JPS6357149B2 - - Google Patents

Info

Publication number
JPS6357149B2
JPS6357149B2 JP7004182A JP7004182A JPS6357149B2 JP S6357149 B2 JPS6357149 B2 JP S6357149B2 JP 7004182 A JP7004182 A JP 7004182A JP 7004182 A JP7004182 A JP 7004182A JP S6357149 B2 JPS6357149 B2 JP S6357149B2
Authority
JP
Japan
Prior art keywords
data
axis direction
detection
welding
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7004182A
Other languages
Japanese (ja)
Other versions
JPS58187265A (en
Inventor
Masao Murata
Yoshikazu Yokose
Keiichi Kobayashi
Seiichiro Tamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7004182A priority Critical patent/JPS58187265A/en
Publication of JPS58187265A publication Critical patent/JPS58187265A/en
Publication of JPS6357149B2 publication Critical patent/JPS6357149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1276Using non-contact, electric or magnetic means, e.g. inductive means

Description

【発明の詳細な説明】 本発明は、光学式の距離計を用いた非接触方法
の溶接線の位置および形状の検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact method for detecting the position and shape of a weld line using an optical distance meter.

近年、小型・軽量の取扱い容易なスポツト光を
用いた光学式の距離計が開発され、位置や形状検
出のために積極的に使用されるようになつてき
た。
In recent years, optical distance meters that use spot light, which are small, lightweight, and easy to handle, have been developed and are now being actively used for position and shape detection.

一例を述べると、第1図において、スポツト光
照射装置1はレーザダイオードやLED等の光源
2をレンズ系3で所定のサイズのスポツト光とし
て照射できるようになつており、スポツト光照射
装置1の光軸と受光装置4の光軸のなす角θと、
スポツト光照射装置1と受光装置4の位置関係が
既知になつている。いま面A,Bの位置は受光装
置4のレンズ系5とポジシヨンセンサ(スポツト
光像の光量の重心の位置を出力するセンサ)等の
受光センサ6上に結像するスポツト光像の位置か
ら三角法の原理により求められる。受光装置4に
より得られた距離データを処理装置7に転送して
マイクロコンピユータ等で処理を行つて、位置が
形状検出を行つている。
To give an example, in FIG. 1, a spot light irradiation device 1 is configured to be able to irradiate a light source 2 such as a laser diode or LED as a spot light of a predetermined size using a lens system 3. An angle θ between the optical axis and the optical axis of the light receiving device 4,
The positional relationship between the spot light irradiation device 1 and the light receiving device 4 is already known. The positions of the current planes A and B are determined from the position of the spot light image formed on the lens system 5 of the light receiving device 4 and the light receiving sensor 6 such as a position sensor (a sensor that outputs the position of the center of gravity of the light amount of the spot light image). It is determined by the principles of trigonometry. Distance data obtained by the light receiving device 4 is transferred to the processing device 7 and processed by a microcomputer or the like to detect the position and shape.

前記光学式の距離計を溶接線の位置や形状の検
出に適用しようとした場合、第2図の溶接ワーク
8のV開先部9の距離検出部10の例について述
べると、次のような問題点がある。
When applying the optical distance meter to detect the position and shape of a weld line, the distance detection section 10 of the V-groove section 9 of the welding workpiece 8 in FIG. 2 will be described as follows. There is a problem.

第3図において、aは溶接ワーク8の距離検出
部10のVパターンであり、エツジ点A,B,C
の位置を検出することによつて溶接線の位置(点
B)や溶接条件すなわち溶融する鉄の量(三角形
ABCの面積)を決めることができる。bは距離
計を用いて溶接線とほぼ直角方向に溶接ワーク面
までの距離を検出した点をプロツトし、線を結ん
だものである。エツジ部は丸味をおびエツジ点
A′,B′,C′の位置が正確に検出できない。これ
は検出に用いるスポツト光径のサイズが0.5〜5
mmと面積ともつことに起因する。処理装置7にお
いて、エツジ部のデータを除いた適当な範囲のデ
ータを用いて、直線D′A′,A′B′,B′C′,C′E′,
の方程式を求め、前記直線の交点からA′,B′,
Cの位置を求めることができる。
In FIG. 3, a is a V pattern of the distance detection part 10 of the welding work 8, and edge points A, B, C
By detecting the position of the weld line (point B) and the welding conditions, that is, the amount of melted iron (triangle
The area of ABC) can be determined. b is a graph obtained by plotting the distance to the welding workpiece surface in a direction substantially perpendicular to the welding line using a distance meter and connecting the plots. The edge part is rounded and the edge point
The positions of A′, B′, and C′ cannot be detected accurately. This means that the size of the spot light diameter used for detection is 0.5 to 5.
This is due to the fact that it has mm and area. In the processing device 7, straight lines D'A', A'B', B'C', C'E',
Find the equation of A′, B′, from the intersection of the above straight lines.
The position of C can be found.

しかし、cは距離検出部10にスパツタやごみ
等のために凸部F、ノツチ(切欠)等のために凹
部Gがある。このため前記bの例のようにエツジ
点A″,B″,C″を正確に求めることができない。
However, in c, the distance detecting portion 10 has a convex portion F for spatter and dirt, and a concave portion G for a notch. For this reason, it is not possible to accurately determine the edge points A'', B'', and C'' as in the example b above.

溶接ワーク8は一般に仮付溶接が行われるので
スパツタ等が多く付着しており、また一般に溶接
作業環境はよくないのでフラツクスや錆等のごみ
も多く、また溶接ワーク8自体に部分的なノツチ
等が多いので、距離計による溶接線の検出は非常
に限られた場合にしか適用できなかつた。
The welding work 8 is generally subjected to tack welding, so there are many spatters, etc., and the welding work environment is generally not good, so there is a lot of debris such as flux and rust, and the welding work 8 itself has some notches etc. Detection of weld lines using a rangefinder could only be applied in very limited cases.

本発明は、前述のような点に留意してなされた
ものであり、溶接ワーク表面に付着したスパツタ
やごみ等の凸部的な障害およびノツチ等の凹部的
な障害を除去して正確に溶接線の位置および形状
を検出しようとするものである。
The present invention has been made with the above-mentioned points in mind, and it is possible to accurately weld by removing convex obstacles such as spatter and dirt attached to the surface of the welding workpiece, and concave obstacles such as notches. It attempts to detect the position and shape of a line.

すなわち、光学的距離計を用い、溶接線とほぼ
直角方向(X軸方向)に溶接ワーク面までの距離
を一定ピツチ毎に検出し、前記検出動作を溶接線
方向(Z軸方向)に一定ピツチ毎に一定回数行う
ことにより得られる検出データの集合で、かつX
軸方向の検出位置が同一のものの集合の平均値も
しくはそのうちの最大値のものと最小値のものま
たはいずれか一方を除外し残りのものの平均値と
順次とり、前記平均値の集合をX軸方向のデータ
とすることにより、第3図のbのようなパターン
が得られる。一回のX軸方向の検出データ集合の
なかにはスパツタ等の影響を受けて正しく溶接ワ
ーク表面までの距離を検出していないものがある
が、溶接線のX軸方向の位置や溶接条件を同じと
みなしてよいZ軸方向の一定ピツチ内の前記検出
位置と異つた位置で前記スパツタ等の影響を受け
たX軸の検出位置が同一の所で前記と同じように
スパツタの影響を受けることは少ないためであ
る。1個のスパツタ粒子の径は1mm以下のものが
多く、通常の場合、Z軸方向の2ケ所以上の異つ
た位置での検出データに大きな影響を与えること
はほとんどない。
That is, using an optical distance meter, the distance to the welding workpiece surface is detected at regular intervals in a direction approximately perpendicular to the welding line (X-axis direction), and the detection operation is performed at regular intervals in the welding line direction (Z-axis direction). A set of detection data obtained by performing the test a certain number of times, and
The average value of a set of detection positions in the axial direction is the same, or the maximum value and/or the minimum value are excluded and the average value of the remaining ones is taken sequentially, and the set of average values is calculated in the X-axis direction. By using the data as shown in FIG. 3, a pattern as shown in b in FIG. 3 can be obtained. In the set of detection data in the X-axis direction at one time, the distance to the welding workpiece surface may not be detected correctly due to the influence of spatter, etc. However, if the position of the welding line in the X-axis direction and welding conditions are the same, A detection position on the X-axis that is affected by the spatter, etc. at a position different from the detection position within a certain pitch in the Z-axis direction that can be considered as a certain pitch is unlikely to be affected by spatter in the same place as above. It's for a reason. The diameter of a single spatter particle is often 1 mm or less, and in normal cases, it hardly affects detection data at two or more different positions in the Z-axis direction.

以下本発明の具体的実施例について説明する。 Specific examples of the present invention will be described below.

実施例 溶接線の倣いを行いながら溶接を行つていく自
動溶接装置の倣い装置の一部として、溶接線方向
(Z軸方向)すなわち自動溶接装置の進行方向に
対してほぼ直角方向(X軸方向)に揺動する揺動
装置を用いる。第4図において、Z軸方向の距離
検出部11のm1で溶接ワーク8に対して適当な
位置になるように前記揺動装置に取付けられた光
学的距離計12を用い、X軸方向のx1〜xlまで
(10〜100mm)前記溶接ワーク8の表面までの距離
を一定ピツチ(Wx=0.1〜5mm)毎に検出する。
前記検出動作をZ軸方向にWz′(1〜10mm)進ん
だm2、さらにWz′進んだm3、…と前記検出動作
をZ軸方向に一定ピツチ(Wz=5〜50mm)毎に
一定回数(k=2回以上)行う。処理装置7にお
いて前記検出動作により得られる検出データ
(l・k個)の集合で、かつX軸方向の検出位置
が同一のものの集合(k個)のうちスパツタ1
3、ごみ等の影響を受けたと考えられる最大値の
もの、ノツチ等の影響を受けたと考えられる最小
値のものを除去し、残りのものの平均値を順次と
つていく処理を行うことにより、X軸方向の代表
データを得ることができ、スパツタ等の障害があ
るときでも第3図のbに近いデータが得られ、溶
接線の位置および形状の検出が容易にできるよう
になる。距離計のスポツト光径サイズを小さいも
の(1mm以下)を用いれば、前記処理によつて得
られた平均値のデータから、従来例のように直線
の方程式を求め、次に前記直線の交点を求めると
いう方法をとらなくても、微分を行つて極値を求
めるという方法によつても溶接線の位置および形
状を検出することができる。スパツタの粒子サイ
ズは2mmφ以下のものが大部分であり、1ケのス
パツタがZ軸方向の距離検出部11のm1とm2
ように2ケ所以上でセンサ精度に影響を与えるこ
とは少ない。検出するために必要な距離情報は、
X軸方向のものは揺動装置のモータ等の回転軸部
に、Z軸方向のものは自動溶接装置の台車の回転
軸部にパルスエンコーダ等を取付けることによつ
て得ることができる。また揺動装置に距離計を取
付けてX軸方向の距離を検出する代りに、ミラー
を制御してスポツト光のX軸方向の照射位置を変
えて距離検出するものでも同様に行えることは明
らかである。
Example As part of the copying device of an automatic welding device that performs welding while copying the welding line, welding is carried out in the direction of the welding line (Z-axis direction), that is, in a direction almost perpendicular to the direction of movement of the automatic welding device (X-axis direction). ) is used. In FIG. 4, the optical distance meter 12 attached to the swinging device is used so that m 1 of the distance detection unit 11 in the Z-axis direction is at an appropriate position with respect to the welding work 8. The distance to the surface of the welding work 8 from x 1 to x l (10 to 100 mm) is detected at regular intervals (W x =0.1 to 5 mm).
m 2 by advancing the detection operation by W z ′ (1 to 10 mm) in the Z-axis direction, m 3 by further advancing W z ′, and so on, and then repeating the detection operation at a constant pitch in the Z-axis direction (W z = 5 to 50 mm). Each time, a certain number of times (k = 2 or more times) are performed. The spatter 1 is a set of detection data (l·k pieces) obtained by the above-mentioned detection operation in the processing device 7, and among the set (k pieces) of data with the same detection position in the X-axis direction.
3. By removing the maximum value that is thought to have been affected by dust, etc., and the minimum value that is thought to have been affected by notches, etc., and sequentially taking the average value of the remaining values, Representative data in the axial direction can be obtained, and even when there is an obstacle such as spatter, data close to that shown in FIG. 3b can be obtained, and the position and shape of the weld line can be easily detected. If you use a rangefinder with a small spot light diameter (1 mm or less), you can calculate the equation of a straight line from the average value data obtained by the above process as in the conventional example, and then find the intersection of the straight lines. The position and shape of the weld line can also be detected by performing differentiation and finding the extreme value, without using this method. The particle size of most spatters is 2 mmφ or less, and one spatter rarely affects sensor accuracy at two or more locations, such as m 1 and m 2 of the distance detection unit 11 in the Z-axis direction. . The distance information required for detection is
The one in the X-axis direction can be obtained by attaching a pulse encoder or the like to the rotating shaft of the motor of the swinging device, and the one in the Z-axis direction can be obtained by attaching a pulse encoder or the like to the rotating shaft of the cart of the automatic welding device. It is also clear that instead of attaching a distance meter to the swinging device and detecting the distance in the X-axis direction, the same method can be used to detect the distance by controlling a mirror and changing the irradiation position of the spot light in the X-axis direction. be.

実施例 第5図において、上記実施例の場合でZ軸方
向に一定ピツチ(Wz=1〜10mm)毎に1回X軸
方向の溶接ワーク表面までの距離データを検出
し、前記検出動作を連続して3回以上奇数回行
い、前記連続した検出動作の中央のもののX軸方
向のデータとして、上記実施例の方法で得られ
る平均値のデータを用いる。例えばWz=2mmピ
ツチ毎のZo-2、Zo-1、Zo、Zo+1、Zo+2の5回X軸
方向の距離データを検出し、X軸方向の検出位置
が最大値のものを除外して残りのものの平均値を
順次とつていくことによつて得られるデータを連
続した中央の位置ZoでのX軸方向の距離データと
する。このようにすることによつて上記実施例
と比べて検出データを何回も有効に使うことにな
るとともに、第6図に示すようにシフトレジスタ
14を用い、コンパレータによりデータの最大値
を検出して除外する処理回路15、カウンタによ
り残りのデータの平均値を計算する処理回路16
を制御信号のもとに経てメモリの所定場所(第6
図の場合、ZoのX1に対応する場所)へ入れると
いうようにハードウエア化により処理速度を上げ
ることができる。
Example In FIG. 5, in the case of the above example, the distance data to the welding workpiece surface in the X-axis direction is detected once every fixed pitch (W z = 1 to 10 mm) in the Z-axis direction, and the above detection operation is performed. The detection operation is carried out three or more times in succession, and the data of the average value obtained by the method of the above embodiment is used as the data in the X-axis direction of the central one of the continuous detection operations. For example, the distance data in the X - axis direction is detected five times, Z o-2 , Z o-1 , Z o , Z o+1 , and Z o+2 at W z = 2 mm pitch, and the detected position in the X-axis direction is The data obtained by excluding the maximum value and sequentially taking the average values of the remaining values is defined as continuous distance data in the X-axis direction at the central position Z o . By doing this, the detected data can be effectively used many times compared to the above embodiment, and the maximum value of the data can be detected by the comparator using the shift register 14 as shown in FIG. a processing circuit 15 for excluding the remaining data; and a processing circuit 16 for calculating the average value of the remaining data using a counter.
to a predetermined location in the memory (6th
In the case of the figure, the processing speed can be increased by using hardware, such as by inserting the data into the location corresponding to X 1 of Z o .

なお、上記の実施例、においては、検出動
作により得られる検出データの集合で、かつX軸
方向の検出位置が同一のものの集合の、実施例
では最大値と最小値を、また実施例では最大値
を除外した残りのものの平均値をとつた例を示し
たが、これ以外に最小値のみを除外した残りのも
のの平均値をとつてもよく、また最大値または最
小値を全然除外しなくても、平均をとるときの検
出回数が多い等のために障害物の影響を無視でき
る場合は単に全データの平均値をとるだけでもよ
い。
In addition, in the above embodiment, the maximum value and the minimum value of the set of detection data obtained by the detection operation and the detection position in the X-axis direction are the same, and the maximum value We have shown an example in which the average value of the remaining values is taken after excluding the minimum value, but it is also possible to take the average value of the remaining values after excluding only the minimum value, or without excluding the maximum or minimum value at all. However, if the influence of obstacles can be ignored because the number of detections is large when taking the average, it is sufficient to simply take the average value of all data.

以上のように本発明の溶接線の位置および形状
の検出方法によれば、次のような効果がある。
As described above, the method for detecting the position and shape of a weld line according to the present invention has the following effects.

(1) スパツタ、ごみ、ノツチ等の障害を除去して
正確な溶接線の位置および形状が検出できる。
(1) Obstacles such as spatter, dirt, and notches can be removed to accurately detect the position and shape of the weld line.

(2) 高速に処理を行うための処理装置等のハード
ウエア化が容易に行える。
(2) It is easy to implement hardware such as processing equipment to perform high-speed processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光学的な距離計の概略構成を示す図、
第2図は溶接ワーク表面の距離検出部を示す斜視
図、第3図aは実際の開先部パターンを示す図、
同bは溶接線の位置検出を行うことが可能な検出
パターンを示す図、同cは溶接線の位置検出が不
可能なパターンを示す図、第4図は本発明の溶接
線方向に1ピツチ分の距離検出部を示す斜視図、
第5図は本発明のデータの対応関係を示す図、第
6図は本発明の方法を実施する平均値を求めるた
めの回路の一例のブロツク図である。 8……溶接ワーク、9……開先部、10,11
……距離検出部、12……光学的距離計、13…
…スパツタ、14……シフトレジスタ、15,1
6……処理回路。
Figure 1 is a diagram showing the schematic configuration of an optical rangefinder.
FIG. 2 is a perspective view showing the distance detection part on the surface of the welding workpiece, FIG. 3 a is a diagram showing the actual groove pattern,
Figure 4 shows a detection pattern in which the position of the weld line can be detected, Figure 4 shows a pattern in which the position of the weld line cannot be detected, and Figure 4 shows a detection pattern in which the position of the weld line can be detected. A perspective view showing the distance detection unit of
FIG. 5 is a diagram showing the correspondence of data according to the present invention, and FIG. 6 is a block diagram of an example of a circuit for calculating an average value for carrying out the method of the present invention. 8... Welding workpiece, 9... Groove section, 10, 11
... Distance detection section, 12 ... Optical distance meter, 13 ...
...Spatter, 14...Shift register, 15,1
6... Processing circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 光学的距離計を用いて得られた距離情報をも
とに溶接線の位置および形状を検出する方法であ
つて、前記溶接線とほぼ直角方向(X軸方向)に
溶接ワーク面までの距離を一定ピツチ毎に検出
し、前記検出動作を溶接線方向(Z軸方向)に一
定ピツチ毎に一定回数行い、前記検出動作により
得られる検出データの集合で、かつX軸方向の検
出位置が同一のものの集合の平均値、または最大
値または最小値または最大値と最小値を除外した
残りのものの平均値を順次とつていき、前記平均
値の集合を前記検出データの集合の代表としてX
軸方向のデータとすることを特徴とする溶接線の
位置および形状の検出方法。
1 A method of detecting the position and shape of a weld line based on distance information obtained using an optical distance meter, which detects the distance to the welding workpiece surface in a direction approximately perpendicular to the weld line (X-axis direction). is detected at every fixed pitch, and the above-mentioned detection operation is performed a fixed number of times at every fixed pitch in the welding line direction (Z-axis direction), and the detection data obtained by the above-mentioned detection operation is set, and the detection position in the X-axis direction is the same. The average value of the set of data, or the maximum value or the minimum value, or the average value of the remaining data after excluding the maximum and minimum values, is taken one by one, and the set of average values is used as a representative of the set of detected data.
A method for detecting the position and shape of a weld line, characterized by using data in the axial direction.
JP7004182A 1982-04-26 1982-04-26 Detecting method of position and shape of weld line Granted JPS58187265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004182A JPS58187265A (en) 1982-04-26 1982-04-26 Detecting method of position and shape of weld line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004182A JPS58187265A (en) 1982-04-26 1982-04-26 Detecting method of position and shape of weld line

Publications (2)

Publication Number Publication Date
JPS58187265A JPS58187265A (en) 1983-11-01
JPS6357149B2 true JPS6357149B2 (en) 1988-11-10

Family

ID=13420095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004182A Granted JPS58187265A (en) 1982-04-26 1982-04-26 Detecting method of position and shape of weld line

Country Status (1)

Country Link
JP (1) JPS58187265A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614907A (en) * 1984-06-19 1986-01-10 Matsushita Electric Ind Co Ltd Detector for sectional area of welding groove
JPS61226182A (en) * 1985-03-31 1986-10-08 Yaskawa Electric Mfg Co Ltd Averaging process method for profile motion in automatic welding profile equipment
EP0214120B1 (en) * 1985-08-28 1991-06-05 IGM Industriegeräte- und Maschinenfabriksgesellschaft mbH Method for detection of the position and geometry of work piece surfaces
US5104216A (en) * 1988-12-05 1992-04-14 Igm Industriegerate- Und Maschinenfabriksgesellschaft Mbh Process for determining the position and the geometry of workpiece surfaces
AT413954B (en) * 2000-11-02 2006-07-15 Fronius Int Gmbh DETECTION ELEMENT FOR A WELDING DEVICE
KR101632342B1 (en) * 2015-06-24 2016-06-21 목포대학교산학협력단 Apparatus for Welding Bellows Pipe having Vision Camera and Method for Controlling the Same

Also Published As

Publication number Publication date
JPS58187265A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
JP4015161B2 (en) Industrial robot controller
US5624588A (en) Method of controlling robot for use in arc welding
SE449313B (en) MANIPULATOR WELDING AND MANUFACTURING MANUAL
JP3754402B2 (en) Industrial robot control method and control apparatus
SE462022B (en) INDUSTRIAL ROBOT EQUIPMENT WITH BODY CONTROL OF A TOOL LONG A ROAD WITH A WORK OBJECT
US11628573B2 (en) Unmanned transfer robot system
JPS6062487A (en) Industrial robot device
JPS6357149B2 (en)
JPH0914921A (en) Non-contact three-dimensional measuring instrument
US4949024A (en) Contactless profiling method
JP3937814B2 (en) Automatic welding equipment
JPH055628B2 (en)
JPS60127987A (en) Method and device for controlling profiling
JP2502533B2 (en) Welding robot with sensor
JP2895289B2 (en) Automatic welding copying machine
JPH0146275B2 (en)
JPH0367792B2 (en)
JPS6357150B2 (en)
JPH0418601B2 (en)
JP2645991B2 (en) Control mechanism of tracking sensor device
JPS6221486A (en) Control method for rotation of sensor
JP2932418B2 (en) Work position measurement method
JP2672953B2 (en) Boundary line automatic sensing method
JPH07117372B2 (en) Welding line detector
JPH07286845A (en) Method and instrument for measuring three-dimensional shape