JPS6356723B2 - - Google Patents

Info

Publication number
JPS6356723B2
JPS6356723B2 JP55086314A JP8631480A JPS6356723B2 JP S6356723 B2 JPS6356723 B2 JP S6356723B2 JP 55086314 A JP55086314 A JP 55086314A JP 8631480 A JP8631480 A JP 8631480A JP S6356723 B2 JPS6356723 B2 JP S6356723B2
Authority
JP
Japan
Prior art keywords
circuit
output
current
logic
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55086314A
Other languages
Japanese (ja)
Other versions
JPS5711535A (en
Inventor
Akira Aso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8631480A priority Critical patent/JPS5711535A/en
Publication of JPS5711535A publication Critical patent/JPS5711535A/en
Publication of JPS6356723B2 publication Critical patent/JPS6356723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger

Landscapes

  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は電流切換型集積論理回路の構成法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of constructing a current-switched integrated logic circuit.

近年集積回路技術の進歩により、極めて高速か
つ高密度の集積回路素子が実現されているが、こ
の集積回路の高速化、高密度化は必然的に一集積
回路あたりの消費電力を増大させるという問題を
はらんでいる。集積回路の消費電力は周知の如
く、電源電圧および論理振幅の大小と密接な関係
があり、低電力素子の実現のため、近年、大規模
集積回路の電源電圧および論理振幅は小さく設計
される傾向にある。しかるにこのような設計思想
においては、概して雑音余裕度が犠牲にされるこ
とが多く、コンピユータシステム設計等の自由度
が奪われるという新たな問題が惹起されている。
しかもこの傾向は今後更に助長されることが予想
され、雑音余裕度確保の為の有効な対策は、集積
回路技術に要求される重要な問題の一つとなつて
いる。
In recent years, advances in integrated circuit technology have led to the realization of extremely high-speed and high-density integrated circuit elements, but the problem is that the increased speed and density of integrated circuits inevitably increases the power consumption per integrated circuit. It is full of. As is well known, the power consumption of integrated circuits is closely related to the power supply voltage and logic amplitude, and in recent years, large-scale integrated circuits have been designed with small power supply voltages and logic amplitudes in order to realize low-power devices. It is in. However, in such a design concept, the noise margin is often sacrificed, and a new problem arises in that the degree of freedom in computer system design, etc. is taken away.
Moreover, this trend is expected to further accelerate in the future, and effective measures to ensure noise margin have become one of the important issues required for integrated circuit technology.

本発明の目的は、従来の回路構成では実現でき
なかつた小振幅電流切換型論理回路における雑音
余裕度の改善に関し、新しい対策の一つを提供す
ることにある。
An object of the present invention is to provide a new measure for improving the noise margin in a small amplitude current switching type logic circuit, which has not been possible with conventional circuit configurations.

本発明による論理回路は、相補出力を有する第
一の電流切換型論理回路の一方の出力が、互いに
回路電流の異なる第二および第三の電流切換型論
理回路に入力され、該第一の電流切換型回路の他
方の出力は該第二および第三の電流切換型論理回
路の基準電圧として供給され、第二の電流切換型
論理回路の一出力と、該出力とは相互に位相の異
なる前記第三の電流切換型論理回路の出力とが、
一端を電源に接台された抵抗性負荷回路の他端に
接続され、該接続点を前記第一の電流切換型論理
回路の基準電圧として接続することにより、該第
一の電流切換型論理回路の入出力特性にヒステリ
シスを持たせるように構成される。
In the logic circuit according to the present invention, one output of a first current switching type logic circuit having complementary outputs is inputted to second and third current switching type logic circuits having different circuit currents, and the first current switching type logic circuit has a complementary output. The other output of the switching circuit is supplied as a reference voltage to the second and third current switching logic circuits, and one output of the second current switching logic circuit and the output have different phases from each other. The output of the third current switching type logic circuit is
One end is connected to the other end of a resistive load circuit connected to a power supply, and the connection point is connected as a reference voltage of the first current switching type logic circuit, so that the first current switching type logic circuit is configured to have hysteresis in its input/output characteristics.

上述の如く本発明の回路は、一論理動作に対し
て閾値が二値を有するよう構成されるためそれら
二値を適当に設定することにより入力信号の各論
理レベルに対して、雑音余裕度を等しく広げるこ
とが可能となり、製造ばらつきおよび外部使用条
件の変動による入力信号の振幅およびレベルのば
らつきに対して極めて安定な動作が期待できる。
このため、論理信号の単なる受信のみならず、従
来方式では十分な雑音余裕度の確保が困難であつ
た一本の信号ラインで送受信の可能な同時双方向
性ドライバー/レシーバー等も、本発明の方式に
より実現可能となる。また本発明は基本的な電流
切換型回路の単純な組合わせで構成可能であるた
め、マスタースライス手法によつても容易に実現
できる利点を併せて有している。
As mentioned above, the circuit of the present invention is configured so that the threshold value has two values for one logic operation, so by appropriately setting these two values, the noise margin can be increased for each logic level of the input signal. It is now possible to spread the signals equally, and extremely stable operation can be expected against variations in the amplitude and level of the input signal due to manufacturing variations and variations in external usage conditions.
Therefore, the present invention not only allows for the simple reception of logic signals, but also for simultaneous bidirectional drivers/receivers that can transmit and receive on a single signal line, for which it was difficult to secure sufficient noise margin with conventional methods. This can be realized by using this method. Furthermore, since the present invention can be configured by a simple combination of basic current switching type circuits, it also has the advantage that it can be easily realized using the master slice method.

以下図面により本発明について詳細な説明を加
える。
The present invention will be described in detail below with reference to the drawings.

電流切換型論理回路は一般に第1図および第2
図に示される如き回路構成を有する。第1図にお
いてVRは基準電圧を示し、通常入力VINの論理振
幅のほぼ中央に設定される。しかるに、第1図の
方式では集積回路の製造ばらつき等により、入力
信号の論理振幅が小さくなり、VRが逆に製造ば
らつき、外部条件等により、低くなつた場合、雑
音余裕は著しく低下する。第2図は従来方法にに
よる差動方式の電流切換型回路で、VIN1,VIN2
差動入力を示す。ここでこれら二つの入力は、逆
位相であることが前提となる。いまVIN1,VIN2
は、同時には、いずれか一方にしか雑音がのるこ
とはないと仮定すると、一般に、雑音余裕度は第
1図の回路より大きくなる。しかしながら、逆位
相の雑音がVIN1,VIN2に同時にのる場合、雑音余
裕度は第1図の回路と同程度となり、閾値を越え
る雑音がのる場合は、第1図の回路より、大きな
雑音が出力に発生する。また第2図の回路は入力
信号として常に二本の配線が必要であり、チツプ
間の接続および装置間の信号用として使用するの
は、経済性の面からも最適とは言えない。第3が
本発明の基本的な回路で、第1図および第2図の
回路の欠点を補うべく構成されている。本回路の
基本動作の特徴は、図中の論理ゲートG1の基準
電圧VRA1が入力信号の論理動作に対して二値を
とることである。論理ゲートG1(以下論理ゲー
トはすべて図中に記したGnで代称する)の出力
O1,O2を図の如くG2,G3に接続し、G
2,G3の出力のうち、相互に位相の異なる出力
線I1,I2をa点に接続する。a点にはまた、他端
が電源に接続された抵抗の一端が接続されてい
る。G1のスイツチング動作により、I1又はI2
どちらか一方が電流オン状態となり、VRA1の値
が決まる。すなわちVIN1が低レベルの時I1がオン
し、a点の電位はRriI2できまる。又、VIN1が高
レベルの時、I2がオンし、a点の電位は、RriI3
で決まる。この時I2≠I3であればVRA1はVIN1のレ
ベルによつて二値をとることになり、G1の入出
力特性はヒステリシスを有する。第3図の場合、
I2<I3であればこのヒステリシス効果は、入力の
各論理レベルの雑音余裕度を増大させるに有効と
なる。ここでRriの値およびI2,I3の値を適当に
選択すれば自由に、ヒステリシスの幅および二つ
の基準電圧レベルを設定できることはいうまでも
ない。第4図に、第3図のG1の入出力特性を示
すが、閾値付近で、G2,G3が相互に差動する
ため、入力対出力のゲインは極めて高く、雑音余
裕度の拡大には有利な特性であることがわかる。
次に本発明の回路が特に有効性を発揮する同時双
方向性ドライバー/レシーバー回路について、応
用例により、説明を加える。第5図が従来のバス
回路の接続であるが、ドライバーとレシーバーが
独立して存在するため、信号の送受のための布線
は一組のドライバー/レシーバーで必ず二本必要
となる。第6図は同時双方向性ドライバー/レシ
ーバー回路の一般的なブロツク図と接続例を示
す。この方式によれば一本の布線で信号の送受信
が可能であり、布線数が半減することから、経済
性の面での優位性は歴然としている。第7図に、
電流切換型回路による第6図の基本回路を具体的
に示す。これは第6図のAまたはBのブロツクに
相当する回路である。第7図中、G4はドライバ
ー出力用のゲートを示し、G5はレシーバー回路
オン時とオフ時の基準電圧のレベル切換用のゲー
トを示す。VD1が高レベルの時、I3は電流オフと
なり、G5の基準電圧VRA2はRr2・ICきまる値と
なり、VD1が低レベルの時、I4はオンとなり、G
5の基準電圧VRA2はRr2(IC+I6)で決まる値とな
る。この基本動作により、双方向の同時送受信が
可能となるが、未だ使用上若干の問題を含んでい
る。すなわち本方式では、ドライバー出力とレシ
ーバー入力とが内部で直結(第7図c点)されて
おり、かつ、実使用状馳ではバスラインにより抵
抗出力で成る相手側ドライバー出力とも直結され
るため、抵抗および振幅のばらつきは常に各素子
毎に考えられる最大と最小との組合わせを考慮し
なければならない。このため合成されたバスライ
ンの論理振幅は通常の一個の集積回路内のばらつ
きよりはるかに大きな値となり、雑音余裕度は著
しく低下する。第8図に第7図の回路の実使用状
態(第6図)における過渡特性を示す。本図中領
域、、はVD1が高レベル、、、は
VR1が低レベル時の動作を示す。また、斜線を施
した部分は、相手側ドライバー回路の出力抵抗お
よび振幅、自身のドライバー回路の出力抵抗およ
び振幅、また両素子間のGND偏差等、種々のば
らつきを考慮した場合のc点のレベルのばらつき
幅を示している。(ここでは過渡的な反射波の影
響は無視している。)第8図の(1)の動作に注目す
れば、基準電圧(閾値)に対する各論理レベルの
雑音余裕度は極めて小さくなり、誤動作の危険性
が著しく増大するのがわかる。第7図の回路に本
発明の機能を付加したのが第9図に示す回路で、
同様に同時双方向性のドライバー/レシーバー機
能を有する。第9図において、G8,G10,G
11が本発明の回路機能を構成する。G7はドラ
イバーゲート、G9はVD2のレベルのレベによつ
てG8の閾値を変える機能を有するゲートであ
る。VD2が高レベルの時、G9のトランジスタQ1
がオフとなり、d点の電位はI10又はI11で決まる
電位となり、これがバス信号に対するG8の閾値
となる。これを第一レベルと称する。一方DD2
低レベルの時、G3のトランジスタQ1はオンと
なりd点の電位は前記閾値よりRr3・I9分だけ降
下し、この値がバスの信号に対するG8の閾値と
なる。これを第2レベルと称する。第1レベルで
動作時、バス信号が高レベルであればG8出力e
は低レベル、出力fは高レベルとなりd点の電位
はRr3・I11で決まる値となる。逆にバス信号が低
レベルの時、出力eおよびfは反転し、d点の電
位はRr3・I10で決まる値となる。ここでI11>I10
あればG8の入出力特性はヒステリシスを有す
る。この動作は第4図に示した動作と全く同様で
ある。次にG8が第2レベルで動作時、バス信号
が高レベルの時、ドライバーの出力ラインI6には
I7が流れているのでバスの高レベルはDC的には
I7・RBで決まる値となる。この時、d点の電位は
Rr3・(I9+I11)となる。逆にバス信号が低レベル
の時、バスのレベルは、相手側ドライバー回路の
オン電流と出力抵抗、およびRB、I7とで決まる値
となり、d点の電位はR2(I9+I10)で決まる値と
なる。ここで同様にI11>I10であれば、G8の入
出力特性はヒステリシスを有する。
Current-switched logic circuits are generally shown in Figures 1 and 2.
It has a circuit configuration as shown in the figure. In FIG. 1, V R indicates a reference voltage, which is normally set approximately at the center of the logic amplitude of the input V IN . However, in the method shown in FIG. 1, the logic amplitude of the input signal becomes small due to manufacturing variations in integrated circuits, and when V R becomes low due to manufacturing variations, external conditions, etc., the noise margin is significantly reduced. FIG. 2 shows a differential current switching circuit according to the conventional method, where V IN1 and V IN2 indicate differential inputs. Here, it is assumed that these two inputs have opposite phases. Assuming that noise can only be added to one of V IN1 and V IN2 at the same time, the noise margin will generally be greater than that of the circuit shown in FIG. 1. However, if anti-phase noise is added to V IN1 and V IN2 at the same time, the noise margin will be on the same level as the circuit in Figure 1, and if noise exceeding the threshold is added, the noise margin will be larger than in the circuit in Figure 1. Noise appears on the output. Furthermore, the circuit shown in FIG. 2 always requires two wires for input signals, and from an economic standpoint, it is not optimal to use it for connections between chips and signals between devices. The third circuit is the basic circuit of the present invention, which is constructed to compensate for the drawbacks of the circuits shown in FIGS. 1 and 2. A feature of the basic operation of this circuit is that the reference voltage V RA1 of the logic gate G1 in the figure takes a binary value depending on the logic operation of the input signal. Connect outputs O1 and O2 of logic gate G1 (hereinafter all logic gates will be referred to as Gn in the figure) to G2 and G3 as shown in the figure, and
Among the outputs of 2 and G3, output lines I 1 and I 2 having mutually different phases are connected to point a. Also connected to point a is one end of a resistor whose other end is connected to a power source. Due to the switching operation of G1, either I1 or I2 is turned on, and the value of VRA1 is determined. That is, when V IN1 is at a low level, I1 is turned on, and the potential at point a is determined by RriI2 . Also, when V IN1 is at a high level, I 2 is turned on and the potential at point a is RriI 3
It is determined by At this time, if I 2 ≠ I 3 , V RA1 takes on two values depending on the level of V IN1 , and the input/output characteristics of G1 have hysteresis. In the case of Figure 3,
If I 2 <I 3 , this hysteresis effect becomes effective in increasing the noise margin of each logic level of the input. It goes without saying that the width of the hysteresis and the two reference voltage levels can be freely set by appropriately selecting the value of Rri and the values of I 2 and I 3 here. Figure 4 shows the input/output characteristics of G1 in Figure 3. Since G2 and G3 differ from each other near the threshold, the input-to-output gain is extremely high, which is advantageous for expanding the noise margin. It can be seen that this is a characteristic.
Next, a description will be given using an application example of a simultaneous bidirectional driver/receiver circuit in which the circuit of the present invention is particularly effective. FIG. 5 shows the connection of a conventional bus circuit, and since the driver and receiver exist independently, two wires are always required for one driver/receiver set for transmitting and receiving signals. FIG. 6 shows a general block diagram and connection example of a simultaneous bidirectional driver/receiver circuit. According to this method, it is possible to send and receive signals with a single wire, and the number of wires is halved, so it is clearly advantageous in terms of economy. In Figure 7,
The basic circuit of FIG. 6 using a current switching type circuit is specifically shown. This circuit corresponds to block A or B in FIG. In FIG. 7, G4 indicates a gate for driver output, and G5 indicates a gate for switching the level of the reference voltage when the receiver circuit is on and off. When V D1 is at a high level, I 3 turns off the current, and the reference voltage V RA2 of G5 becomes a fixed value of Rr 2 · I C. When V D1 is at a low level, I 4 turns on and G
The reference voltage V RA2 of No. 5 has a value determined by Rr 2 (I C +I 6 ). Although this basic operation enables simultaneous bidirectional transmission and reception, there are still some problems in use. In other words, in this method, the driver output and receiver input are directly connected internally (point c in Figure 7), and in actual use, they are also directly connected to the other driver output, which is a resistor output, by a bus line. The maximum and minimum possible combinations of resistance and amplitude variations must always be considered for each element. Therefore, the logic amplitude of the synthesized bus line becomes a value much larger than the variation within a single integrated circuit, and the noise margin is significantly reduced. FIG. 8 shows the transient characteristics of the circuit shown in FIG. 7 in the actual operating state (FIG. 6). In the area in this figure, V D1 is at a high level.
This shows the operation when V R1 is low level. The shaded area shows the level at point c when various variations are considered, such as the output resistance and amplitude of the other driver circuit, the output resistance and amplitude of the own driver circuit, and the GND deviation between both elements. It shows the range of variation. (The influence of transient reflected waves is ignored here.) If we pay attention to the operation (1) in Figure 8, the noise margin of each logic level with respect to the reference voltage (threshold) is extremely small, causing malfunctions. It can be seen that the risk of The circuit shown in Fig. 9 is a circuit in which the functions of the present invention are added to the circuit shown in Fig. 7.
It also has simultaneous bidirectional driver/receiver functionality. In Figure 9, G8, G10, G
11 constitutes the circuit function of the present invention. G7 is a driver gate, and G9 is a gate having a function of changing the threshold value of G8 depending on the level of V D2 . When V D2 is high level, transistor Q 1 of G9
is turned off, and the potential at point d becomes the potential determined by I 10 or I 11 , which becomes the threshold of G8 for the bus signal. This is called the first level. On the other hand, when D D2 is at a low level, the transistor Q 1 of G3 is turned on, and the potential at point d drops from the threshold by Rr 3 ·I 9 , and this value becomes the threshold of G8 for the bus signal. This is called the second level. When operating at the 1st level, if the bus signal is high level, the G8 output e
is at a low level, the output f is at a high level, and the potential at point d is a value determined by Rr 3 · I 11 . Conversely, when the bus signal is at a low level, the outputs e and f are inverted, and the potential at point d takes a value determined by Rr 3 ·I 10 . Here, if I 11 >I 10 , the input/output characteristics of G8 have hysteresis. This operation is exactly the same as the operation shown in FIG. Next, when G8 operates at the second level, when the bus signal is high level, the output line I6 of the driver is
Since I7 is flowing, the high level of the bus is DC-wise
The value is determined by I 7・R B. At this time, the potential at point d is
Rr 3・(I 9 + I 11 ). Conversely, when the bus signal is at a low level, the bus level is determined by the on-current and output resistance of the other driver circuit, as well as R B and I 7 , and the potential at point d is R 2 (I 9 + I 10 ) is the value determined by Similarly, if I 11 >I 10 , the input/output characteristics of G8 have hysteresis.

上記I9,I10,I11,Rr3等、d点の電位を決定す
る回路定数は、相手側ドライバー出力の振幅、抵
抗、相手側素子間とのGND偏差等、諸諸の条件
のばらつき幅と、自身の特性のばらつきを考慮し
て設定されねばならないことはいうまでもない。
The circuit constants that determine the potential at point d, such as I 9 , I 10 , I 11 , and Rr 3 above, vary depending on various conditions such as the amplitude of the output of the other driver, the resistance, and the GND deviation between the other elements. Needless to say, it must be set in consideration of the variations in its own characteristics.

第10図にVD2,VB2,VOUTR,VRA3の過渡的な
動作を示す。図中、領域、、はVD2が高レ
ベル、、、はVD2が低レベル時の動作を示
す。(1)の動作に注目すればヒステリシス効果によ
り、斜線部で示すバスレベルのばらつきの最悪条
件に対しても第8図に示す動作より、はるかに大
きな雑音余裕度が確保できていることが理解でき
よう。第11図に第9図G1の入出力特性を示
す。矢印は動作の方向を示し、斜線部はヒステリ
シスの幅を示す。
FIG. 10 shows the transient operation of V D2 , V B2 , V OUTR , and V RA3 . In the figure, the regions , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 8 and 1 and 7 and 1 and 1 and 1 and 1 and 1 , , , , , , , , , , , , , , , , , , , , , , , , , ), , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,, , , , , , , ,                  . If you pay attention to the operation in (1), you will understand that due to the hysteresis effect, a much larger noise margin can be secured than the operation shown in Figure 8 even under the worst case of bus level variation shown in the shaded area. I can do it. FIG. 11 shows the input/output characteristics of G1 in FIG. The arrow indicates the direction of operation, and the shaded area indicates the width of the hysteresis.

以上、種々の説明を加えた如く、本発明の回路
は、条件に応じてゲートの入出力特性にヒステリ
シスを持たせることにより、外部条件のばらつき
に対しても必要な雑音余裕度を容易に維持する回
路構成を可能とすることで装置設計における設計
の自由度を向上させるとともに、応用例でも述べ
た如く、小振幅電流切換型回路を使用する装置間
においても、同時双方向性ドライバー/レシーバ
ーの使用を可能にする等、種々の利点を有する。
As explained above, the circuit of the present invention can easily maintain the necessary noise margin even with variations in external conditions by providing hysteresis to the input/output characteristics of the gate depending on the conditions. In addition to improving the degree of freedom in device design by enabling circuit configurations that can be configured to It has various advantages such as making it easier to use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基本的な電流切換型回路を示す図、第
2図は差動方式による電流切換型回路を示す図、
第3図は本発明の回路の基本的な構成を示す図、
第4図は第3図の回路の入出力特性を示す図、第
5図は従来方式によるバス回路の接続例を示す
図、第6図は同時双方向性ドライバー/レシーバ
ー回路の接続例を示す図、第7図は同時双方向性
ドライバー/レシーバー回路の基本的な構成を示
す図、第8図は第7図の過渡特性を示す図、第9
図は本発明の方式による同時双方向ドライバー/
レシーバー回路の具体例を示す図、第10図は第
9図の回路の過渡特性を示す図、第11図は第9
図の回路の入出力特性を示す図である。 VIN1,VIN2……差動入力、G1,G2,G3……ゲ
ート、I1〜I3……電流源。
Figure 1 is a diagram showing a basic current switching type circuit, Figure 2 is a diagram showing a current switching type circuit using a differential method,
FIG. 3 is a diagram showing the basic configuration of the circuit of the present invention,
Fig. 4 shows the input/output characteristics of the circuit shown in Fig. 3, Fig. 5 shows an example of connection of a conventional bus circuit, and Fig. 6 shows an example of connection of a simultaneous bidirectional driver/receiver circuit. 7 is a diagram showing the basic configuration of a simultaneous bidirectional driver/receiver circuit, FIG. 8 is a diagram showing the transient characteristics of FIG. 7, and FIG.
The figure shows a simultaneous bidirectional driver/
A diagram showing a specific example of the receiver circuit, FIG. 10 is a diagram showing the transient characteristics of the circuit in FIG. 9, and FIG.
FIG. 3 is a diagram showing input/output characteristics of the circuit shown in the figure. V IN1 , V IN2 ...Differential input, G1 , G2 , G3 ...Gate, I1 to I3 ...Current source.

Claims (1)

【特許請求の範囲】[Claims] 1 相補出力を有する第一の電流切換型論理回路
の一方の出力は、互いに回路電流の異なる第二お
よび第三の電流切換型論理回路に入力され、該第
一の電流切換型論理回路の他方の出力は該第二お
よび第三の電流切換型論理回路の基準電圧として
供給され、該第二の電流切換型論理回路の一出力
と、該一出力とは位相の異なる前記第三の電流切
換型論理回路の出力とが、一端を電源に接続され
た抵抗性負荷回路の他端に接続され、該接続点を
前記第一の電流切換型論理回路の基準電圧として
接続することにより該第一の電流切換型論理回路
の入出力特性にヒステリシスを持たせたことを特
徴とする集積論理回路。
1. One output of the first current-switching logic circuit having complementary outputs is input to second and third current-switching logic circuits having different circuit currents, and the other output of the first current-switching logic circuit The output of is supplied as a reference voltage to the second and third current switching type logic circuits, and one output of the second current switching type logic circuit and the third current switching type having a phase different from the one output. The output of the first current-switching logic circuit is connected to the other end of a resistive load circuit whose one end is connected to a power source, and the connection point is connected as a reference voltage of the first current-switching logic circuit. An integrated logic circuit characterized by having hysteresis in the input/output characteristics of the current switching type logic circuit.
JP8631480A 1980-06-25 1980-06-25 Integrated logical circuit Granted JPS5711535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8631480A JPS5711535A (en) 1980-06-25 1980-06-25 Integrated logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8631480A JPS5711535A (en) 1980-06-25 1980-06-25 Integrated logical circuit

Publications (2)

Publication Number Publication Date
JPS5711535A JPS5711535A (en) 1982-01-21
JPS6356723B2 true JPS6356723B2 (en) 1988-11-09

Family

ID=13883366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8631480A Granted JPS5711535A (en) 1980-06-25 1980-06-25 Integrated logical circuit

Country Status (1)

Country Link
JP (1) JPS5711535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100818A (en) * 1983-11-07 1985-06-04 Sumitomo Electric Ind Ltd Comparator with hysteresis
JPH0786909A (en) * 1993-06-30 1995-03-31 Nec Corp Output circuit for semiconductor integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151360A (en) * 1978-04-11 1979-11-28 Mitsubishi Electric Corp Schmitt trigger circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151360A (en) * 1978-04-11 1979-11-28 Mitsubishi Electric Corp Schmitt trigger circuit

Also Published As

Publication number Publication date
JPS5711535A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
US7595661B2 (en) Low voltage differential signaling drivers including branches with series resistors
US7420387B2 (en) Semiconductor device capable of controlling OCD and ODT circuits and control method used by the semiconductor device
US5519728A (en) High-speed low-voltage differential swing transmission line transceiver
JP4267655B2 (en) Electronic circuit, differential transmitter configured as electronic circuit, and method of forming self-series terminated transmitter (segmentation and amplitude accuracy and high voltage protection for amplitude control, pre-emphasis control and slew rate control Self-series terminated serial link transmitter with voltage regulation for)
JP3788928B2 (en) Resistance variable
KR100738961B1 (en) Apparatus for driving output of semiconductor memory
JP5031258B2 (en) Impedance control circuit and impedance control method in semiconductor device
US6285209B1 (en) Interface circuit and input buffer integrated circuit including the same
JP4676646B2 (en) Impedance adjustment circuit and semiconductor device
EP0762290B1 (en) Input buffer circuit
US6657460B2 (en) Spatially filtered data bus drivers and receivers and method of operating same
JP4237402B2 (en) Output buffer for symmetric transmission line drive
US6504405B1 (en) Differential amplifier with selectable hysteresis and buffered filter
US6300795B1 (en) Multiple-bit, current mode data bus
KR100431568B1 (en) Reduced voltage input/reduced voltage output repeaters for high resistance or high capacitance signal lines and methods therefor
JPS6356723B2 (en)
JPH0879047A (en) Semiconductor integrated circuit and its manufacture
JPH0220171B2 (en)
US6373276B1 (en) CMOS small signal switchable impedence and voltage adjustable terminator with hysteresis receiver network
US7078935B2 (en) Simultaneous bi-directional transceiver
KR100559348B1 (en) Mixed swing voltage repeaters for high resistance or high capacitance signal lines and methods therefor
US20020005747A1 (en) Semiconductor device with signal transfer line
JP2000307410A (en) Integrated circuit
US4563593A (en) Transition detector circuit
US6356104B1 (en) CMOS small signal switchable, impedence and voltage adjustable terminator network