出する排気成分値に基づき燃料量および/ま
たは空気量を調整して混合気の空燃比が目標値となるよ
うフィードバック制御することにより、触媒体による排
気浄化性能や内燃機関の出力性能及び運転性能の向上等
を図っている。
2. Description of the Related Art Some internal combustion engines mounted on vehicles have an air-fuel ratio control device. The air-fuel ratio control device is provided with an exhaust sensor for detecting the exhaust gas component value in the exhaust passage, and the fuel amount and / or the air amount is adjusted based on the exhaust gas component value detected by the exhaust gas to adjust the air-fuel ratio of the air-fuel mixture to a target value. The feedback control is performed so that the exhaust purification performance by the catalyst body and the output performance and operation performance of the internal combustion engine are improved.

【0003】このような内燃機関の空燃比制御装置とし
ては、特開昭63−189647号公報に開示される如
く、分岐排気通路の集合する排気集合部よりも下流側の
排気通路に設けた排気センサの出力に基づき決定される
フィードバックの補正係数と機関回転数や吸入空気量等
に基づき決定される基本噴射量とから算出される噴射信
号を気筒毎に順次に一定量だけずらし、これによって生
じるフィードバックの補正係数の変化量に基づき各気筒
毎の燃料噴射弁の実際の噴射比率を算出し、この噴射比
率に補正係数を掛けて気筒毎の噴射信号を補正すること
により、各気筒毎の空燃比のばらつきを補償して同一の
空燃比に制御するものがある。
As disclosed in Japanese Patent Laid-Open No. 63-189647, such an air-fuel ratio control device for an internal combustion engine has an exhaust gas provided in an exhaust passage downstream of an exhaust collecting portion where branch exhaust passages gather. The injection signal calculated from the feedback correction coefficient determined based on the output of the sensor and the basic injection amount determined based on the engine speed, the intake air amount, etc. is sequentially shifted by a fixed amount for each cylinder, and this is caused The actual injection ratio of the fuel injection valve for each cylinder is calculated based on the amount of change in the feedback correction coefficient, and this injection ratio is multiplied by the correction coefficient to correct the injection signal for each cylinder, thereby There is one that compensates for variations in the fuel ratio and controls the same air-fuel ratio.

【0004】また、各気筒毎に噴射供給される燃料を制
御する燃料噴射制御装置としては、特開昭60−204
942号公報に開示される如く、各気筒毎に設けた燃料
噴射弁をシーケンシャル噴射と同時噴射とに切換えて併
用するものにおいて、燃料噴射動作がシーケンシャル噴
射から同時噴射に切換わる過渡時に、各燃料噴射弁の噴
射量及び噴射時期を補正することにより、シーケンシャ
ル噴射から同時噴射への移行時の各気筒への燃料噴射量
を等しくして、内燃機関の運転状態にショックが生じる
ことを防止したものがある。
A fuel injection control device for controlling the fuel injected and supplied to each cylinder is disclosed in Japanese Patent Laid-Open No. 60-204.
As disclosed in Japanese Patent No. 942, in which a fuel injection valve provided for each cylinder is switched between sequential injection and simultaneous injection and used together, each fuel is injected at the transition of fuel injection operation from sequential injection to simultaneous injection. By correcting the injection amount and injection timing of the injection valve, the fuel injection amount to each cylinder at the time of transition from sequential injection to simultaneous injection is made equal to prevent a shock from occurring in the operating state of the internal combustion engine. There is.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の空燃
比制御装置における空燃比のフィードバック制御は、気
化器の燃料量をデューティ制御される電磁弁により調整
し、または、吸気通路により吸入される空気量をデュー
ティ制御される電磁弁により調整し、あるいは、燃料噴
射弁の噴射する燃料量を調整する等により行っている。
In the air-fuel ratio feedback control in the conventional air-fuel ratio control device, the fuel amount of the carburetor is adjusted by a duty-controlled solenoid valve or the air sucked in by the intake passage. The quantity is adjusted by a duty-controlled solenoid valve, or the quantity of fuel injected by the fuel injection valve is adjusted.

【0006】ところが、吸気マニホルドの吸気集合部よ
りも上流側に設けた気化器の燃料量の調整や吸気マニホ
ルドの吸気集合部よりも上流側に設けた単一の燃料噴射
弁の燃料量の調整により空燃比をフィードバック制御す
る空燃比制御装置においては、吸気マニホルド等の影響
により各気筒に供給される混合気の空燃比にばらつきを
生じ、各気筒毎の空燃比が不均等化する問題がある。
However, adjustment of the fuel amount of the carburetor provided upstream of the intake manifold of the intake manifold and adjustment of the fuel amount of a single fuel injection valve provided upstream of the intake manifold of the intake manifold. In the air-fuel ratio control device that feedback-controls the air-fuel ratio, the air-fuel ratio of the air-fuel mixture supplied to each cylinder varies due to the influence of the intake manifold and the like, and there is a problem that the air-fuel ratio of each cylinder becomes uneven. ..

【0007】また、各気筒毎に設けた燃料噴射弁の燃料
量の調整により空燃比をフィードバック制御する空燃比
制御装置においては、個々の燃料噴射弁の生産上のばら
つきの影響により各気筒に供給される混合気の空燃比に
ばらつきを生じ、各気筒毎の空燃比が不均等化する問題
がある。
Further, in the air-fuel ratio control device which feedback-controls the air-fuel ratio by adjusting the fuel amount of the fuel injection valve provided for each cylinder, the fuel is supplied to each cylinder due to the influence of the production variation of each fuel injection valve. There is a problem that the air-fuel ratio of the air-fuel mixture to be generated varies and the air-fuel ratio of each cylinder becomes uneven.

【0008】このため、各機気筒に供給される混合気の
空燃比の不均等化に起因して、排気通路に設けた触媒体
に流入する排気の空燃比が目標値たる理論空燃比からず
れ、触媒体の排気浄化性能を低下させて排気有害成分値
を悪化させる不都合がある。また、各機気筒に供給され
る混合気の空燃比の不均等化は、ノッキングを惹起する
おそれがあり、混合気の空燃比が薄化する気筒により出
力性能の低下を来し、運転性能の低下を来す不都合があ
る。
Therefore, the air-fuel ratio of the exhaust gas flowing into the catalyst body provided in the exhaust passage deviates from the target theoretical air-fuel ratio due to the non-uniformity of the air-fuel ratio of the air-fuel mixture supplied to the respective machine cylinders. However, there is an inconvenience that the exhaust purification performance of the catalyst body is deteriorated and the exhaust harmful component value is deteriorated. Further, the non-uniformity of the air-fuel ratio of the air-fuel mixture supplied to each machine cylinder may cause knocking, resulting in a decrease in output performance due to the cylinder having a thin air-fuel ratio of the air-fuel mixture, and There is the inconvenience of causing a decline.

【0009】[0009]

【課題を解決するための手段】そこで、この発明は、上
述不都合を除去するために、内燃機関の排気通路に設け
た排気センサの検出する排気成分値に基づき燃料量およ
び/または空気量を調整して混合気の空燃比が目標値と
なるようフィードバック制御する内燃機関の空燃比制御
装置において、前記内燃機関の各気筒に連通する各分岐
排気通路に夫々前記排気センサを設け、これら各排気セ
ンサから入力する検出信号により前記内燃機関の各気筒
毎の燃料量および/または空気量を調整して各気筒に供
給される混合気の空燃比を均等化すべくフィードバック
制御する制御手段を設けたことを特徴とする。
Therefore, according to the present invention, in order to eliminate the above-mentioned inconvenience, the fuel amount and / or the air amount is adjusted based on the exhaust gas component value detected by the exhaust gas sensor provided in the exhaust passage of the internal combustion engine. Then, in the air-fuel ratio control device of the internal combustion engine for performing feedback control so that the air-fuel ratio of the air-fuel mixture becomes the target value, the exhaust sensors are provided in the respective branch exhaust passages communicating with the respective cylinders of the internal combustion engine, and the exhaust sensors are provided. A control means for adjusting the fuel amount and / or the air amount for each cylinder of the internal combustion engine by a detection signal input from the controller to perform feedback control to equalize the air-fuel ratio of the air-fuel mixture supplied to each cylinder is provided. Characterize.

【0010】[0010]

【作用】この発明の構成によれば、制御手段によって、
内燃機関の各気筒に連通する各分岐排気通路に夫々設け
た各排気センサから入力する検出信号により内燃機関の
各気筒毎の燃料量および/または空気量を調整して、各
気筒に供給される混合気の空燃比を均等化すべくフィー
ドバック制御することにより、吸気マニホルド等の影響
や個々の燃料噴射弁の生産上のばらつきの影響による各
気筒への混合気の空燃比のばらつきを防止し得て、各気
筒毎の空燃比を均等化することができる。
According to the structure of the present invention, the control means causes
The fuel amount and / or the air amount for each cylinder of the internal combustion engine is adjusted by a detection signal input from each exhaust sensor provided in each branch exhaust passage communicating with each cylinder of the internal combustion engine, and the fuel is supplied to each cylinder. By performing feedback control to equalize the air-fuel ratio of the air-fuel mixture, it is possible to prevent variations in the air-fuel ratio of the air-fuel mixture in each cylinder due to the influence of intake manifolds and the variation in production of individual fuel injection valves. It is possible to equalize the air-fuel ratio for each cylinder.

【0011】[0011]

【実施例】以下図面に基づいてこの発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0012】図1〜図6はこの発明の実施例を示すもの
である。図6において、2は内燃機関、4は吸気通路、
6は排気通路である。
1 to 6 show an embodiment of the present invention. In FIG. 6, 2 is an internal combustion engine, 4 is an intake passage,
6 is an exhaust passage.

【0013】内燃機関2の吸気通路4は、上流側から順
次に接続されたエアクリーナ8とエアフローメータ10
とスロットルボディ12と吸気マニホルド14とにより
形成される。前記スロットルボディ12内の吸気通路4
には、吸気絞り弁16を備えている。また、前記吸気マ
ニホルド14内の吸気通路4は、図1に示す如く、吸気
集合部たるサージタンク部4−Aとこのサージタンク部
4−Aから夫々分岐される第1〜第4分岐吸気通路部4
−1〜4−4とから構成される。第1〜第4分岐吸気通
路部4−1〜4−4は、夫々第1〜第4気筒18−1〜
18−4に夫々連通されている。
The intake passage 4 of the internal combustion engine 2 has an air cleaner 8 and an air flow meter 10 which are sequentially connected from the upstream side.
It is formed by the throttle body 12 and the intake manifold 14. Intake passage 4 in the throttle body 12
Is equipped with an intake throttle valve 16. Further, as shown in FIG. 1, the intake passage 4 in the intake manifold 14 includes a surge tank portion 4-A which is an intake collecting portion and first to fourth branch intake passages branched from the surge tank portion 4-A. Part 4
-1 to 4-4. The first to fourth branch intake passage portions 4-1 to 4-4 respectively include the first to fourth cylinders 18-1 to 18-1.
18-4, respectively.

【0014】また、内燃機関2の排気通路6は、上流側
から順次に接続された排気マニホルド20と上流側排気
管22と触媒コンバータ24と下流側排気管26とによ
り形成される。排気マニホルド20内の排気通路6は、
第1〜第4気筒18−1〜18−4に夫々連通される第
1〜第4分岐排気通路部6−1〜6−4とこれら第1〜
第4分岐排気通路部6−1〜6−4の集合される排気集
合部6−Aとから構成される。また、触媒コンバータ2
4内の排気通路6には、触媒体28を設けている。
Further, the exhaust passage 6 of the internal combustion engine 2 is formed by an exhaust manifold 20, an upstream exhaust pipe 22, a catalytic converter 24 and a downstream exhaust pipe 26 which are sequentially connected from the upstream side. The exhaust passage 6 in the exhaust manifold 20 is
First to fourth branch exhaust passage portions 6-1 to 6-4, which are respectively communicated with the first to fourth cylinders 18-1 to 18-4, and these first to first
The exhaust gas collecting section 6-A is formed by collecting the fourth branch exhaust passage sections 6-1 to 6-4. Also, the catalytic converter 2
A catalyst body 28 is provided in the exhaust passage 6 inside 4.

【0015】前記内燃機関2には、第1〜第4気筒18
−1〜18−4毎に第1〜第4燃料噴射弁30−1〜3
0−4が装着されている。第1〜第4燃料噴射弁30−
1〜30−4は、燃料分配通路32を介して燃料供給通
路34により燃料タンク36に連通されている。燃料タ
ンク36内には、燃料ポンプ38が設けられている。燃
料ポンプ38の圧送する燃料は、燃料フィルタ40によ
り塵埃を除去されて燃料供給通路34により燃料分配通
路32に供給され、燃料分配通路32により第1〜第4
燃料噴射弁30−1〜30−4に分配供給される。
The internal combustion engine 2 includes first to fourth cylinders 18
First to fourth fuel injection valves 30-1 to 30-3 for each of -1 to 18-4
0-4 is attached. 1st-4th fuel injection valve 30-
1 to 30-4 are connected to a fuel tank 36 by a fuel supply passage 34 via a fuel distribution passage 32. A fuel pump 38 is provided in the fuel tank 36. The fuel to be pumped by the fuel pump 38 has its dust removed by the fuel filter 40 and is supplied to the fuel distribution passage 32 by the fuel supply passage 34.
It is distributed and supplied to the fuel injection valves 30-1 to 30-4.

【0016】前記燃料分配通路32には、燃料の圧力を
調整する燃料圧力調整部42が設けられている。燃料圧
力調整部42は、吸気通路4に連通する導圧通路44か
ら導入される吸気圧により燃料圧力を一定値に調整し、
余剰の燃料を燃料戻り通路46により燃料タンク36に
戻す。
The fuel distribution passage 32 is provided with a fuel pressure adjusting section 42 for adjusting the fuel pressure. The fuel pressure adjusting unit 42 adjusts the fuel pressure to a constant value by the intake pressure introduced from the pressure guiding passage 44 communicating with the intake passage 4,
Excess fuel is returned to the fuel tank 36 through the fuel return passage 46.

【0017】前記燃料タンク36は、スロットルボディ
12の吸気通路4に蒸発燃料用通路48により連通して
設け、この蒸発燃料用通路48の途中に燃料タンク36
側から順次に2方向弁50とキャニスタ52とを介設し
ている。また、前記スロットルボディ12の吸気絞り弁
16を迂回して吸気通路4を連通するバイパス通路54
を設け、このバイパス通路54の途中にアイドル空気量
制御弁56を設けている。アイドル空気量制御弁56
は、始動時や高温時及び電気負荷の増大等によりアイド
ル回転数の調整が必要な際に、バイパス通路54を開閉
することにより空気量を増減させてアイドル回転数を安
定させるものである。なお、符号58はエアレギュレー
タ、符号60はパワーステアリングスイッチ、符号62
はパワーステアリング用空気量制御弁である。
The fuel tank 36 is provided in communication with the intake passage 4 of the throttle body 12 by a vaporized fuel passage 48, and the fuel tank 36 is provided in the middle of the vaporized fuel passage 48.
A two-way valve 50 and a canister 52 are sequentially provided from the side. Further, a bypass passage 54 that bypasses the intake throttle valve 16 of the throttle body 12 and communicates with the intake passage 4 is provided.
And an idle air amount control valve 56 is provided in the middle of the bypass passage 54. Idle air amount control valve 56
Is for stabilizing the idle rotation speed by opening and closing the bypass passage 54 to increase or decrease the air amount when the idle rotation speed needs to be adjusted at the time of start-up, high temperature, or increase in electric load. Reference numeral 58 is an air regulator, reference numeral 60 is a power steering switch, reference numeral 62.
Is an air amount control valve for power steering.

【0018】なお、図6においては、第1分岐吸気通路
部4−1、第1気筒18−1及び第1分岐排気通路部6
−1のみを図示している。
Incidentally, in FIG. 6, the first branch intake passage section 4-1, the first cylinder 18-1, and the first branch exhaust passage section 6 are provided.
Only -1 is shown.

【0019】前記エアフローメータ10、第1〜第4燃
料噴射弁30−1〜30−4、アイドル空気量制御弁5
6、パワーステアリング用空気量制御弁62は、制御手
段たる制御部64に接続されている。制御部64には、
クランク角センサ66と、ディストリビュータ68と、
吸気絞り弁16の開度センサ70と、ノックセンサ72
と、水温センサ74と、車速センサ76と、が夫々接続
されている。なお、ディストリビュータ68は、イグニ
ションコイル78及び点火用パワーユニット80を介し
て制御部64に接続されている。
The air flow meter 10, the first to fourth fuel injection valves 30-1 to 30-4, and the idle air amount control valve 5
6. The power steering air amount control valve 62 is connected to a control unit 64 which is a control means. The control unit 64 includes
A crank angle sensor 66, a distributor 68,
An opening sensor 70 for the intake throttle valve 16 and a knock sensor 72
, A water temperature sensor 74, and a vehicle speed sensor 76 are connected to each other. The distributor 68 is connected to the control unit 64 via an ignition coil 78 and an ignition power unit 80.

【0020】また、制御部64は、排気通路6に設けた
排気成分値たる酸素濃度を検出する排気センサたる酸素
センサ82を接続して設け、この酸素センサ82の検出
する排気成分値たる酸素濃度に基づき燃料量および/ま
たは空気量を調整して混合気の空燃比が目標値となるよ
うフィードバック制御するものである。この実施例にお
いては、酸素センサ82の検出する酸素濃度に基づき、
第1〜第4燃料噴射弁30−1〜30−4を動作制御し
て燃料量を調整し、混合気の空燃比が目標値となるよう
フィードバック制御するものである。
Further, the control unit 64 is connected to an oxygen sensor 82, which is an exhaust sensor provided in the exhaust passage 6 for detecting the oxygen concentration which is the exhaust gas component value, and the oxygen concentration which is the exhaust gas component value which is detected by the oxygen sensor 82 is provided. The fuel amount and / or the air amount is adjusted based on the above, and feedback control is performed so that the air-fuel ratio of the air-fuel mixture becomes a target value. In this embodiment, based on the oxygen concentration detected by the oxygen sensor 82,
The first to fourth fuel injection valves 30-1 to 30-4 are operated and controlled to adjust the fuel amount, and feedback control is performed so that the air-fuel ratio of the air-fuel mixture becomes a target value.

【0021】このような内燃機関2の空燃比制御装置に
おいて、図1に示す如く、内燃機関2の第1〜第4気筒
18−1〜18−4に連通する第1〜第4分岐排気通路
6−1〜6−4に夫々第1〜第4酸素センサ82−1〜
82−4を設け、これら第1〜第4酸素センサ82−1
〜82−4を制御部64に接続して設ける。制御部64
は、第1〜第4酸素センサ82−1〜82−4から入力
する検出信号により、内燃機関2の第1〜第4気筒18
−1〜18−4毎に設けた第1〜第4燃料噴射弁30−
1〜30−4を動作制御して燃料量を調整し、第1〜第
4気筒18−1〜18−4に供給される混合気の空燃比
を均等化すべくフィードバック制御するものである。
In such an air-fuel ratio control system for the internal combustion engine 2, as shown in FIG. 1, the first to fourth branch exhaust passages communicating with the first to fourth cylinders 18-1 to 18-4 of the internal combustion engine 2 are provided. 6-1 to 6-4 respectively include first to fourth oxygen sensors 82-1 to 82-1.
82-4 is provided, and these first to fourth oxygen sensors 82-1 are provided.
82-4 are connected to the controller 64 and provided. Control unit 64
Are the first to fourth cylinders 18 of the internal combustion engine 2 according to the detection signals input from the first to fourth oxygen sensors 82-1 to 82-4.
-1st to 4th fuel injection valves 30 provided for each 1 to 18-4
1 to 30-4 are operated to adjust the fuel amount, and feedback control is performed to equalize the air-fuel ratio of the air-fuel mixture supplied to the first to fourth cylinders 18-1 to 18-4.

【0022】なお、図6において、符号84はダッシュ
ポット、符号86はバッテリ、符号88はサーモヒュー
ズ、符号90はアラームリレー、符号92は警告灯、符
号94はメインスイッチである。
In FIG. 6, reference numeral 84 is a dashpot, reference numeral 86 is a battery, reference numeral 88 is a thermofuse, reference numeral 90 is an alarm relay, reference numeral 92 is a warning light, and reference numeral 94 is a main switch.

【0023】次に、空燃比制御装置による制御を、図3
〜図5を参照しつつ、図2に従って説明する。
Next, the control by the air-fuel ratio control device will be described with reference to FIG.
2 will be described with reference to FIG.

【0024】内燃機関2を始動(ステップ100)し
て、バッテリ86がオフからオンになったときは、学習
値及びフィードバック値の初期値を設定(ステップ10
1)する。このとき、バッテリ86のオフによって前回
の学習値が消去されている場合は、学習値の初期値を補
正値のない1.0にし、また、フィードバック値の初期
値を1.0にする。
When the internal combustion engine 2 is started (step 100) and the battery 86 is switched from off to on, initial values of the learning value and the feedback value are set (step 10).
1) Do. At this time, if the previous learning value is erased by turning off the battery 86, the initial value of the learning value is set to 1.0 without the correction value, and the initial value of the feedback value is set to 1.0.

【0025】次いで、通常、前回の学習値が、図4に示
す如く、各気筒毎の記憶領域に記憶されているときは、
空燃比のフィードバック制御が開始されるまで、第1〜
第4気筒18−1〜18−4毎の学習補正(ステップ1
02)が行われる。
Next, normally, when the previous learning value is stored in the storage area for each cylinder as shown in FIG. 4,
Until the air-fuel ratio feedback control is started,
Learning correction for each of the fourth cylinders 18-1 to 18-4 (step 1
02) is performed.

【0026】また、冷機時における内燃機関2の各気筒
毎の分配を水温に対応して補正すべく、図5に示す如
く、第1〜第4気筒18−1〜18−4毎に水温と負荷
とによる分配補正(ステップ103)が行われる。
Further, in order to correct the distribution of each cylinder of the internal combustion engine 2 in the cold state according to the water temperature, as shown in FIG. 5, the water temperature is set for each of the first to fourth cylinders 18-1 to 18-4. Distribution correction (step 103) is performed according to the load.

【0027】そして、内燃機関2の暖機が完了すると、
空燃比のフィードバック制御が開始(ステップ104)
される。
When the warm-up of the internal combustion engine 2 is completed,
Air-fuel ratio feedback control starts (step 104)
To be done.

【0028】空燃比のフィードバック制御が開始される
と、各気筒毎に空燃比補正量を学習値として補正し、そ
の値を図4に示す如き各気筒毎の記憶領域に記憶して学
習値の更新(ステップ105)を行う。この学習値の更
新の実施条件は、空燃比のフィードバック制御中である
こと及び内燃機関2の加減速以外の一定負荷が所定時間
以上継続されていることを満足する場合である。なお、
一定負荷であることの判定は、例えば、吸気絞り弁16
の開度や吸気通路4の圧力等によって行う。
When the air-fuel ratio feedback control is started, the air-fuel ratio correction amount is corrected as a learning value for each cylinder, and the value is stored in a storage area for each cylinder as shown in FIG. Update (step 105) is performed. The condition for executing the update of the learned value is that the condition that the feedback control of the air-fuel ratio is being performed and that the constant load other than the acceleration / deceleration of the internal combustion engine 2 is continued for a predetermined time or longer is satisfied. In addition,
The determination that the load is constant is made by, for example, the intake throttle valve 16
And the pressure in the intake passage 4, etc.

【0029】このように、制御部64は、内燃機関2の
第1〜第4気筒18−1〜18−4に連通する第1〜第
4分岐排気通路6−1〜6−4に夫々設けた第1〜第4
酸素センサ82−1〜82−4から入力する検出信号に
より、第1〜第4気筒18−1〜18−4毎に設けた第
1〜第4燃料噴射弁30−1〜30−4を動作制御して
図3に示す如く燃料量を調整し、第1〜第4気筒18−
1〜18−4に供給される混合気の空燃比を均等化すべ
くフィードバック制御する。
As described above, the control section 64 is provided in each of the first to fourth branch exhaust passages 6-1 to 6-4 communicating with the first to fourth cylinders 18-1 to 18-4 of the internal combustion engine 2. 1st to 4th
The first to fourth fuel injection valves 30-1 to 30-4 provided for each of the first to fourth cylinders 18-1 to 18-4 are operated by the detection signals input from the oxygen sensors 82-1 to 82-4. By controlling and adjusting the fuel amount as shown in FIG. 3, the first to fourth cylinders 18-
Feedback control is performed to equalize the air-fuel ratio of the air-fuel mixture supplied to 1 to 18-4.

【0030】これにより、吸気マニホルド14等の影響
や個々の第1〜第4燃料噴射弁30−1〜30−4の生
産上のばらつきの影響による第1〜第4気筒18−1〜
18−4への混合気の空燃比のばらつきを防止すること
ができ、第1〜第4気筒18−1〜18−4毎の空燃比
を均等化することができる。
As a result, the first to fourth cylinders 18-1 to 18-1 to 18-1 to 18-1 to 18-4 are caused by the influence of the intake manifold 14 and the like and the influence of variations in production of the individual first to fourth fuel injection valves 30-1 to 30-4.
It is possible to prevent variations in the air-fuel ratio of the air-fuel mixture to 18-4, and it is possible to equalize the air-fuel ratio for each of the first to fourth cylinders 18-1 to 18-4.

【0031】このため、第1〜第4気筒18−1〜18
−4に供給される混合気の空燃比を均等化し得ることに
より、排気通路6に設けた触媒コンバータ24内の触媒
体28に流入する排気の空燃比が目標値たる理論空燃比
からずれることを防止でき、触媒体28の排気浄化性能
を向上させることができる。また、第1〜第4気筒18
−1〜18−4に供給される混合気の空燃比の均等化に
より、ノッキングを惹起するおそれを回避し得て、出力
性能及び運転性能の向上を図ることができる。
Therefore, the first to fourth cylinders 18-1 to 18-18
By equalizing the air-fuel ratio of the air-fuel mixture supplied to -4, it is possible to prevent the air-fuel ratio of the exhaust gas flowing into the catalyst body 28 in the catalytic converter 24 provided in the exhaust passage 6 from deviating from the target theoretical air-fuel ratio. This can be prevented, and the exhaust gas purification performance of the catalyst body 28 can be improved. Also, the first to fourth cylinders 18
By equalizing the air-fuel ratios of the air-fuel mixture supplied to -1 to 18-4, it is possible to avoid the possibility of causing knocking and improve output performance and operating performance.

【0032】なお、この実施例においては、内燃機関2
の第1〜第4気筒18−1〜18−4毎に第1〜第4燃
料噴射弁30−1〜30−4を設け、第1〜第4気筒1
8−1〜18−4毎の燃料量を調整して空燃比を制御し
たが、吸気マニホルド14の吸気集合部よりも上流側に
単一の気化器や燃料噴射弁(図示せず)を設けている場
合には、第1〜第4気筒18−1〜18−4毎の吸入空
気量をデューティ制御される電磁弁(図示せず)により
調整して空燃比を制御することもできる。
In this embodiment, the internal combustion engine 2
First to fourth cylinders 18-1 to 18-4 are provided with first to fourth fuel injection valves 30-1 to 30-4, respectively.
Although the air-fuel ratio was controlled by adjusting the fuel amount for each of 8-1 to 18-4, a single carburetor and a fuel injection valve (not shown) were provided on the upstream side of the intake manifold 14 in the intake manifold. In this case, the intake-air amount of each of the first to fourth cylinders 18-1 to 18-4 can be adjusted by a duty-controlled solenoid valve (not shown) to control the air-fuel ratio.

【0033】また、この実施例においては、第1〜第4
気筒18−1〜18−4毎に空燃比のフィードバック制
御を行ったが、特定の一の気筒に連通する分岐排気通路
に設けた一の酸素センサの検出信号を基準信号とし、こ
の基準信号により全ての気筒への混合気の空燃比をフィ
ードバック制御するとともに、残余の気筒に連通する各
分岐排気通路に夫々設けた残余の酸素センサの各検出信
号と前記基準信号との差から残余の気筒への混合気の空
燃比補正量を算出し、残余の気筒への混合気の空燃比を
フィードバック制御することもできる。
In addition, in this embodiment, the first to fourth
The feedback control of the air-fuel ratio was performed for each of the cylinders 18-1 to 18-4, but the detection signal of one oxygen sensor provided in the branch exhaust passage communicating with one specific cylinder is used as a reference signal. The air-fuel ratio of the air-fuel mixture to all the cylinders is feedback-controlled, and the difference between the detection signals of the residual oxygen sensors respectively provided in the branch exhaust passages communicating with the residual cylinders and the reference signal is applied to the residual cylinders. It is also possible to calculate the air-fuel ratio correction amount of the air-fuel mixture and perform feedback control of the air-fuel ratio of the air-fuel mixture to the remaining cylinders.

【0034】さらに、この実施例においては、排気セン
サとして酸素センサ82を設けたが、全領域に対応し得
る空燃比センサを第1〜第4気筒18−1〜18−4に
連通する第1〜第4分岐排気通路6−1〜6−4に夫々
設け、これら各空燃比センサの検出する空燃比により、
水温に関係なく、全領域において空燃比が目標値になる
ようフィードバック制御することもできる。
Further, in this embodiment, the oxygen sensor 82 is provided as the exhaust gas sensor, but the air-fuel ratio sensor capable of covering the entire region is connected to the first to fourth cylinders 18-1 to 18-4. -The fourth branch exhaust passages 6-1 to 6-4 are respectively provided, and according to the air-fuel ratios detected by these air-fuel ratio sensors,
It is also possible to perform feedback control so that the air-fuel ratio becomes the target value in all regions regardless of the water temperature.

【0035】[0035]

【発明の効果】以上詳細に説明した如く、この発明によ
れば、吸気マニホルド等の影響や個々の燃料噴射弁の生
産上のばらつきの影響による各気筒への混合気の空燃比
のばらつきを防止し得て、各気筒毎の空燃比を均等化す
ることができる。
As described above in detail, according to the present invention, the variation of the air-fuel ratio of the air-fuel mixture in each cylinder due to the influence of the intake manifold or the variation in the production of individual fuel injection valves is prevented. Therefore, the air-fuel ratio of each cylinder can be equalized.

【0036】このため、各機気筒に供給される混合気の
空燃比の均等化により、排気通路に設けた触媒体に流入
する排気の空燃比が目標値たる理論空燃比からずれるこ
とを防止し得て、触媒体の排気浄化性能を向上させ得
る。また、各機気筒に供給される混合気の空燃比の均等
化により、ノッキングを惹起するおそれを回避し得て、
出力性能及び運転性能の向上を図ることができる。
Therefore, by equalizing the air-fuel ratio of the air-fuel mixture supplied to each machine cylinder, it is possible to prevent the air-fuel ratio of the exhaust gas flowing into the catalyst provided in the exhaust passage from deviating from the theoretical air-fuel ratio which is the target value. As a result, the exhaust gas purification performance of the catalyst body can be improved. Further, by equalizing the air-fuel ratio of the air-fuel mixture supplied to each machine cylinder, it is possible to avoid the risk of causing knocking,
It is possible to improve output performance and driving performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す内燃機関の空燃比制御
装置の要部構成図である。
FIG. 1 is a configuration diagram of essential parts of an air-fuel ratio control device for an internal combustion engine showing an embodiment of the present invention.

【図2】各気筒毎の燃料噴射弁による制御のフローチャ
ートである。
FIG. 2 is a flowchart of control by a fuel injection valve for each cylinder.

【図3】各気筒毎の燃料噴射弁による制御のタイムチャ
ートである。
FIG. 3 is a time chart of control by a fuel injection valve for each cylinder.

【図4】各気筒毎の空燃比学習記憶領域の説明図であ
る。
FIG. 4 is an explanatory diagram of an air-fuel ratio learning storage area for each cylinder.

【図5】水温による分配補正の説明図である。FIG. 5 is an explanatory diagram of distribution correction based on water temperature.

【図6】内燃機関の空燃比制御装置の概略構造図であ
る。
FIG. 6 is a schematic structural diagram of an air-fuel ratio control device for an internal combustion engine.

【符号の説明】[Explanation of symbols]

2 内燃機関 4 吸気通路 4−A サージタンク部 4−1〜4−4 第1〜第4分岐吸気通路部 6 排気通路 6−A 排気集合部 6−1〜6−4 第1〜第4分岐排気通路部 12 スロットルボディ 14 吸気マニホルド 16 吸気絞り弁 18−1〜18−4 第1〜第4気筒 20 排気マニホルド 24 触媒コンバータ 30−1〜30−1 第1〜第4燃料噴射弁 64 制御部 66 クランク角センサ 68 ディストリビュータ 70 開度センサ 72 ノックセンサ 74 水温センサ 76 車速センサ 82−1〜82−4 第1〜第4酸素センサ 2 Internal combustion engine 4 Intake passage 4-A Surge tank section 4-1 to 4-4 First to fourth branch intake passage section 6 Exhaust passage 6-A Exhaust collecting section 6-1 to 6-4 First to fourth branch Exhaust passage part 12 Throttle body 14 Intake manifold 16 Intake throttle valve 18-1 to 18-4 First to fourth cylinder 20 Exhaust manifold 24 Catalytic converter 30-1 to 30-1 First to fourth fuel injection valve 64 Control part 66 crank angle sensor 68 distributor 70 opening sensor 72 knock sensor 74 water temperature sensor 76 vehicle speed sensor 82-1 to 82-4 first to fourth oxygen sensor

Claims (1)

【特許請求の範囲】 【請求項1】 内燃機関の排気通路に設けた排気センサ
の検出する排気成分値に基づき燃料量および/または空
気量を調整して混合気の空燃比が目標値となるようフィ
ードバック制御する内燃機関の空燃比制御装置におい
て、前記内燃機関の各気筒に連通する各分岐排気通路に
夫々前記排気センサを設け、これら各排気センサから入
力する検出信号により前記内燃機関の各気筒毎の燃料量
および/または空気量を調整して各気筒に供給される混
合気の空燃比を均等化すべくフィードバック制御する制
御手段を設けたことを特徴とする内燃機関の空燃比制御
装置。
Claims: 1. An air-fuel ratio of a mixture becomes a target value by adjusting a fuel amount and / or an air amount based on an exhaust component value detected by an exhaust sensor provided in an exhaust passage of an internal combustion engine. In the air-fuel ratio control device for an internal combustion engine that performs feedback control as described above, the exhaust sensors are provided in the respective branch exhaust passages that communicate with the respective cylinders of the internal combustion engine, and the cylinders of the internal combustion engine are detected by the detection signals input from the respective exhaust sensors. An air-fuel ratio control device for an internal combustion engine, comprising: a control unit that adjusts the fuel amount and / or the air amount for each cylinder to perform feedback control to equalize the air-fuel ratio of the air-fuel mixture supplied to each cylinder.
JP21468191A 1991-07-31 1991-07-31 Air-fuel ratio control device for internal combustion engine Pending JPH0533707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21468191A JPH0533707A (en) 1991-07-31 1991-07-31 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21468191A JPH0533707A (en) 1991-07-31 1991-07-31 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0533707A true JPH0533707A (en) 1993-02-09

Family

ID=16659823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21468191A Pending JPH0533707A (en) 1991-07-31 1991-07-31 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0533707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874143A2 (en) 1997-04-23 1998-10-28 Isuzu Ceramics Research Institute Co., Ltd. Ceramic engine with a heat exchanger using porous material
US5864280A (en) * 1995-09-29 1999-01-26 Littlefuse, Inc. Electrical circuits with improved overcurrent protection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864280A (en) * 1995-09-29 1999-01-26 Littlefuse, Inc. Electrical circuits with improved overcurrent protection
US6059997A (en) * 1995-09-29 2000-05-09 Littlelfuse, Inc. Polymeric PTC compositions
EP0874143A2 (en) 1997-04-23 1998-10-28 Isuzu Ceramics Research Institute Co., Ltd. Ceramic engine with a heat exchanger using porous material

Similar Documents

Publication Publication Date Title
US5384098A (en) Exhaust gas recirculation system for an engine
JPS6165038A (en) Air-fuel ratio control system
JP3063400B2 (en) Air-fuel ratio control device for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
US5282450A (en) Engine power controller
JPH0533707A (en) Air-fuel ratio control device for internal combustion engine
JP7493885B2 (en) Control device for internal combustion engine
JP3194156B2 (en) Air-fuel ratio control device for internal combustion engine
JP3074960B2 (en) Catalyst deterioration determination device for internal combustion engine
JP3272085B2 (en) Fuel injection device
JP2000087813A (en) Evaporative fuel purge device for engine with supercharger and evaporative fuel purge control device
JP2694272B2 (en) Air-fuel ratio control device for internal combustion engine
JP3239373B2 (en) Ignition timing control device
JP3185336B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0337344A (en) Electronical fuel injection controller for internal combustion engine
JP3575075B2 (en) Engine air-fuel ratio control device
JPH06193520A (en) Evaporation fuel supplying device for engine
JPH05240088A (en) Air-fuel ratio controller of internal combustion engine
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JPS6299655A (en) Fuel supply device for engine
JPH06193522A (en) Evaporative fuel supplying device for engine
JP2002357150A (en) Fuel injection controller for cng engine
JPH09242616A (en) Fuel injection quantity control device of internal combustion engine
JPH0441951A (en) Air-fuel ratio controller of engine
JPH06336940A (en) Air fuel ratio control device for engine