JPS6357654B2 - - Google Patents

Info

Publication number
JPS6357654B2
JPS6357654B2 JP1607380A JP1607380A JPS6357654B2 JP S6357654 B2 JPS6357654 B2 JP S6357654B2 JP 1607380 A JP1607380 A JP 1607380A JP 1607380 A JP1607380 A JP 1607380A JP S6357654 B2 JPS6357654 B2 JP S6357654B2
Authority
JP
Japan
Prior art keywords
electromagnetic
coil
magnetic
spring
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1607380A
Other languages
Japanese (ja)
Other versions
JPS56113843A (en
Inventor
Chiaki Mihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1607380A priority Critical patent/JPS56113843A/en
Publication of JPS56113843A publication Critical patent/JPS56113843A/en
Publication of JPS6357654B2 publication Critical patent/JPS6357654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 本発明は遠隔的にステイフネスを調節できる電
気磁気的ばねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electromagnetic springs with remotely adjustable stiffness.

例えば、振動検出用振子(地震計)の固有振動
数調整用ばねについて一例を述べると、従来の磁
気回路と動コイルを有する振動検出用振子の構成
は第1図イ,ロに示す通りである。
For example, to give an example of a spring for adjusting the natural frequency of a vibration detection pendulum (seismograph), the configuration of a conventional vibration detection pendulum having a magnetic circuit and a moving coil is as shown in Figure 1 A and B. .

図において、1は振動質量、2はそれを支える
サスペンシヨンばね、3は振動質量1に固定され
た動コイルで、永久磁石4、ヨーク5、ポールピ
ース6で構成される磁気回路は収納ケース7に固
定されている。この装置に振動が加わると、動コ
イル3と磁気回路エアギヤツプ8に発生する放射
状磁界との間に相対的運動を生じ、その運動速度
に比例した電圧が動コイル3の両端間に発生し、
この電圧を計測すれば加わつた振動量が解る。
In the figure, 1 is a vibrating mass, 2 is a suspension spring that supports it, 3 is a moving coil fixed to the vibrating mass 1, and a magnetic circuit consisting of a permanent magnet 4, a yoke 5, and a pole piece 6 is connected to a storage case 7. is fixed. When vibration is applied to this device, a relative movement occurs between the moving coil 3 and the radial magnetic field generated in the magnetic circuit air gap 8, and a voltage proportional to the speed of movement is generated across the moving coil 3.
By measuring this voltage, the amount of vibration applied can be determined.

その相対運動はサスペンシヨンばね2とそれに
支えられる部分(振動質量1+動コイル3)で構
成される振子系の固有振動数を主とする諸元に依
存する。従つて、所定の特性を得るための諸元の
うち、特に固有振動数の調整が必要な場合、従来
は振動質量1の増減或はサスペンシヨンばね2の
ステイフネスの調節等純機械的な方法によつてお
り、特に遠隔調整では複雑な機構を必要とし、ま
た調整可能な固有振動数の幅も機械的な各種条
件、例えば大きさ等の制約から限定されたもので
あつた。
The relative motion depends on the specifications mainly of the natural frequency of the pendulum system composed of the suspension spring 2 and the part supported by it (vibrating mass 1 + moving coil 3). Therefore, when it is necessary to adjust the natural frequency among the specifications to obtain a predetermined characteristic, conventionally, purely mechanical methods such as increasing or decreasing the vibrating mass 1 or adjusting the stiffness of the suspension spring 2 are used. In particular, remote adjustment requires a complicated mechanism, and the range of adjustable natural frequencies is also limited due to various mechanical conditions, such as size constraints.

本発明は、このような従来の欠点を除去したも
ので、電気磁気的ばねを振子固有振動数の調整に
使用するようにしたもので、以下本発明の一実施
例を図面により詳細に説明する。
The present invention eliminates these conventional drawbacks and uses an electromagnetic spring to adjust the natural frequency of the pendulum.One embodiment of the present invention will be described in detail below with reference to the drawings. .

第2図は本発明電気磁気的ばねを振動検出用振
子に使用した一実施例を示す一部切欠正面図で、
図において9a,9bは一対のステイフネス調整
用コイルで、動コイル3の上下に配置されている
ほかは第1図と同一であり説明を省略する。第3
図はその各コイルと磁気回路エアギヤツプとの相
対的位置関係を示す図で、は磁気回路エアギヤ
ツプ8と各コイル3,9a,9bの相対変位xが
x=0、即ち中立の場合、は同じくx>0の場
合、は同じくx<0の場合を示す。図におい
て、相対変位xの変化につれ磁束密度Bとコイル
捲線単位長さdlの積の総和∫l 0Bdlで示される電磁
定数(電気磁気的定数)Gは、動コイル3におい
ては殆んど不変であるが、ステイフネス調整用コ
イル9a,9bでは互いに差動的に変化すること
が第3図より認められる。なお、第3図におい
て、Uはは磁気回路エアギヤツプ8の中を各コイ
ルが運動する方向の磁気回路に固定された座漂で
ある。
FIG. 2 is a partially cutaway front view showing an embodiment in which the electromagnetic spring of the present invention is used in a vibration detection pendulum.
In the figure, reference numerals 9a and 9b denote a pair of stiffness adjustment coils, which are the same as in FIG. 1 except that they are arranged above and below the moving coil 3, and their explanation will be omitted. Third
The figure shows the relative positional relationship between each coil and the magnetic circuit air gap. If the relative displacement x between the magnetic circuit air gap 8 and each coil 3, 9a, 9b is x=0, that is, neutral, then In the case of >0, similarly indicates the case of x<0. In the figure, as the relative displacement x changes, the electromagnetic constant G, which is the sum of the products of the magnetic flux density B and the coil winding unit length dl ∫ l 0 Bdl, remains almost unchanged in the moving coil 3. However, it is recognized from FIG. 3 that the stiffness adjustment coils 9a and 9b vary differentially with respect to each other. In addition, in FIG. 3, U is a strand fixed to the magnetic circuit in the direction in which each coil moves in the magnetic circuit air gap 8.

今ステイフネス調整用コイル9a,9bが位置
する部分の座標Uに対する磁束変化率dB/dUを
それぞれ定数Ca,Cb及びそれらコイルの捲線全
長をそれぞれla,lbとすると、それらコイルの電
磁定数Ga,Gbは Ga=∫la 0Bdl=∫la 0Ba+Cax)dl=Bala+Calax Ga=∫lb 0Bdl=∫lb 0Bb+Cbx)dl=Bblb+Cblbx……(1) で示される。但し、Ba,Bbはx=0におけるそ
れぞれのコイルが位置する部分の平均磁束密度で
ある。
If the magnetic flux change rate dB/dU with respect to the coordinate U of the part where the stiffness adjustment coils 9a and 9b are located are constants Ca and Cb, and the total winding lengths of these coils are la and lb, respectively, then the electromagnetic constants Ga and Gb of these coils are is expressed as Ga=∫ la 0 Bdl=∫ la 0 Ba+Cax)dl=Bala+Calax Ga=∫ lb 0 Bdl=∫ lb 0 Bb+Cbx)dl=Bblb+Cblbx...(1). However, Ba and Bb are the average magnetic flux densities of the portions where the respective coils are located at x=0.

このような電磁定数Ga,Gbを持つ各コイルに
電流ia,ibを供給すれば Fa=Gaia=(Bala+Calax)ia Fb=Gbib=(Bblb+Cblbx)ib……(2) の各電磁力Fa,Fbを発生する。今 Balaia=−Bblbib …(3) なる条件が満たされるようにia,ibが調節される
なら各電磁力の和Fは F=Fa+Fb=(Calaia+Cblbib)x …(4) である。(4)式から明らかなように電磁力Fは
(Calaia+Cblbib)をステイフネスとする電気磁
気的ばねの復元力であり、相対変位xに比例す
る。また、そのステイフネスはia,ibの関数であ
るから、ia,ibを調節することによりサスペンシ
ヨンばね2と電気磁気的ばねとの並列的ステイフ
ネスを任意にセツトでき、結果として振子の固有
振動数を調整することができる。当然、ia,ib
極性によつて電気磁気的ばねのステイフネスを負
にすることも可能である。
If currents i a and i b are supplied to each coil having such electromagnetic constants Ga and Gb, Fa=Gai a = (Bala+Calax) i a Fb=Gbi b = (Bblb+Cblbx) i b ...(2) Generates electromagnetic forces Fa and Fb. Now, if i a and i b are adjusted so that the following condition is satisfied, the sum F of each electromagnetic force is F = Fa + Fb = (Calaia + Cblbib) x (4). As is clear from equation (4), the electromagnetic force F is the restoring force of the electromagnetic spring with stiffness (Calai a + Cblbi b ), and is proportional to the relative displacement x. In addition, since the stiffness is a function of i a and i b , the parallel stiffness of the suspension spring 2 and the electromagnetic spring can be arbitrarily set by adjusting i a and i b , and as a result, the pendulum The natural frequency can be adjusted. Naturally, it is also possible to make the stiffness of the electromagnetic spring negative depending on the polarity of i a and i b .

第4図は第3図における各コイルに電流ia,ib
を供給する回路例であつて、は2つのコイル9
a,9bが並列に、は直列に、は独立に直流
電源20に接続されている。なお、可変抵抗器2
1,22はコイル電流ia,ibを調節するために、
また電鍵23は電流ia,ibの極性を切替えるため
に設けられている。なお、()の直列系では、
特に電流ia,ibのバランスを調整する必要がなけ
れば、可変抵抗器22は不要で、調整用コイル9
a,9bを連続した1本の線材で捲回して良く、
途中で分離して中間タツプを設ける必要はない。
Figure 4 shows the currents i a and i b in each coil in Figure 3.
is an example of a circuit that supplies two coils 9
A and 9b are connected to the DC power supply 20 in parallel, in series, and independently. In addition, variable resistor 2
1 and 22 are for adjusting the coil currents i a and i b ,
Further, a telephone key 23 is provided to switch the polarity of the currents i a and i b . In addition, in the series system of (),
In particular, if there is no need to adjust the balance of currents i a and i b , the variable resistor 22 is unnecessary and the adjustment coil 9
a and 9b may be wound with one continuous wire,
There is no need to separate in the middle and provide an intermediate tap.

また、ケーブルを介して電流ia,ibを調節する
ことでステイフネスの遠隔調整を容易に行い得る
ことも明らかである。また、説明を簡略化するた
め、磁束密度変化率dB/dU=Ca(若くはCb)を
定数としたが、(Calaia+Cblbib)が一定に保た
れるようにCaとCbが相補的に変化してもかまわ
ない。
It is also clear that the stiffness can be easily adjusted remotely by adjusting the currents i a and i b via the cables. Also, to simplify the explanation, the rate of change in magnetic flux density dB/dU = Ca (or Cb in short) was used as a constant, but Ca and Cb are complementary so that (Calai a + Cblbi b ) is kept constant. It's okay to change.

以上説明したように、ステイフネス調整用コイ
ル9a,9bに流す直流定電流の大小及び正負に
より振子系の固有振動数を調節することができ
る。従つて、機械的な制約を受けずに調整範囲の
広い、しかも遠隔調整が容易な振子固有振動数調
整器が得られ、その上、従来の磁気回路と動コイ
ルによる振動を電気信号に変換する機能は損なわ
れない等の効果がある。
As explained above, the natural frequency of the pendulum system can be adjusted by adjusting the magnitude and polarity of the DC constant current flowing through the stiffness adjustment coils 9a and 9b. Therefore, it is possible to obtain a pendulum natural frequency regulator that has a wide adjustment range without being subject to mechanical constraints and that can be easily adjusted remotely, and that also converts vibrations caused by conventional magnetic circuits and moving coils into electrical signals. There are effects such as no loss of functionality.

以下の実施例は上下方向成分を受感する振動検
出用振動子に電気磁気的ばねを利用する場合につ
いて説明したが、水平方向成分を受感する振動検
出用振子においても同様に本発明ばねを利用でき
ることは当然である。また本発明ばねの構成は第
2図に示された構成のみに限定されるものではな
く、例えば第5図イ,ロに示すように調整用コイ
ル9a,9bを動コイル3の中央に配置しても良
い。なお、第2図と同一部分には同一の参照番号
を付した。また、第6図は第5図の磁気回路にお
ける磁束密度分布を示す。即ち第2図の実施例で
は(3)式を実現させるため電流ia,ibの方向を互い
に逆極性としたが、第5図に示す実施例では電流
ia,ibの方向を互に同極性とする必要がある。従
つて、第4図の各回路ではコイルの捲方向を揃え
て接続する。なお各実施例では磁界の発生は永久
磁石によつて行なわれているが電磁石によるもの
であつてもよい。またコイルは直線運動をするも
のとして説明したが、可動コイル形電流計のよう
に回転軸回りに運動する、所謂回転形計器であつ
てもよい。
Although the following embodiment describes a case where an electromagnetic spring is used in a vibration detection vibrator that senses a vertical component, the spring of the present invention can also be used in a vibration detection pendulum that senses a horizontal component. Of course it can be used. Furthermore, the configuration of the spring of the present invention is not limited to the configuration shown in FIG. 2; for example, the adjusting coils 9a and 9b may be arranged in the center of the moving coil 3 as shown in FIG. It's okay. Note that the same parts as in FIG. 2 are given the same reference numbers. Moreover, FIG. 6 shows the magnetic flux density distribution in the magnetic circuit of FIG. 5. That is, in the embodiment shown in FIG. 2, the directions of the currents i a and i b were set to have opposite polarities to each other in order to realize equation (3), but in the embodiment shown in FIG.
It is necessary to make the directions of i a and i b the same polarity. Therefore, in each circuit shown in FIG. 4, the coils are connected with their winding directions aligned. In each embodiment, the magnetic field is generated by a permanent magnet, but it may be generated by an electromagnet. Further, although the coil has been described as one that moves linearly, it may be a so-called rotary meter that moves around a rotation axis, such as a moving coil ammeter.

以上詳細に説明したように、本発明は磁界とコ
イルにより電気磁気的ばねを構成せしめたから、
ステイフネスの精密な調整が可能で、例えばばね
秤やペンレコーダのガルバノメータ等を含むばね
を利用した各種計測指示計器類に利用して大きな
効果がある。
As explained in detail above, since the present invention configures an electromagnetic spring using a magnetic field and a coil,
Precise stiffness adjustment is possible, and it is highly effective when used in various measurement and indicating instruments that use springs, including spring scales and galvanometers for pen recorders.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気回路と動コイルを有する振
動検出用振子を示し、イその縦断正面図、ロは同
じくその一部切欠平面図、第2図は本発明電気磁
気的ばねを振動検出用振子に使用した一実施例を
示す一部切欠正面図、第3図I,,はそれぞ
れ各コイルと磁気回路エアギヤツプとの相対的位
置関係を示す図、第4図I,,はそれぞれ各
コイルに電流を供給する回路図の実施例、第5図
は本発明の他の実施例で、イはその縦断正面図、
ロはイ図のA−A断面図、第6図は第5図の磁気
回路における磁束密度分布図である。 1……振動質量、2……サスペンシヨンばね、
3……動コイル、4……永久磁石、5……ヨー
ク、6……ポールピース、7……収納ケース、8
……磁気回路エアギヤツプ、9a,9b……ステ
イフネス調整用コイル、20……直流電源、2
1,22……可変抵抗器、23……電鍵。
Fig. 1 shows a conventional pendulum for vibration detection having a magnetic circuit and a moving coil. A partially cutaway front view showing an embodiment used in a pendulum, Fig. 3 I shows the relative positional relationship between each coil and the magnetic circuit air gap, and Fig. 4 I shows the relative positional relationship between each coil and the magnetic circuit air gap, respectively. An embodiment of a circuit diagram for supplying current, FIG. 5 is another embodiment of the present invention, and A is a longitudinal sectional front view thereof;
FIG. 6 is a magnetic flux density distribution diagram in the magnetic circuit of FIG. 5. 1... Vibration mass, 2... Suspension spring,
3... Moving coil, 4... Permanent magnet, 5... Yoke, 6... Pole piece, 7... Storage case, 8
... Magnetic circuit air gap, 9a, 9b ... Stiffness adjustment coil, 20 ... DC power supply, 2
1, 22...variable resistor, 23...telephone key.

Claims (1)

【特許請求の範囲】 1 導電体長さlの単位長さdlとそれが位置する
部分の有効磁束密度Bとの積の総和で示される電
磁定数GがG=∫l 0Bdl=kxのように、導電体と磁
界との相対変位或は相対角変位xに対し1次の関
数であるような電気磁気的装置と任意に調整可能
な直流定電流を前記導電体に供給し得るような電
源回路とよりなる電気磁気的ばね。 2 電磁定数Gが相対変位或は相対角変位xに対
し互に差動的に増減するように一対の磁気回路と
その発生する磁束と鎖交して振動する互に固定さ
れた一対のコイルとよりなる電気磁気的装置を有
する特許請求の範囲第1項記載の電気磁気的ば
ね。
[Claims] 1. The electromagnetic constant G, which is expressed as the sum of the products of the unit length dl of the conductor length l and the effective magnetic flux density B of the part where it is located, is as follows: G=∫ l 0 Bdl=kx , an electromagnetic device that is a linear function of the relative displacement or relative angular displacement x between the conductor and the magnetic field, and a power supply circuit that can supply an arbitrarily adjustable DC constant current to the conductor. An electromagnetic spring. 2. A pair of magnetic circuits and a pair of mutually fixed coils that vibrate in linkage with the magnetic flux generated by the magnetic circuit so that the electromagnetic constant G differentially increases or decreases with respect to relative displacement or relative angular displacement x. An electromagnetic spring according to claim 1, comprising an electromagnetic device consisting of:
JP1607380A 1980-02-14 1980-02-14 Electromagnetic spring Granted JPS56113843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1607380A JPS56113843A (en) 1980-02-14 1980-02-14 Electromagnetic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1607380A JPS56113843A (en) 1980-02-14 1980-02-14 Electromagnetic spring

Publications (2)

Publication Number Publication Date
JPS56113843A JPS56113843A (en) 1981-09-08
JPS6357654B2 true JPS6357654B2 (en) 1988-11-11

Family

ID=11906384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1607380A Granted JPS56113843A (en) 1980-02-14 1980-02-14 Electromagnetic spring

Country Status (1)

Country Link
JP (1) JPS56113843A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011609A1 (en) * 1997-09-02 1999-03-11 Nippon Soda Co., Ltd. Molecular compounds containing phenol derivatives as constituent
CN105317912B (en) * 2015-11-13 2017-10-03 哈尔滨工程大学 Broadband rigidity and damp adjustable semi active vibration absorber
CN108918913B (en) * 2018-05-16 2019-08-13 华中科技大学 A kind of adjustable vertical conduction magnetic force spring oscillator of intrinsic frequency

Also Published As

Publication number Publication date
JPS56113843A (en) 1981-09-08

Similar Documents

Publication Publication Date Title
US2552722A (en) Electromagnetic accelerometer
US4159464A (en) Geophone with damping coil
US7347097B2 (en) Servo compensating accelerometer
US2702186A (en) Accelerometer
RU97100156A (en) COMPENSATION ACCELEROMETER
US4504932A (en) Geophone having a non-conductive coilform
US2562983A (en) Frequency-adjustable seismic wave detector
DE3503597C1 (en) Servo acceleration pick-up for low frequencies
US2303413A (en) Seismometer
US2297251A (en) Device for measuring displacements with carrier frequency
JPS6357654B2 (en)
US3323372A (en) Linear servo-accelerometer
CA1096653A (en) Servoed accelerometer utilizing rare earth magnets
US2443969A (en) Vibration pickup
US602527A (en) Livan
JP3871811B2 (en) Electrodynamic pickup
US4198863A (en) Electromagnetic torsional stiffness element
US817857A (en) Electrical measuring instrument.
US3614490A (en) Means for measuring the square of the strength of a magnetic field
SU868671A1 (en) Geophone
JP3604507B2 (en) Variable period vibrometer
SU1594472A1 (en) Geophone
CA1079998A (en) Accellerometer with position indicator
US2159775A (en) Galvanometer
JP2021131347A (en) Electromagnetic vibrometer