JPS6357487B2 - - Google Patents

Info

Publication number
JPS6357487B2
JPS6357487B2 JP17312783A JP17312783A JPS6357487B2 JP S6357487 B2 JPS6357487 B2 JP S6357487B2 JP 17312783 A JP17312783 A JP 17312783A JP 17312783 A JP17312783 A JP 17312783A JP S6357487 B2 JPS6357487 B2 JP S6357487B2
Authority
JP
Japan
Prior art keywords
molten metal
furnace
furnace vessel
protective tube
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17312783A
Other languages
Japanese (ja)
Other versions
JPS6066085A (en
Inventor
Hitoo Yamura
Tadao Ikeda
Masaru Kato
Toshiaki Kusama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP17312783A priority Critical patent/JPS6066085A/en
Publication of JPS6066085A publication Critical patent/JPS6066085A/en
Publication of JPS6357487B2 publication Critical patent/JPS6357487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 本発明は、アルミニウム、亜鉛等の低融点金属
溶湯を保温維持する為に使用するアンダーヒータ
ー型低融点金属溶湯保持炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an underheater type low melting point metal molten metal holding furnace used to maintain the temperature of a low melting point metal molten metal such as aluminum or zinc.

溶解炉から金属溶湯を保持炉に分配し、この保
持炉から鋳型に溶湯を注入する作業システムにお
いて、この溶湯保持炉の熱保持能力を高め、所要
温度に保持する為に消費する電力を減少し、また
汲出し溶湯量を増加する等の改良を本発明の目的
とし、これらの改良によつて、アルミニウム等の
低融点金属(合金を含む)鋳型品製造の効率改善
とコスト低減の改善を達成する。
In a work system that distributes molten metal from a melting furnace to a holding furnace and injects the molten metal into a mold from this holding furnace, it increases the heat retention capacity of this molten metal holding furnace and reduces the power consumed to maintain it at the required temperature. In addition, the purpose of the present invention is to make improvements such as increasing the amount of molten metal pumped out, and through these improvements, it is possible to improve the efficiency and cost reduction of casting products made of low melting point metals such as aluminum (including alloys). do.

保持炉上蓋部を加熱部とするアツパーヒーター
型保持炉は内部溶湯に対する加熱々効率が良くな
い。この為に保護管で発熱体を保護し、溶湯中に
浸漬した保護管を介して発熱率体の熱で溶湯を加
熱する方式が提案されている。例えば特開昭56―
23686に見るものである。溶湯金属と反応し難い
セラミツク材が5年来多数知られる所となつて、
保護管の材料変更は溶湯金属に合せて多様にきわ
めて容易に選択できる事情から、金属溶湯保持炉
の省エネルギー型式を本格的に完成する為の保持
炉構造の開発が必要である。
The upper heater type holding furnace, in which the upper lid of the holding furnace is used as the heating part, does not have good heating efficiency for the internal molten metal. For this purpose, a method has been proposed in which the heating element is protected by a protection tube and the molten metal is heated by the heat of the heating element through the protection tube immersed in the molten metal. For example, Japanese Patent Application Publication No. 1983-
This is what you see in 23686. Over the past five years, many ceramic materials that do not easily react with molten metal have become known.
Since it is very easy to change the material of the protection tube in a variety of ways depending on the molten metal, it is necessary to develop a holding furnace structure in order to fully complete an energy-saving type of molten metal holding furnace.

この為に解決されるべき問題点は、溶湯補充及
び汲出時の熱放散を抑制し、溶湯成分の偏差発生
を抑制するために適切な熱対流を生じる加熱の方
法と、汲出時の溶湯汲出率を高めることにあり、
これらは開発される炉構造によつて同時に満たさ
れなければならない。熱放散を従来保持炉の十分
の一程度まで顕著に防止する炉容器構造の開発と
共に汲出率を60%以上とする本発明は、溶湯熱保
持の為の電力消費量を従来実用保持炉の十分の一
にするものである。
The problems that need to be solved for this purpose are a heating method that generates appropriate heat convection to suppress heat dissipation during replenishment and pumping of molten metal, and suppression of deviations in molten metal composition, and a method of heating that generates appropriate heat convection to suppress the occurrence of deviations in molten metal components, and a method of heating that generates appropriate heat convection during molten metal replenishment and pumping. The goal is to increase
These must be met simultaneously by the developed furnace structure. The present invention has developed a furnace vessel structure that significantly prevents heat dissipation to about one-tenth of that of conventional holding furnaces, and has a pumping rate of over 60%. This is one of the first things to do.

特に熱放散を、金属溶湯補充時及び汲出時に、
できる限り小さく抑制する為の炉容器構造の開発
に要点が置かれた。
In particular, heat dissipation is improved during replenishment and pumping of molten metal.
The emphasis was on developing a reactor vessel structure to keep it as small as possible.

従来の実用保持炉に比べ熱の発散をその十分の
一に抑制する本発明の基本的な炉容器構造は、溶
湯汲出口に対してその下方に位置する汲出溶湯部
分と他の溶湯との間に断熱性物質で作つた隔壁を
有する構造である。アンダーヒーター形式にあつ
ては炉内をこのような隔壁で区割しても溶湯加熱
を不均一にせずに、かつ、効率の良い加熱が可能
である。実用化されて来たアツパーヒーター形式
では、このような隔壁を炉内に設ける場合、加熱
の均一分布を図る為に発熱体の構成が複雑にな
り、同時に加熱効率を高水準にできない為、電力
消費の増大を招く結果、このような炉構造は実用
できない。アツパーヒーター形式或いは高温ガス
加熱保持炉では予期できなかつたこの炉内隔壁構
造の顕著な合理性は、溶湯面上方に設ける溶湯補
充及び汲出しの為に開口され得る上部炉蓋壁に対
して、その反対の溶湯低部に存置できることにあ
る。即ち、炉内隔壁が加熱時の熱分布に全く影響
を与えないから、隔壁を備えた場合に従来保持炉
に現われた上述の不合理が全く発生しないことが
その合理性の一つであり、溶湯下部で与えられる
アンダーヒーターの熱は溶湯に直接吸収されて対
流により運ばれ、溶湯の下部と溶湯面間の温度差
の拡大発生を抑制できることが合理性の第二点で
ある。一昼夜で失う熱量を約5%程度に抑制する
溶湯保持能力は従来実用保持炉からは予期できな
い顕著なものである。電力消費量はこの場合、従
来実用保持炉の約十分の一まで下げることがで
き、本発明の改良効果は特筆されるものとなつて
いる。
The basic furnace vessel structure of the present invention suppresses heat dissipation to one-tenth of that of conventional practical holding furnaces. It has a structure with partition walls made of a heat insulating material. In the case of the under-heater type, even if the inside of the furnace is divided by such partition walls, the molten metal will not be heated unevenly and efficient heating can be achieved. In the Atsupah heater type that has been put into practical use, if such a partition is installed inside the furnace, the configuration of the heating element becomes complicated in order to achieve uniform heating distribution, and at the same time, it is not possible to achieve a high level of heating efficiency. As a result of the increased power consumption, such a furnace structure is not practical. The remarkable rationality of this partition wall structure in the furnace, which could not be expected with an upper heater type or high-temperature gas-heated holding furnace, is that the upper furnace lid wall, which is provided above the molten metal surface and can be opened for replenishing and pumping out the molten metal, is On the contrary, it can be placed in the lower part of the molten metal. In other words, one of the rationalities is that the partition wall in the furnace does not affect the heat distribution during heating at all, so the above-mentioned unreasonableness that appeared in conventional holding furnaces does not occur when the partition wall is provided. The second point of rationality is that the heat from the underheater applied to the lower part of the molten metal is directly absorbed by the molten metal and carried by convection, thereby suppressing the expansion of the temperature difference between the lower part of the molten metal and the surface of the molten metal. The ability to hold molten metal, which suppresses the amount of heat lost over a day and night to about 5%, is remarkable and cannot be expected from conventional holding furnaces. In this case, the power consumption can be reduced to about one-tenth of that of a conventional holding furnace, and the improvement effect of the present invention is noteworthy.

本発明のアンダーヒーター型低融点金属溶湯保
持炉は、50〜99wt%のAl2O3と0.5〜50wt%の
SiO2を主成分とするキヤスタブル耐火物で一体
成形される炉容器内に、少くとも一枚以上の隔壁
を一体成形あるいは組立により形成して溶湯汲出
室を構成、該隔壁底部には溶湯移動を許す開口手
段を備え、該炉容器底部に発熱体を内装した保護
管を一本以上配設し、該保護管の封じられた一端
は炉容器内に固定されずに支持されかつ開口した
他端は前記炉容器壁に設けた貫通孔に挿通し、前
記発熱体の線膨脹と前記炉容器壁の線膨脹との差
が働いて相互間の接合圧を高める傾斜部を内方か
ら外方に向つて大きくなる径を有するようにシー
ル孔を前記貫通孔周壁に形成し、前記保護管と前
記傾斜部との隙間にシール材を充填して前記保護
管を支持し、前記貫通孔から炉外方に向つて続く
導通孔を有する絶縁性かつ断熱性セラミツク管を
前記保護管に連接させ、前記セラミツク管を介し
て前記保護管に内装された前記発熱体と外部電源
とを電気接続し、前記炉容器外周には断熱ブラン
ケツトを多重に重ねると共に外装材でブランケツ
トを固定し、前記溶湯汲出室上方に位置する開閉
可能な汲出蓋部を備えた密閉蓋部材を前記炉容器
上部に取り付けたことを特徴とするものである。
The underheater type low melting point metal molten metal holding furnace of the present invention contains 50-99wt% Al 2 O 3 and 0.5-50wt%
A molten metal pumping chamber is constructed by integrally molding or assembling at least one partition wall in a furnace vessel that is integrally formed with a castable refractory whose main component is SiO 2 , and a molten metal transfer chamber is formed at the bottom of the partition wall. one or more protective tubes containing a heating element are disposed at the bottom of the furnace vessel, one sealed end of which is supported without being fixed within the furnace vessel, and the other end is open; is inserted into a through hole provided in the wall of the furnace vessel, and a sloped portion is inserted from the inside to the outside to increase the bonding pressure between them due to the difference between the linear expansion of the heating element and the linear expansion of the wall of the furnace vessel. A seal hole is formed in the peripheral wall of the through hole so as to have a diameter that increases as the diameter increases. An insulating and heat-insulating ceramic tube having a conduction hole extending in the direction is connected to the protective tube, and the heating element housed in the protective tube is electrically connected to an external power source via the ceramic tube. Insulating blankets are layered on the outer periphery of the furnace vessel, the blankets are fixed with exterior materials, and a sealing lid member having an openable and closable pumping lid located above the molten metal pumping chamber is attached to the upper part of the furnace vessel. This is a characteristic feature.

以下、図面を参照してアルミニウム溶湯におけ
る本発明の好適な実施例について説明する。
Hereinafter, preferred embodiments of the present invention in molten aluminum will be described with reference to the drawings.

第1図において低融点金属溶湯保持炉1の炉壁
3には貫通孔9が形成されている。この実施例の
アンダーヒーター型保持炉は、外側から順に外装
材の炉殻4、断熱材10及びキヤスタブル耐火物
炉容器3の三層構造になつている。アルミニウム
溶湯Aは耐火物炉容器3内に入れる。アルミニウ
ム溶湯Aは耐熱性、耐侵食性セラミツクス質で保
護された発熱体の浸漬ヒーターHにより加熱され
る。浸漬ヒーターHは、この例では保護管2と保
護管2の中に入れた発熱体により構成される。炉
容器3を作る為のキヤスタブル耐火物として50〜
99.5wt%のAl2O3と0.5〜50wt%のSiO2を主成分
とする組成物が好ましく、その成分は目的に適う
均等成分に変えてもよい。発熱体として、例えば
金属線や炭化けい素製発熱体などが例示され、耐
熱、耐侵食性に優れるセラミツクスとしてSiC系
が保護管として好ましい。このSiC材を使用する
時は、発熱体との間に所要の電気抵抗を与えて発
熱体から保護材を介する漏電をふせぐ。
In FIG. 1, a through hole 9 is formed in a furnace wall 3 of a low melting point metal molten metal holding furnace 1. As shown in FIG. The under-heater type holding furnace of this embodiment has a three-layer structure consisting of a furnace shell 4 as an exterior material, a heat insulating material 10, and a castable refractory furnace vessel 3 in order from the outside. Molten aluminum A is placed in a refractory furnace vessel 3. Molten aluminum A is heated by an immersion heater H, which is a heating element protected by a heat-resistant, corrosion-resistant ceramic material. In this example, the immersion heater H is composed of a protective tube 2 and a heating element placed in the protective tube 2. 50~ as castable refractory material for making furnace vessel 3
A composition based on 99.5 wt% Al 2 O 3 and 0.5 to 50 wt% SiO 2 is preferred, and the components may be changed to equivalent components to suit the purpose. Examples of the heating element include a metal wire and a heating element made of silicon carbide, and SiC-based ceramics having excellent heat resistance and corrosion resistance are preferable for the protective tube. When using this SiC material, the necessary electrical resistance is provided between it and the heating element to prevent electrical leakage from the heating element through the protective material.

密閉蓋部材1′は、溶湯補充漏斗14と、セン
サー16を備える。第2図は、密閉蓋部材1′に
備えた溶湯汲出部1dを示し、把手1eを以て、
この汲出部1dを開閉する。この開閉はスライド
方式によつてでもよい。汲出部1dの下部には後
述する溶湯汲出室1aが臨む。センサー16に
は、溶湯面上限位置を検出する上限センサー16
bと下限位置を検討するための下限センサー16
cと共に、溶湯温度を検出する為の温度センサー
16aがある。この例では、特別に温度センサー
16aを保護する為のSiC製先端閉塞管16dを
使用し、これと後述する第4図中のリード線6′
付のステンレスリング6との間に、例えば12V
の電圧をかける。
The sealing lid member 1' includes a molten metal replenishment funnel 14 and a sensor 16. FIG. 2 shows the molten metal pumping part 1d provided in the sealing lid member 1', and the handle 1e is used to draw out the molten metal.
This pumping part 1d is opened and closed. This opening and closing may be done by a sliding method. A molten metal pumping chamber 1a, which will be described later, faces the lower part of the pumping section 1d. The sensor 16 includes an upper limit sensor 16 that detects the upper limit position of the molten metal surface.
b and a lower limit sensor 16 for examining the lower limit position.
In addition to c, there is a temperature sensor 16a for detecting the temperature of the molten metal. In this example, a SiC end-blocking tube 16d is used to specifically protect the temperature sensor 16a, and a lead wire 6' shown in FIG. 4, which will be described later, is used.
For example, 12V between the attached stainless steel ring 6
Apply voltage.

第4図において、貫通孔9には炉容器3の側壁
下部外側に開いたテーパーネジ部9aが形成され
ている。この傾斜部として形成されるテーパーネ
ジ部9aに保護管2の開口した端部2aを通して
支持する。保護管2とテーパーネジ部9aとの隙
間にはシール材12を充填する。
In FIG. 4, the through hole 9 is formed with a tapered threaded portion 9a that opens outward from the bottom of the side wall of the furnace vessel 3. As shown in FIG. The open end 2a of the protective tube 2 is passed through the tapered threaded portion 9a formed as this inclined portion and supported. A sealing material 12 is filled in the gap between the protective tube 2 and the tapered threaded portion 9a.

保護管2をSiCで作り、上例のキヤスタブル組
成物により炉容器を作つた時の両者の線膨脹率
は、後者が若干大きい。テーパーネジ部9aが有
する傾斜部は、炉容器壁3が線膨脹する時、この
ネジ部9a内に詰められたシール材に対して接合
圧を高めるように作用する結果、シール機能は堅
固に働く。アルミニウム、亜鉛、銅、あるいはこ
れらの合金の溶湯が持つ大きな浸透力に対して、
このような傾斜部を有するシール手段は、効果的
に働き、アンダーヒーターの弱点を解消する。シ
ール材のモルタルは、フアイバーを入れたコロイ
ダルモルタルを使用し、フアイバーにはカーボン
フアイバー、アルミナーシリカ系セラミツクフア
イバー系が使用される。
When the protective tube 2 is made of SiC and the furnace vessel is made of the castable composition of the above example, the coefficient of linear expansion of both is slightly larger in the latter. When the furnace vessel wall 3 linearly expands, the inclined portion of the tapered threaded portion 9a acts to increase the bonding pressure against the sealing material filled in the threaded portion 9a, so that the sealing function works firmly. . Due to the large penetrating power of molten aluminum, zinc, copper, or their alloys,
A sealing means having such a sloped portion works effectively and eliminates the weak points of the underheater. The sealing material mortar is colloidal mortar containing fibers, and the fibers are carbon fibers, alumina-silica ceramic fibers.

保護管2の一端は開口した端部2aとなつてい
るが、他端は封じられた端部2bとなつている。
炉容器3の底部内面には支持台11が設けられて
いる。支持台11と貫通孔9は対向した位置にあ
る。支持台11には保護管2の端部2bが固定さ
れずに自由端としてのせられ、熱膨脹の際の保護
管の移動を許してその破損を未然に防ぐ。このよ
うに貫通孔9のシール孔にモルタル詰めによつて
保護管2を片持ちさせる例においては、他端が固
定されない自由端であるから、熱膨脹差がモルタ
ルシール面にずれを起させるおそれもよく解決さ
れる。
One end of the protective tube 2 is an open end 2a, and the other end is a closed end 2b.
A support stand 11 is provided on the inner surface of the bottom of the furnace vessel 3 . The support base 11 and the through hole 9 are located at opposing positions. The end portion 2b of the protective tube 2 is placed on the support stand 11 as a free end without being fixed, allowing movement of the protective tube during thermal expansion and preventing damage to the protective tube. In this example where the sealing hole of the through hole 9 is filled with mortar to cantilever the protective tube 2, since the other end is a free end that is not fixed, there is a risk that the difference in thermal expansion will cause the mortar seal surface to shift. well resolved.

キヤスタブル組成物がSiを含む時、保持溶湯が
アルミニウムである場合、このSiはAlと化学反
応して消耗する。そのため、SiO2成分は、好ま
しくは50wt%以下が良く、例えば40wt%に止め
Al2O360wt%以上とするものがよい。Alと馴みの
悪いBNコートを炉容器内面に形成する場合Siの
消耗を相当に抑制できるから、組成コントロール
に代えたBNコートの併用も好ましい実施法とな
る。
When the castable composition contains Si and the retained molten metal is aluminum, this Si chemically reacts with Al and is consumed. Therefore, the SiO 2 component is preferably 50wt% or less, for example, 40wt%.
The content of Al 2 O 3 is preferably 60 wt% or more. If a BN coat, which is not compatible with Al, is formed on the inner surface of the furnace vessel, the consumption of Si can be considerably suppressed, so a combination of the BN coat in place of composition control is also a preferred method.

貫通孔9に続けて断熱ブランケツト10中には
設けた導通孔9′を有する絶縁性と断熱性に優れ
るセラミツクス・フアイバー成形管8が通してあ
る。第4図に詳しく示してあるように、セラミツ
クス・フアイバー成形管8の一端にはフランジ部
8aで保護管2とシール材12を押えるように構
成されている。フランジ部8a外周にはセンサー
6が装着されている。センサー6はアルミニウム
溶湯Aのリークを検知するためのものである。セ
ンサー6はステンレス線かニクロム線が好まし
く、リード線6′により炉外部の電源に導かれて
いる。この位置に溶湯が浸透した時、線材間が短
絡して変化する電気抵抗を利用するの方法が上例
とは別の実施法としてとらえ得る。或は浸透金属
と化学変化を起して変る電気抵抗を検出する方法
も利用できる。その他熱感知式のリークセンサー
も使用できる。リード線6′はセラミツクス・フ
アイバー成形管8に沿つて導かれている。上述の
ように、保護管16dとセンサー6との間に電圧
をかける場合、金属溶湯がセンサー6に浸透して
接触する時、この浸透は電気回路を形成して、直
ぐに検出される。尚保護管2が破損した場合アル
ミニウムと発熱抵抗体とが接触することになり、
抵抗が大きく変化することから、その変化を検知
器で検知し、ブザーを鳴らし電源をカツトする制
御装置も安全操業上設けるとよい。
Continuing from the through hole 9, a ceramic fiber molded tube 8 having excellent insulating and heat insulating properties and having a through hole 9' is passed through the heat insulating blanket 10. As shown in detail in FIG. 4, one end of the ceramic fiber molded tube 8 is configured to hold down the protective tube 2 and the sealing material 12 with a flange portion 8a. A sensor 6 is attached to the outer periphery of the flange portion 8a. The sensor 6 is for detecting leakage of the molten aluminum A. The sensor 6 is preferably a stainless steel wire or a nichrome wire, and is led to a power source outside the furnace by a lead wire 6'. An alternative implementation method to the above example is to utilize the electric resistance that changes due to short circuit between the wires when the molten metal penetrates into this position. Alternatively, a method of detecting electrical resistance that changes due to a chemical change with the penetrating metal can also be used. Other heat-sensing leak sensors can also be used. Lead wire 6' is guided along ceramic fiber molded tube 8. As described above, when a voltage is applied between the protection tube 16d and the sensor 6, when the molten metal penetrates into the sensor 6 and comes into contact with it, this penetration forms an electric circuit and is immediately detected. In addition, if the protective tube 2 is damaged, the aluminum and the heating resistor will come into contact with each other.
Since the resistance changes significantly, it is recommended to install a control device that detects the change with a detector, sounds a buzzer, and cuts off the power for safe operation.

第3図はアンダーヒーターの加熱特性を最大限
に高めると共に熱放散を高度に抑制する効果を上
げた隔壁13aによる汲出室1aを例示する。開
口13bは溶湯移動手段の一例である。ここでは
T字状直交隔壁を示すが、汲出口の形状対応させ
て炉容器3を横断する単一隔壁の構造或はコ字状
隔壁の構造も熱保持能力増大の目的を達成でき、
また直交十字隔壁等の隔壁構造等の種類から炉容
器の容量及び汲出し作業頻度、さらには汲出し手
段に応じて隔壁構造を自在に変更できる。この例
のT字状隔壁13aでは漏斗14の下方に位置す
る溶湯補充室1cと、その横に位置する保持室1
bとを区割し、汲出室1aは炉容器3の約1/4に
制限してある。センサー16は、ここでは保持室
1b内の溶湯内に垂下する。アンダーヒーターH
を通す穴を大きくした移動孔13bによつて、矢
印図示のように、補充室1cに供給されたアルミ
ニウム溶湯は、保持室1b及び汲出室1aに移動
する。この時に上面に浮遊している不純物の移動
を抑制でき、フイルターの効果を有する。又上述
のキヤスタブル組成物を使用した時720℃の溶湯
アルミニウムに対して汲出室1a内の溶湯温度を
714℃に維持できるから、汲出室1a上部を汲出
しの為に開放した時、ここからの熱発散をこの隔
壁が顕著に抑制する効果を示す。アンダーヒーテ
イングの熱は溶湯にその底部から効果的に吸収さ
れ、溶湯面上方からの熱の放散はこの隔壁により
著しく小さくコントロールされる。このように、
密閉蓋部材1′の取り付けはアンダーヒーテイン
グ方式により可能にされた新規で重要な構成であ
る。
FIG. 3 illustrates a pumping chamber 1a with a partition wall 13a that maximizes the heating characteristics of the under heater and highly suppresses heat dissipation. The opening 13b is an example of molten metal moving means. Although a T-shaped orthogonal partition wall is shown here, a single partition wall structure or a U-shaped partition wall structure that crosses the furnace vessel 3 in accordance with the shape of the pump outlet can also achieve the purpose of increasing heat retention capacity.
Further, the partition structure can be freely changed depending on the type of partition structure such as an orthogonal cross partition, the capacity of the furnace vessel, the pumping operation frequency, and further the pumping means. In the T-shaped partition wall 13a of this example, there is a molten metal replenishment chamber 1c located below the funnel 14 and a holding chamber 1 located beside it.
b, and the pumping chamber 1a is limited to about 1/4 of the furnace vessel 3. The sensor 16 here hangs into the molten metal in the holding chamber 1b. Under heater H
The molten aluminum supplied to the replenishing chamber 1c moves to the holding chamber 1b and the pumping chamber 1a, as indicated by the arrow, through the moving hole 13b having a larger hole. At this time, the movement of impurities floating on the upper surface can be suppressed, and it has the effect of a filter. In addition, when using the above-mentioned castable composition, the temperature of the molten metal in the pumping chamber 1a is
Since the temperature can be maintained at 714°C, when the upper part of the pumping chamber 1a is opened for pumping, this partition wall has the effect of significantly suppressing heat dissipation from here. The heat of underheating is effectively absorbed into the molten metal from its bottom, and the heat dissipation from above the molten metal surface is controlled to be extremely small by this partition wall. in this way,
The attachment of the sealing lid member 1' is a new and important configuration made possible by the underheating method.

溶湯上面とその底部の温度差は従来実用保持炉
より小さく保持される為、汲出室1aから、鋳込
みの為に汲出し得る溶湯の汲出率は従来の40%程
度から60%以上になり、一方、昼夜の溶湯保持炉
効率は95%以上となつて、これより消費電力は従
来外熱型の1/6以下にでき、温度制御精度は±3
℃の高水準に高めることが可能となつた。
Since the temperature difference between the top surface of the molten metal and its bottom is kept smaller than in conventional holding furnaces, the pumping rate of the molten metal that can be pumped out from the pumping chamber 1a for casting has increased from about 40% in the past to more than 60%. The day and night molten metal holding furnace efficiency is over 95%, which means power consumption can be reduced to less than 1/6 of the conventional external heating type, and temperature control accuracy is ±3.
It became possible to raise the temperature to a high level.

隔壁13aによる増大された溶湯保持能力を、
更に活用する為に溶湯補充手段も併せて開発され
た。第1図のセラミツクス製漏斗14は内壁を下
に向つて狭くするテーパ面14aを持ち、その下
部孔15aには金網を内蔵させて一体成形したセ
ラミツク管15を嵌合されている。金属溶湯に対
して十分な強度と耐熱性を有するこのセラミツク
管15の内径を30mm程度に制限しても実用でき
る。このように小孔とした場合、溶解炉から随伴
して来るスラグを通さずに溶湯だけを保持炉容器
3内に補充することができる。不純物混入を実質
的にゼロに管理できる点は、保持炉として、又別
に特筆される特徴となる。ドロスの発生も従来実
用保持炉と比べる場合、相当に抑えられている。
The increased molten metal holding capacity by the partition wall 13a,
A means for replenishing molten metal was also developed for further utilization. The ceramic funnel 14 shown in FIG. 1 has a tapered surface 14a that narrows the inner wall downward, and a ceramic tube 15 integrally molded with a wire gauze built into the lower hole 15a is fitted into the lower hole 15a. This ceramic tube 15, which has sufficient strength and heat resistance against molten metal, can be put to practical use even if the inner diameter is limited to about 30 mm. When the holes are formed in this way, only the molten metal can be replenished into the holding furnace container 3 without passing the slag accompanying the melting furnace. The ability to control impurity contamination to virtually zero is another noteworthy feature of the holding furnace. The generation of dross is also considerably suppressed when compared with conventional holding furnaces.

炉容器3を支持する為の保持炉底部構造の一例
は第1図に示される。底部支持部17と炉容器3
の底部との間にはセラミツクチユーブ17aが適
宜間隔に多数配置される。そしてチユーブ17a
内にはフアイバーバルク17bが詰められ、熱の
対流による発散を防止する。底部構造は、これに
より十分に安定し、かつ底部からの熱の放散が十
分に抑制される炉容器3の外周に巻き付ける断熱
材10の多層、好ましくは十層以上に重ねられる
断熱ブランケツト間にはアルミ箔が適宜挿入され
るとよい。AI箔の熱反射力により熱の対流を抑
止して熱保持能力をより確実にできるばかりでな
く、金属溶湯の持つ大きな浸透力がブランケツト
を浸透した場合、AI箔がこの浸透を効果的に防
止できる。
An example of a holding furnace bottom structure for supporting the furnace vessel 3 is shown in FIG. Bottom support 17 and furnace vessel 3
A large number of ceramic tubes 17a are arranged at appropriate intervals between the bottom part of the ceramic tube and the bottom part of the ceramic tube. and tube 17a
A fiber bulk 17b is filled inside to prevent heat from dissipating due to convection. The bottom structure is provided between multiple layers of insulation blankets, preferably ten or more layers, of insulation material 10 wrapped around the outer circumference of the furnace vessel 3, thereby making it sufficiently stable and sufficiently suppressing the dissipation of heat from the bottom. It is advisable to insert aluminum foil as appropriate. The heat reflective power of AI foil not only suppresses heat convection to ensure heat retention ability, but also effectively prevents the penetration of molten metal into the blanket when it penetrates the blanket. can.

又発熱体Hとして保護管2内にSiC等の発熱体
を入れて使用する場合、石綿、マグネシア粉末、
セラミツクフアイバー等を管中に詰めるのが好ま
しい。保護管2が割れた場合の溶湯の流出はアン
ダーヒーターHへの通電の遮断による冷却ととも
に凝固し、この詰め物は自己閉塞を促して流出事
故をよく防止する。
In addition, when using a heating element such as SiC in the protective tube 2 as the heating element H, asbestos, magnesia powder,
It is preferable to fill the tube with ceramic fiber or the like. If the protective tube 2 is cracked, the molten metal that flows out will solidify as it cools down by cutting off the power supply to the under heater H, and this filling will promote self-occlusion and effectively prevent leakage accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例を示すアンダーヒーター
型アルミニウム保持炉の断面図、第2図はその平
面図、第3図は炉容器底部隔壁構造の一例を示す
第1図示X―Xに沿う断面図、第4図は第1図の
テーパーネジ部9aの部分を示すために周辺を省
略した部分拡大断面図である。 1……保持炉、1′……密閉部材、1a……汲
出室、2……保護管、3……炉容器、9……貫通
孔、12……シール材、13a……隔壁、A……
溶湯、H……発熱体。
Fig. 1 is a sectional view of an underheater type aluminum holding furnace showing an example of the present invention, Fig. 2 is a plan view thereof, and Fig. 3 is a cross section taken along line XX in the first drawing showing an example of the partition wall structure at the bottom of the furnace vessel. 4 are partially enlarged cross-sectional views of the tapered threaded portion 9a of FIG. 1, with the periphery omitted to show the tapered threaded portion 9a. DESCRIPTION OF SYMBOLS 1... Holding furnace, 1'... Sealing member, 1a... Pumping chamber, 2... Protection tube, 3... Furnace container, 9... Through hole, 12... Sealing material, 13a... Partition wall, A... …
Molten metal, H...heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 50〜99wt%のAl2O3と0.5〜50wt%のSiO2
主成分とするキヤスタブル耐火物で一体成形され
る炉容器内に、少くとも一枚以上の隔壁を一体成
形あるいは組立により形成して溶湯汲出室を構成
し、該隔壁には溶湯移動を許す開口手段を備え、
該炉容器底部に発熱体を内装した保護管を一本以
上配設し、該保護管の封じられた一端は炉容器内
に固定されずに支持されかつ開口した他端は前記
炉容器壁に設けた貫通孔に挿通し、前記発熱体の
線膨脹と前記炉容器壁の線膨脹との差が働いて相
互間の接合圧を高める傾斜部を内方から外方に向
つて大きくなる径を有するようにシール孔を前記
貫通孔周壁に形成し、前記保護管と前記傾斜部と
の隙間にシール材を充填して前記保護管を支持
し、前記保護管に内装された前記発熱体と外部電
源とを電気接続し、前記炉容器外周には断熱ブラ
ンケツトを多重に重ねると共に外装材でブランケ
ツトを固定し、前記溶湯汲出室上方に位置する開
閉可能な汲出蓋部を備えた密閉蓋部材を前記炉容
器上部に取り付けたことを特徴とするアンダーヒ
ーター型低融点金属溶湯保持炉。
1 At least one partition wall is formed by integral molding or assembly in a furnace vessel that is integrally molded with a castable refractory whose main components are 50 to 99 wt% Al 2 O 3 and 0.5 to 50 wt % SiO 2 to constitute a molten metal pumping chamber, and the partition wall is provided with an opening means for allowing movement of the molten metal,
One or more protective tubes containing a heating element are disposed at the bottom of the furnace vessel, one sealed end of which is supported without being fixed within the furnace vessel, and the other open end of the protective tube is attached to the wall of the furnace vessel. The diameter increases from the inside to the outside of the sloping part that is inserted into the provided through hole and increases the bonding pressure between them due to the difference between the linear expansion of the heating element and the linear expansion of the wall of the furnace vessel. A sealing hole is formed in the peripheral wall of the through hole so that the protective tube is supported by filling a gap between the protective tube and the sloped portion with a sealing material, and the heating element housed in the protective tube and the external A power supply is electrically connected to the reactor vessel, heat insulating blankets are layered around the outer periphery of the furnace vessel, and the blankets are fixed with an exterior material, and a sealing lid member having an openable and closable pumping lid located above the molten metal pumping chamber is installed. An under heater type low melting point metal molten metal holding furnace characterized by being attached to the top of the furnace vessel.
JP17312783A 1983-09-21 1983-09-21 Underheater type low melting-point metal molten metal holding furnace Granted JPS6066085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17312783A JPS6066085A (en) 1983-09-21 1983-09-21 Underheater type low melting-point metal molten metal holding furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17312783A JPS6066085A (en) 1983-09-21 1983-09-21 Underheater type low melting-point metal molten metal holding furnace

Publications (2)

Publication Number Publication Date
JPS6066085A JPS6066085A (en) 1985-04-16
JPS6357487B2 true JPS6357487B2 (en) 1988-11-11

Family

ID=15954623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17312783A Granted JPS6066085A (en) 1983-09-21 1983-09-21 Underheater type low melting-point metal molten metal holding furnace

Country Status (1)

Country Link
JP (1) JPS6066085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387186U (en) * 1989-12-25 1991-09-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387186U (en) * 1989-12-25 1991-09-04

Also Published As

Publication number Publication date
JPS6066085A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
JP4809847B2 (en) Molten copper casting rod
RU2358831C2 (en) Heated flute for molten metal
US8236234B2 (en) Container for molten metal
US5120027A (en) Heater arrangement for aluminum refining systems
CA2807856C (en) Device for measuring the temperature in molten metal
JP3288791B2 (en) Temperature measuring device for molten metal
US4556202A (en) Under-heater type furnace
JPS6357487B2 (en)
US4717126A (en) Apparatus for holding and refining of molten aluminum
US6772921B2 (en) Refractory nozzle
JPH11108560A (en) Heat insulation furnace and gutter for molten metal
JP4534048B2 (en) Metal molten metal bowl
KR880003772Y1 (en) Under-heater type furnaces
JP3341780B2 (en) Crucible for vacuum deposition equipment
JPH04295593A (en) Induction furnace
JPH11176564A (en) Immersed heater for molten metal
JP3058138U (en) Immersion heater
JPS636383A (en) Under heater type holding furnace
JP3118976B2 (en) Crucible induction furnace
RU100852U1 (en) THERMOELECTRIC CONVERTER FOR HIGH TEMPERATURE AND AGGRESSIVE MEDIA
JPS61501858A (en) Improvement of processing device for passing liquid metal or alloy flow containing aluminum or magnesium as a main component
KR870004755A (en) Injection device of molten metal in die casting machine
JP3056334U (en) Immersion heater for molten aluminum holding furnace
JPH0231308B2 (en)
JPS5770072A (en) Heat insulating device for molten metal