JPS6356512A - Production of resin having high water absorption property - Google Patents

Production of resin having high water absorption property

Info

Publication number
JPS6356512A
JPS6356512A JP19903086A JP19903086A JPS6356512A JP S6356512 A JPS6356512 A JP S6356512A JP 19903086 A JP19903086 A JP 19903086A JP 19903086 A JP19903086 A JP 19903086A JP S6356512 A JPS6356512 A JP S6356512A
Authority
JP
Japan
Prior art keywords
weight
acrylic acid
dispersant
water absorption
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19903086A
Other languages
Japanese (ja)
Other versions
JPH0610220B2 (en
Inventor
Hideyuki Megata
英幸 目片
Yasuhiro Morita
泰弘 森田
Yuujirou Uchiyama
内山 雄二朗
Taiji Kamibayashi
泰二 上林
Shigeaki Matsumoto
繁章 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Yuki Kagaku Kogyo KK
Original Assignee
Osaka Yuki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Yuki Kagaku Kogyo KK filed Critical Osaka Yuki Kagaku Kogyo KK
Priority to JP61199030A priority Critical patent/JPH0610220B2/en
Publication of JPS6356512A publication Critical patent/JPS6356512A/en
Publication of JPH0610220B2 publication Critical patent/JPH0610220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled resin having large particle diameters, water absorption ability, water absorption rate, gel strength, etc., by dispersing an aqueous solution containing acrylic acid and an alkali metallic salt thereof into an aliphatic hydrocarbon by the use of a specific dispersant and subjecting the dispersion to reverse-phase suspension polymerization. CONSTITUTION:First, a copolymer consisting of (A) 40-95wt% (meth)acrylic acid alkyl ester monomer containing >=8C alkyl group, (B) 5-40wt% (meth) acrylic acid hydroxyalkyl monomer and (C) 0-40wt% unsaturated monomer copolymerizable with the compositions A and B is used as dispersant. By the dispersant, an aqueous solution containing acrylic acid and an alkali metallic salt thereof is dispersed into an aliphatic hydrocarbon solvent (preferably n- hexane, etc.) and subjected to reverse-phase suspension polymerization in the presence of a crosslinking agent to give the aimed resin. Lauryl acrylate is preferable as the component A and 2-hydroxyethyl acrylate, etc., are used as the component B.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、吸水能、吸水速度、べとつき、ゲル強度等の
特性に優れ、大粒子径を有する高吸水性樹脂の製造法に
関する0本発明により製造された高吸水性樹脂は上記の
特性に優れることから、衛生材料(紙おむつ、生理用ナ
プキン)、農園芸−ト壌用保水材等に用いることができ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a super absorbent resin having excellent properties such as water absorption capacity, water absorption rate, stickiness, and gel strength, and having a large particle size. Since the superabsorbent resin produced by the method has excellent properties as described above, it can be used for sanitary materials (disposable diapers, sanitary napkins), water retaining materials for agricultural and horticultural soils, and the like.

[従来の技術及び問題点コ 吸水性樹脂は生理用品、紙おむつなどの衛生材料、保水
材として農園芸関係などに使用されるはか、汚泥の凝固
、油類の脱水などの種々の用途に用いられ、さらに新し
い用途が開発されつつある有用な合成樹脂である。これ
らの樹脂は、■ デンプン−アクロニトリルグラフト重
合体の加水分解物(特公昭53−46199号公報、特
開昭55−4820号公報) ■ セルロース変性体(特開昭50−80378号公報
) ■ 逆相懸濁法によるポリアクリル酸ソーダ(特公昭5
4−30710号、特開昭58−28909号公報)■
 水溶液重合法(断熱重合、薄膜重合)により得られる
ポリアクリル酸ソーダ(特開昭55−133413号公
報) ■ 水溶性高分子の架橋物(特公昭43−234G2号
公報) (φ デンプン−アクリル酸ソーダグラフト重合体(特
公昭53−48199号公報) 等が知られている。
[Conventional technology and problems] Water-absorbing resins are used for various purposes such as sanitary products, sanitary materials such as disposable diapers, water-retaining materials used in agriculture and horticulture, coagulation of sludge, and dehydration of oils. It is a useful synthetic resin for which new uses are being developed. These resins are: ■ Hydrolyzate of starch-acronitrile graft polymer (Japanese Patent Publication No. 53-46199, Japanese Patent Application Laid-Open No. 55-4820); ■ Modified cellulose (Japanese Patent Publication No. 50-80378); Sodium polyacrylate produced by reverse phase suspension method
No. 4-30710, Japanese Unexamined Patent Publication No. 58-28909)■
Sodium polyacrylate obtained by aqueous solution polymerization method (adiabatic polymerization, thin film polymerization) (JP-A-55-133413) ■ Cross-linked product of water-soluble polymer (JP-A-43-234G2) (φ Starch-acrylic acid Soda graft polymer (Japanese Patent Publication No. 53-48199) and the like are known.

[発明が解決しようとする問題点] しかしながら、上記の方法には以下の如き問題点があっ
た。
[Problems to be Solved by the Invention] However, the above method has the following problems.

■ 吸水能の不足、たとえ吸水能が高くても、吸水速度
が遅い、あるいは水への分散性が悪い等の欠点を有して
いる。
■ It has drawbacks such as insufficient water absorption capacity, and even if the water absorption capacity is high, the water absorption rate is slow and the dispersibility in water is poor.

■ 吸水後のゲルがべたつき、衛生材料を考えた場合、
肌への影響が心配される。
■ Gel becomes sticky after water absorption, considering sanitary materials.
There are concerns about its effect on the skin.

■ 吸水膨潤状態の樹脂粒子相互間の凝集により通気性
が悪く、土壌用保水材を考えた場合、根が腐敗する危険
性がある。
■ Air permeability is poor due to agglomeration of resin particles in a swollen state after absorbing water, and when considered as a water retaining material for soil, there is a risk of root rot.

また、吸水性樹脂の吸水速度をあげ、吸水後のゲル強度
を高める方法としては架橋剤を用いて、同時架橋やポス
ト架橋させる方法がある。しかし、これらの方法では、
吸水速度はあがるが、吸水能が低下したり、吸水膨潤状
態の樹脂粒子相互間の凝集がおこり通気性が悪くなる。
Further, as a method of increasing the water absorption rate of the water absorbent resin and increasing the gel strength after water absorption, there is a method of simultaneous crosslinking or post crosslinking using a crosslinking agent. However, these methods
Although the water absorption rate increases, the water absorption capacity decreases, and the resin particles in a swollen state after absorbing water coagulate with each other, resulting in poor air permeability.

近年、吸水性樹脂の上記欠点を克服する方法として逆層
懸濁重合で適当な分散剤を用いて、大粒径のビーズ状樹
脂を合成する方法が提案されている。
In recent years, as a method to overcome the above-mentioned drawbacks of water-absorbing resins, a method has been proposed in which bead-shaped resins with large particle diameters are synthesized by inverse phase suspension polymerization using a suitable dispersant.

たとえば、特開昭57−158209では、分散剤とし
てセルロースエステル又はセルロースエーテルを用いる
方法が示されているが、乾燥時にブロッキングしたり乾
燥機壁に付着する欠点がある。また特開昭57−940
11.特開昭57−98512では1分散剤としてカル
ボキシ含有重合体を用いているが、安定に逆相懸濁重合
させにくく、重合途中で重合物が一体化してしまう恐れ
がある。また特開昭Ei+−40309では、分散剤と
してスチレン−メタクリル酸ジメチルアミノエチル共重
合体を用いているが、n−ヘキサンに溶解しづらく、生
成した吸水性樹脂が水になじみにくく吸水速度が遅い欠
点を有している。
For example, JP-A-57-158209 discloses a method using cellulose ester or cellulose ether as a dispersant, but this method has the disadvantage of blocking during drying and adhesion to the dryer wall. Also, JP-A-57-940
11. In JP-A-57-98512, a carboxy-containing polymer is used as a dispersant, but it is difficult to carry out stable reverse phase suspension polymerization, and there is a risk that the polymers may be integrated during the polymerization. Furthermore, in JP-A-Sho Ei+-40309, a styrene-dimethylaminoethyl methacrylate copolymer is used as a dispersant, but it is difficult to dissolve in n-hexane, and the resulting water-absorbing resin is difficult to mix with water, resulting in a slow water absorption rate. It has its drawbacks.

[問題点を解決するためのf段] 本発明者らは従来の欠点を改良すべく鋭意研究を重ねた
結果、吸水能、吸水速度、べとつき、ゲル強度等の特性
に優れ、大粒径を有する高吸水性樹脂を安全に製造でき
ることを見い出し、完成するに至った。
[Step F to solve the problem] As a result of intensive research to improve the conventional drawbacks, the present inventors have developed a product with excellent properties such as water absorption capacity, water absorption rate, stickiness, and gel strength, and a large particle size. We have discovered that it is possible to safely produce a super absorbent resin with

本発明によれば、アクリル酸とそのアルカリ金属塩水溶
液を脂肪族炭化水素溶媒中に分散させ、架橋剤不存在下
で逆相懸濁重合させることにより高吸水性樹脂を製造す
る方法において、分散剤として (A)アクリル酸またはメタクリル酸アルキルエステル
で、アルキル基の炭素数が8以上の単量体40〜95重
量%、 (B)アクリルまたはメタクリル酸ヒドロキシアルキル
エステルi量体5〜40重量%、(C) 上記(A)、
(B)と共重合し得る不悠和単賃体O〜40重量% を構成成分とする共重合体を用いることを特徴とする高
吸水性樹脂の製造法が提供される。
According to the present invention, in a method for producing a superabsorbent resin by dispersing acrylic acid and an aqueous solution of its alkali metal salt in an aliphatic hydrocarbon solvent and carrying out reverse phase suspension polymerization in the absence of a crosslinking agent, As agents: (A) 40 to 95% by weight of an acrylic acid or methacrylic acid alkyl ester monomer having an alkyl group of 8 or more carbon atoms; (B) 5 to 40% by weight of an acrylic or methacrylic acid hydroxyalkyl ester i-mer; , (C) above (A),
There is provided a method for producing a superabsorbent resin characterized by using a copolymer having as a constituent component 0 to 40% by weight of a monochromatic monomer that can be copolymerized with (B).

(A)成分のアクリル酸またはメタクリル酸アルキルエ
ステルとしては、アルキル基の炭素数が8以上であれば
よく、市販され、容易に入毛できる単量体として、アク
リル酸2−エチルヘキシル、メタクリル酸2−エチルヘ
キシル、アクリル酸ラウリル、メタクリル酸ラウリル、
アクリル酸トリデシル、メタクリル酸トリデシル、アク
リル酸ラウリル、トリデシル混合エステル、アクリル酩
ステアリル、メタクリル酸ステアリルなどがある。
The acrylic acid or methacrylic acid alkyl ester of component (A) may be used as long as the number of carbon atoms in the alkyl group is 8 or more. -Ethylhexyl, lauryl acrylate, lauryl methacrylate,
Examples include tridecyl acrylate, tridecyl methacrylate, lauryl acrylate, tridecyl mixed ester, stearyl acrylate, and stearyl methacrylate.

(A)成分を選択する場合、ガラス転移点が出来るだけ
高いほど、水系@WJ重合で分散剤を合成する際、ビー
ズのブロッキングがおこりにくくて都合がよい、各単量
体のガラス転移点を表−1に示す。
When selecting the component (A), the higher the glass transition point of each monomer is, the more convenient it is because blocking of beads is less likely to occur when synthesizing a dispersant by aqueous @WJ polymerization. It is shown in Table-1.

表−ま たとえば、メタクリル酸2−エチルヘギシル、アクリル
酸ラウリル、アクリル酸ラウリル、トリデシル混合エス
テル、アクリル酸トリデシル、アクリル酸ラウリル、メ
タクリル酸ステアリル等である。
Examples include 2-ethylhegicyl methacrylate, lauryl acrylate, lauryl acrylate, tridecyl mixed ester, tridecyl acrylate, lauryl acrylate, stearyl methacrylate, and the like.

(B)成分のアクリル酸またはメタクリル酸ヒドロキシ
アルキルエステルとしては、市販され容易に入手できる
単量体としてアクリル酸2−ヒドロキシエチル、メタク
リル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキ
シプロピル;メタクリル酸2−ヒドロキシプロピルなど
があげられる。(C)成分の単量体としては、ガラス転
移点が高く、脂肪族系炭化水素溶媒に親和性のあるメタ
クリル酸アルキルエステルでアルキル基の炭素数が4以
下のものや酢酸ビニルがあげられる。たとえばメタクリ
ル酸メチル、メタクリル酸エチル。
As the component (B), acrylic acid or methacrylic acid hydroxyalkyl ester, commercially available monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate; -Hydroxypropyl, etc. Examples of the monomer of component (C) include methacrylic acid alkyl esters having a high glass transition point and affinity for aliphatic hydrocarbon solvents with an alkyl group having 4 or less carbon atoms, and vinyl acetate. For example, methyl methacrylate, ethyl methacrylate.

メタクリル酸イソプロピル、メタクリル酸n−ブチル、
メタクリル酸イソブチル、酪酸ビニルなどがある。好ま
しくは、メタクリル酸メチル、メタクリル酸エチル、メ
タクリル酸イソブチルが適当である。
Isopropyl methacrylate, n-butyl methacrylate,
Examples include isobutyl methacrylate and vinyl butyrate. Preferably, methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate are suitable.

これら(A) 、(B) 、(C)成分の共重合体は、
単量体を考慮すると、衛生材料用途の吸水性樹脂の分散
剤として安全であり、何ら使用にさしつかえがない。
The copolymer of these components (A), (B), and (C) is
Considering the monomer content, it is safe as a dispersant for water-absorbing resins used in sanitary materials, and there is no problem in using it.

(A) 、(B) 、(C)成分の構成比は、脂肪族系
炭化水素溶媒への分散溶解性、重合のコロイド分散性、
吸水性樹脂の物性、たとえば吸水能、吸水速度、べとつ
き、ゲル強度1粒径等に大きな影響を午える。
The composition ratio of components (A), (B), and (C) is based on dispersion solubility in aliphatic hydrocarbon solvent, colloidal dispersibility of polymerization,
It has a great influence on the physical properties of the water absorbent resin, such as water absorption capacity, water absorption rate, stickiness, gel strength, and particle size.

通常(A)成分40〜95fff量%、(B)成分5〜
40i量%、(C)成分0〜40重量%がよく、より好
ましくは(A)成分45〜70重量%、(B)成分5〜
25改量%、(C)成分20〜40重量%が適当である
。(A)成分が400重量%未満場合、溶媒への分散溶
解性が低下し、95重量%を越える場合、相対的に(B
)成分が5重量%未満でコロイド分散性が悪くなり、と
もに逆相懸濁重合の継続が困難となる。
Usually (A) component 40-95fff amount%, (B) component 5-5%
40i% by weight, component (C) 0 to 40% by weight, more preferably component (A) 45 to 70% by weight, component (B) 5 to 40% by weight.
Appropriate amounts are 25% by weight and component (C) from 20 to 40% by weight. When component (A) is less than 400% by weight, the dispersion solubility in the solvent decreases, and when it exceeds 95% by weight, it is relatively (B)
) If the content of the component is less than 5% by weight, colloidal dispersibility deteriorates, and in both cases it becomes difficult to continue reverse phase suspension polymerization.

40〜95重量%の範囲では多いほど、溶媒への分散溶
解性がよぐなり、吸水性樹脂の吸水速度が遅くなり、べ
とつきが少なくなる傾向がある。(B)成分が5重量%
未満の場合、前述の通りコロイド分散性が悪くなり、4
0重量%を越える場合、溶媒・\の分散溶解性が低下し
、ともに逆相懸濁重合の継続が困難となる。5〜40重
量%の範囲では、多いほど、重合のコロイド分散性が良
くなり、吸水性樹脂の吸水速度はアップするが、べとつ
きが増し粒径が細かくなる傾向がある。(C)成分が4
0重量%を越える場合、相対的に(A)成分の比率が低
下し溶媒への分散溶解性が悪くなる。0〜40重量%の
範囲では多いほど吸水性樹脂のゲル強度がアップする。
In the range of 40 to 95% by weight, the higher the amount, the better the dispersion and solubility in the solvent, the slower the water absorption rate of the water absorbent resin, and the less sticky it tends to be. (B) component is 5% by weight
If it is less than 4, the colloidal dispersibility deteriorates as described above, and
If it exceeds 0% by weight, the dispersion solubility of the solvent and \ will decrease, making it difficult to continue the reverse phase suspension polymerization. In the range of 5 to 40% by weight, the higher the amount, the better the colloidal dispersibility of polymerization and the faster the water absorption rate of the water absorbent resin, but there is a tendency for stickiness to increase and particle size to become finer. (C) component is 4
When it exceeds 0% by weight, the proportion of component (A) decreases relatively and the dispersion solubility in the solvent deteriorates. In the range of 0 to 40% by weight, the gel strength of the water absorbent resin increases as the amount increases.

本発明で分散剤として用いる共重合体は、水系懸濁重合
法により合成される。溶液重合では溶剤が残留したり、
低分子量の重合物で分散剤としての機能が劣ってしまう
場合がある。水系懸濁重合法の例を上げると、イオン交
換水中に部分ケン化ポリビニルアルコールを加温溶解さ
せ、窒222換後、(A) 、 CB) 、 (C)成
分の単量体にアゾ系またはパーオキサイド系の重合開始
剤を溶かした溶液を滴下分散し、加温保持して重合を終
了させる。冷却後、固形物を濾過水洗したのち、減圧乾
燥しビーズ状の重合体、即ち分散剤を得る。
The copolymer used as a dispersant in the present invention is synthesized by an aqueous suspension polymerization method. In solution polymerization, solvent may remain,
Low molecular weight polymers may have poor functionality as a dispersant. To take an example of an aqueous suspension polymerization method, partially saponified polyvinyl alcohol is heated and dissolved in ion-exchanged water, and after nitrogen 222 conversion, azo-based or A solution containing a peroxide-based polymerization initiator is dropped and dispersed, and the temperature is maintained to complete the polymerization. After cooling, the solid matter is filtered, washed with water, and then dried under reduced pressure to obtain a bead-shaped polymer, that is, a dispersant.

1記方法で得られる分散剤は、逆相懸濁重合の脂肪族炭
化水素溶媒に分散溶解される0分散剤の量は、アクリル
酸とそのアルカリ金属塩単量体に対し0.5〜20重量
%、好ましくは1.ON10重量%の範囲で用いられる
0分散剤の量が0.5重量%未満では重合のコロイド分
散性が不安定となり、20重量%を越える場合1粒径が
細かくなりすぎ。
The dispersant obtained by method 1 is dispersed and dissolved in the aliphatic hydrocarbon solvent in the reverse phase suspension polymerization. % by weight, preferably 1. If the amount of the 0 dispersant used in the range of 10% by weight of ON is less than 0.5% by weight, the colloidal dispersibility of the polymerization will become unstable, and if it exceeds 20% by weight, the particle size will become too small.

経済的にもデメリットとなる。また分散剤の使用として
従来公知のソルビタン脂肪酸エステル等のノニオン系界
面活性剤を併用することもできる。
It is also economically disadvantageous. Further, as a dispersant, a conventionally known nonionic surfactant such as sorbitan fatty acid ester can be used in combination.

本発明で用いられるアクリル酸とそのアルカリ金属塩水
溶液は、アクリル酸単量体を水酸化ナトリウム、水酸化
カリウムなどの水溶液で部分中和することにより調製さ
れる。中和度は吸水能、安全性を考慮して60〜85%
が好ましい、また水溶液中の単量体濃度は35〜75重
量%、好ましくは40〜70重量%がよい。
The aqueous solution of acrylic acid and its alkali metal salt used in the present invention is prepared by partially neutralizing an acrylic acid monomer with an aqueous solution of sodium hydroxide, potassium hydroxide, or the like. Neutralization degree is 60-85% considering water absorption capacity and safety.
is preferable, and the monomer concentration in the aqueous solution is preferably 35 to 75% by weight, preferably 40 to 70% by weight.

本発明では吸水性樹脂を製造する範囲内で、アクリル酸
とアクリル酸アルカリ金属塩単量体と共重合し得る不飽
和単量体を共重合させてもよい。
In the present invention, an unsaturated monomer that can be copolymerized with acrylic acid and an acrylic acid alkali metal salt monomer may be copolymerized within the scope of producing a water absorbent resin.

本発明でアクリル酸とそのアルカリ金属水溶液を逆相懸
濁重合させる際、重合開始剤としては、架橋剤単量体を
用いない自己架橋型であるため、過硫酸カリウム、過硫
酸アンモニウムの如き水溶性過硫酸塩や、過酸化水素が
好ましい0重合開始剤の使用量は単量体に対し0.1〜
2.0重量%、好ましくは0.2〜1.0重量%がよい
In the present invention, when acrylic acid and its aqueous alkali metal solution are subjected to reverse phase suspension polymerization, the polymerization initiator is a self-crosslinking type that does not use a crosslinking monomer, so water-soluble polymers such as potassium persulfate and ammonium persulfate are used as the polymerization initiator. Persulfates and hydrogen peroxide are preferable. The amount of polymerization initiator used is 0.1 to 0.1 to 0.0 per monomer.
2.0% by weight, preferably 0.2-1.0% by weight.

本発明における逆相懸濁重合の脂肪族炭化水素溶媒とし
ては、n−ペンタン、n−ヘキサン、n−ヘプタン、n
−オクタン等の脂肪族炭化水素、シクロヘキサン、メチ
ルシクロヘキサン、デカリン等の脂環式炭化水素などが
あげられるが、好ましくはn−ヘキサン、n−ヘプタン
、シクロヘキサンが適当である。
Examples of aliphatic hydrocarbon solvents for reverse phase suspension polymerization in the present invention include n-pentane, n-hexane, n-heptane, n-
Examples include aliphatic hydrocarbons such as -octane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and decalin, and preferably n-hexane, n-heptane, and cyclohexane.

本発明で逆相懸濁重合により得られた重合体は、重合終
了後そのまま共沸脱水により大半の水を留去し、さらに
濾過後減圧乾燥してビーズ状の吸水性樹脂として回収さ
れる。しかしこれらの方法に限定されるものではない。
In the polymer obtained by reverse-phase suspension polymerization in the present invention, most of the water is distilled off by azeotropic dehydration directly after the polymerization is completed, and the polymer is further filtered and dried under reduced pressure to be recovered as a bead-shaped water-absorbing resin. However, the method is not limited to these methods.

[発明の効果] 本発明の分散剤を用いて逆相懸濁重合し得られる吸水性
樹脂は、吸水能が高く、吸水速度が速くべとつきが少な
く、ゲル強度の高い特性を有するため、紙おむつなどの
衛生材料用に最適である。
[Effects of the Invention] The water absorbent resin obtained by reverse-phase suspension polymerization using the dispersant of the present invention has high water absorption capacity, fast water absorption rate, low stickiness, and high gel strength, so it can be used for disposable diapers, etc. Ideal for sanitary materials.

また200涛鳳前後の粒径を持つビーズ状重合体であり
、吸湿性が少なく、かさ比重が0.9〜1.1あるため
、吸水性樹脂の製造時や吸水性シート作成時粉体の取扱
いが容易となる。さらに、逆相懸濁重合時、重合釜へ重
合体の付着がほとんどないため、重合釜の整備が軽減で
き、かつ安全に操業できる。
In addition, it is a bead-shaped polymer with a particle size of around 200 mm, and has low hygroscopicity and a bulk specific gravity of 0.9 to 1.1. Easy to handle. Furthermore, during reverse phase suspension polymerization, there is almost no polymer adhesion to the polymerization pot, so maintenance of the polymerization pot can be reduced and operation can be performed safely.

[実施例] 次に本発明の方法を実施例によって具体的に説明するが
、本発明はこの実施例に限定されるものではない。
[Example] Next, the method of the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例及び比較例で得た吸水性樹脂は以下の操作によっ
て、吸水能、吸水速度、吸水後のべとつき、ゲル強度、
平均粒径を測定した。
The water absorbent resins obtained in Examples and Comparative Examples were tested for water absorption capacity, water absorption rate, stickiness after water absorption, gel strength,
The average particle size was measured.

吸水能 1)イオン交換水の吸水能の場合は、乾燥重合合体0.
5gをlρのイオン交換水に分散し、1昼夜静置後、1
00メツシユの金網で濾過し得られた膨潤ポリマー重1
 (W)を測定し、この値を初めの乾燥重合体重量(W
 o )で割って得られた値である。つまり、イオン交
換水吸水能(g/g) = W / W o とした。
Water absorption capacity 1) In the case of water absorption capacity of ion-exchanged water, dry polymer 0.
Disperse 5g in lρ ion-exchanged water, leave it to stand for a day and night,
Swollen polymer weight obtained by filtration through 00 mesh wire mesh 1
(W) and convert this value into the initial dry polymer weight (W
o) is the value obtained by dividing by In other words, the water absorption capacity of ion-exchanged water (g/g) = W / W o.

2)人工尿の吸水能の場合は、乾燥重合体0.2gを4
0gの人工尿に分散し、30分静置後、100メツシユ
の金網で濾過し得られた膨潤ポリマー(W)を測定し、
この値を初めの乾燥重合体重1t(Wo)で割って得ら
れた値である。
2) For the water absorption capacity of artificial urine, 0.2 g of dry polymer is
The swollen polymer (W) obtained by dispersing it in 0 g of artificial urine, leaving it for 30 minutes, and filtering it through a 100-mesh wire mesh was measured.
This value is obtained by dividing this value by the initial dry polymer weight 1 t (Wo).

つまり、人−■尿吸水能(g/g)=W/Woとした。In other words, human - ■ urine water absorption capacity (g/g) = W/Wo.

人工尿組成(g/100112) 尿素2.0g、 NaCl! 0.82g、 Mg5O
a O,0553g。
Artificial urine composition (g/100112) Urea 2.0g, NaCl! 0.82g, Mg5O
a O, 0553g.

CaCRz 0.084g 吸水速度 かきまぜ法による。100ccのビーカーにイオン交換
水50ccを入れ、マグネチックスターラーで攪拌しな
がら乾燥重合体0.5gを投入し、投入してから、全て
の水を吸収し水の流動性がなくなるまでの時間とした。
CaCRz 0.084g Based on water absorption rate stirring method. 50 cc of ion-exchanged water was put into a 100 cc beaker, and 0.5 g of the dry polymer was added while stirring with a magnetic stirrer.The time from the introduction until all the water was absorbed and the water lost its fluidity was measured. .

吸水後のべとつき 乾燥重合体0.10gに人工尿4.0gを加え、30分
静置後、ゲル2.0gを円形定性濾紙(No、2.11
c+s径)上に書いた5、0cm径の円内にひろげる。
4.0 g of artificial urine was added to 0.10 g of the sticky dry polymer after water absorption, and after leaving it for 30 minutes, 2.0 g of the gel was filtered onto circular qualitative filter paper (No. 2.11).
c+s diameter) Spread within the 5.0 cm diameter circle drawn above.

3分放置後、ゲルを取り去り、濾紙の重量(W)を測定
し、あらかじめ秤量しておいた濾紙(WO)の重量をさ
し引いて。
After leaving for 3 minutes, remove the gel, measure the weight (W) of the filter paper, and subtract the weight of the filter paper (WO) weighed in advance.

ゲルに付着する人工尿の重量とした・ ゲル強度 1)ウェットバック 乾燥重合体0.20gに人工尿8.0 gを加え、30
分静置後、濾紙で付着人工尿を取り除き、円形定性濾紙
(No、2.11cm径)上に書いた3、0cm径の円
内にひろげる。それを同質のが紙で上下2枚ずつではさ
み、アルミプレート(15cmX 15cm、 153
g)の上に置き、同形のアルミプレートをのせ、更に7
50gのおもりをのせる。3分放置後、ゲルを取去り、
濾紙の重量(W)を測定し、あらかじめ秤量しておいた
か紙のff1ffi(Wo)を差し引いて、vJ紙に吸
収された人工尿の重量とした。
Gel strength 1) Add 8.0 g of artificial urine to 0.20 g of wet back dry polymer,
After standing for a minute, remove the adhered artificial urine with a filter paper and spread it in a circle with a diameter of 3.0 cm drawn on a circular qualitative filter paper (No. 2.11 cm diameter). Sandwich it between two pieces of paper of the same quality, one on top and one on top, and place it on an aluminum plate (15cm x 15cm, 153
g), place an aluminum plate of the same shape on top, and then
Place a 50g weight on it. After leaving it for 3 minutes, remove the gel.
The weight (W) of the filter paper was measured, and the weight of the artificial urine absorbed into the vJ paper was determined by subtracting the weight (W) of the paper, which had been weighed in advance.

2)ゲル拡がり面積 ウェットバック測定後、ゲルをのせた円形が紙のゲルの
拡がり面積(S cm2)を算出した。
2) Gel spreading area After the wet back measurement, the gel spreading area (S cm2) of the paper where the gel was placed was calculated.

平均粒径 堀場製作所株製の自動粒度分布測定装置CAPA−30
0により遠心沈降方式で測定し、面積基準のメジアン値
を平均粒径とした。
Average particle size Automatic particle size distribution measuring device CAPA-30 manufactured by Horiba, Ltd.
0 using a centrifugal sedimentation method, and the area-based median value was taken as the average particle diameter.

合成例1 攪拌機、還流冷却管、滴下漏斗、温度計及び窒素ガス導
入管を付した500tRセパラブルフラスコにイオン交
検水150gを仕込み、分散剤として部分ケン化ポリビ
ニルアルコール(日本合成化学株製GW−23) 0.
2 gを添加し、加熱溶解させたのち、窒素置換した。
Synthesis Example 1 A 500 tR separable flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen gas introduction tube was charged with 150 g of ion exchange water, and partially saponified polyvinyl alcohol (Nippon Gosei Kagaku Co., Ltd. GW) was added as a dispersant. -23) 0.
After adding 2 g and heating and dissolving, the mixture was replaced with nitrogen.

一方、あらかじめ、三角フラスコ中でアクリル酸ラウリ
ル、トリデシル混合エステル(大阪有機化学株製LTA
) 30.0g、メタクリル酸ヒドロキシエチル7.5
g、メタクリル酸メチル12.5gにアゾビスジメチル
バレロニトリル1.0 gを加えて溶解し、上記のセパ
ラブルフラスコに窒素気流/(ブリング下に1時間かけ
て滴下した。65℃で5時間保持し、反応を終了させ、
冷却後固形物を濾過し、水洗したのち、減圧乾燥してビ
ーズ状の分散剤(1)を得た。
Meanwhile, in advance, lauryl acrylate and tridecyl mixed ester (LTA manufactured by Osaka Organic Chemical Co., Ltd.) was prepared in an Erlenmeyer flask.
) 30.0g, hydroxyethyl methacrylate 7.5
g, 1.0 g of azobisdimethylvaleronitrile was added to 12.5 g of methyl methacrylate, dissolved, and added dropwise to the above separable flask over 1 hour under a nitrogen stream/blow. Maintained at 65°C for 5 hours. and terminate the reaction,
After cooling, the solid matter was filtered, washed with water, and then dried under reduced pressure to obtain bead-shaped dispersant (1).

合成例2 アクリル酸ラウリル、トリデシル混合ニスチル22.5
g、メタクリル酸ヒドロキシエチル10.0g、メタク
リル酸メチル17.5gを用いる以外、合成例1と同様
に操作し、ビーズ状の分散剤(2)を得た。
Synthesis Example 2 Lauryl acrylate, tridecyl mixed nistyl 22.5
A bead-shaped dispersant (2) was obtained in the same manner as in Synthesis Example 1 except that 10.0 g of hydroxyethyl methacrylate and 17.5 g of methyl methacrylate were used.

合成例3 アクリル酸ラウリル、トリデシル混合エステル45.0
g、メタクリル酸ヒドロキシエチル5.0gを用いる以
外、合成例1と同様に操作し、ビーズ状の分散剤(3)
を得た。
Synthesis Example 3 Lauryl acrylate, tridecyl mixed ester 45.0
g, Bead-shaped dispersant (3) was prepared in the same manner as in Synthesis Example 1 except for using 5.0 g of hydroxyethyl methacrylate.
I got it.

合成例4 アクリル酸ラウリル、トリデシル混合エステル30.0
g、メタクリル酸ヒドロキシエチル7.5g、メタクリ
ル酸イソブチル12.5gを用いる以外、合成例1と同
様に操作し、ビーズ状の分散剤(4)を得た。
Synthesis Example 4 Lauryl acrylate, tridecyl mixed ester 30.0
A bead-shaped dispersant (4) was obtained in the same manner as in Synthesis Example 1 except that 7.5 g of hydroxyethyl methacrylate, 7.5 g of isobutyl methacrylate, and 12.5 g of isobutyl methacrylate were used.

合成例5 メタクリル酸2−エチルヘキシル35.0g、メタクリ
ル酸ヒドロキシエチル5.0 g、メタクリル酸メチル
10.0gを用いる以外、合成例1と同様に操作し、ビ
ーズ状の分散剤(5)を得た。
Synthesis Example 5 Bead-shaped dispersant (5) was obtained by the same procedure as Synthesis Example 1 except for using 35.0 g of 2-ethylhexyl methacrylate, 5.0 g of hydroxyethyl methacrylate, and 10.0 g of methyl methacrylate. Ta.

合成例6 メタクリル酸ステアリル30g、メタクリル酸ヒドロキ
シエチル10.0g、メタクリル酸メチル10.0gを
用いる以外、合成例1と同様に操作し、ビーズ状の分散
剤(6)を得た。
Synthesis Example 6 A bead-shaped dispersant (6) was obtained in the same manner as in Synthesis Example 1 except that 30 g of stearyl methacrylate, 10.0 g of hydroxyethyl methacrylate, and 10.0 g of methyl methacrylate were used.

合成例7 スチレン30g、メタクリル酸ヒドロキシエチル10.
0g、メタクリル酸メチル10.0gを用いる以外、合
成例1と同様に操作し、ビーズ状の分散剤(7)を得た
Synthesis Example 7 Styrene 30g, hydroxyethyl methacrylate 10.
The same procedure as in Synthesis Example 1 was performed except that 10.0 g of methyl methacrylate was used to obtain a bead-shaped dispersant (7).

実施例1 攪拌機、還流冷却管、滴下漏斗、温度計及び窒素ガス導
入管を付したIでセパラブルフラスコにn−ヘキサン3
60.7 g、分散剤(1) 4.32gを仕込み50
℃まで昇湿し分散溶解したのち、窒素近換した。
Example 1 N-hexane 3 was placed in a separable flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen gas inlet tube.
Add 60.7 g and 4.32 g of dispersant (1) to 50
After the mixture was humidified to ℃ and dispersed and dissolved, it was replaced with nitrogen.

一方、あらかじめ、三角フラスコ中でアクリル酸72.
0 gをイオン交検水103.8 gに溶解した水酸化
ナトリウム32.2gで部分中和し、更に室温下で過硫
酸カリウム0.24 gを溶解した。この重量体水溶液
を上記のセパラブルフラスコに300 rp鳳の攪拌速
度で窒素気流バブリング下に1時間かけて滴下し、2時
間還流後、30%過酸化水素水0.1gを添加し、さら
に還流を1時間続は重合を完結させた。その後、共沸脱
水を行ない濾過後減圧乾燥して、白色のビーズ状重合体
を得た。またセパラブルフラスコ内には重合体の付着物
がほとんど無かった。
Meanwhile, 72% of acrylic acid was prepared in advance in an Erlenmeyer flask.
0 g was partially neutralized with 32.2 g of sodium hydroxide dissolved in 103.8 g of ion exchange water, and further 0.24 g of potassium persulfate was dissolved at room temperature. This heavy aqueous solution was added dropwise to the above separable flask at a stirring speed of 300 rpm over 1 hour under nitrogen bubbling, and after refluxing for 2 hours, 0.1 g of 30% hydrogen peroxide was added, and the mixture was further refluxed. The polymerization was continued for 1 hour to complete the polymerization. Thereafter, azeotropic dehydration was carried out, followed by filtration and drying under reduced pressure to obtain a white bead-like polymer. Furthermore, there was almost no polymer deposit inside the separable flask.

実施例2〜6 実施例1の分散剤(1)の代わりに合成例2〜6で得た
分散剤(2)〜(6)を用いる以外、実施例1と同様に
操作し、白色のビーズ状重合体を得た。
Examples 2 to 6 White beads were prepared in the same manner as in Example 1 except that dispersants (2) to (6) obtained in Synthesis Examples 2 to 6 were used instead of dispersant (1) in Example 1. A polymer was obtained.

またセパラブルフラスコ内には重合体の付着物がほとん
ど無かった。
Furthermore, there was almost no polymer deposit inside the separable flask.

実施例7 実施例1のn−ヘキサンの代わりにシクロヘキサンを用
いて、実施例1と同様に操作し、白色のビーズ状重合体
を得た。またセパラブルフラスコ内には重合体の付着物
がほとんど無かった。
Example 7 The same procedure as in Example 1 was performed except that cyclohexane was used in place of n-hexane in Example 1 to obtain a white bead-like polymer. Furthermore, there was almost no polymer deposit inside the separable flask.

比較例1 実施例1の分散剤(1)の代わりに合成例7で得た分散
剤(7)を用いて実施例1と同様に操作したところ、n
・−ヘキサンに分散剤(7)が分散溶解せず、逆相懸′
pA重合出来なかった。
Comparative Example 1 When the same procedure as in Example 1 was performed using the dispersant (7) obtained in Synthesis Example 7 instead of the dispersant (1) in Example 1, n
・-The dispersant (7) is not dispersed and dissolved in hexane, resulting in reverse phase suspension.
pA polymerization was not possible.

比較例2 実施例1の分散剤(2)の代わりにソルビタンモノラウ
レートを用いて、実施例1と同様に操作し、白色の粉末
重合体を得た。またセパラブルフラスコ内には壁面やか
くはん大に重合体付着物が見られた。
Comparative Example 2 A white powder polymer was obtained in the same manner as in Example 1 except that sorbitan monolaurate was used in place of the dispersant (2) in Example 1. In addition, polymer deposits were observed on the walls and the size of the stirrer inside the separable flask.

実施例1〜7、比較例2の評価結果は表2に示す通りで
ある。
The evaluation results of Examples 1 to 7 and Comparative Example 2 are shown in Table 2.

Claims (3)

【特許請求の範囲】[Claims] (1)アクリル酸とそのアルカリ金属塩水溶液を脂肪族
炭化水素溶媒中に分散させ、架橋剤不存在下で逆相懸濁
重合させることにより高吸水性樹脂を製造する方法にお
いて、分散剤として (A)アクリル酸またはメタクリル酸アルキルエステル
で、アルキル基の炭素数が8以上の単量体40〜95重
量%、 (B)アクリル酸またはメタクリル酸ヒドロキシアルキ
ルエステル単量体5〜40重量%、 (C)上記(A)、(B)と共重合し得る不飽和単量体
0〜40重量% を構成成分とする共重合体を用いることを特徴とする高
吸水性樹脂の製造法。
(1) In a method for producing a superabsorbent resin by dispersing acrylic acid and its alkali metal salt aqueous solution in an aliphatic hydrocarbon solvent and carrying out reverse phase suspension polymerization in the absence of a crosslinking agent, as a dispersant ( A) 40 to 95% by weight of an acrylic acid or methacrylic acid alkyl ester monomer whose alkyl group has 8 or more carbon atoms, (B) 5 to 40% by weight of an acrylic acid or methacrylic acid hydroxyalkyl ester monomer, ( C) A method for producing a superabsorbent resin, characterized by using a copolymer containing 0 to 40% by weight of an unsaturated monomer copolymerizable with the above (A) and (B).
(2)分散剤が(A)アクリル酸ラウリル、トリデシル
混合エステル45〜70重量%、(B)アクリル酸また
はメタクリル酸ヒドロキシエチルエステル5〜25重量
%、(C)メタクリル酸メチルまたは/およびメタクリ
ル酸エチル、または/およびメタクリル酸イソブチル2
0〜40重量%を構成成分とする共重合体である特許請
求の範囲第1項記載の製造法。
(2) The dispersant is (A) lauryl acrylate, tridecyl mixed ester 45-70% by weight, (B) acrylic acid or methacrylic acid hydroxyethyl ester 5-25% by weight, (C) methyl methacrylate or/and methacrylic acid Ethyl or/and isobutyl methacrylate 2
The manufacturing method according to claim 1, which is a copolymer containing 0 to 40% by weight as a constituent component.
(3)脂肪族炭化水素溶媒がn−ヘキサン、n−ヘプタ
ン、シクロヘキサンである特許請求の範囲第1項記載の
製造法。
(3) The production method according to claim 1, wherein the aliphatic hydrocarbon solvent is n-hexane, n-heptane, or cyclohexane.
JP61199030A 1986-08-27 1986-08-27 Super absorbent resin manufacturing method Expired - Fee Related JPH0610220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199030A JPH0610220B2 (en) 1986-08-27 1986-08-27 Super absorbent resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199030A JPH0610220B2 (en) 1986-08-27 1986-08-27 Super absorbent resin manufacturing method

Publications (2)

Publication Number Publication Date
JPS6356512A true JPS6356512A (en) 1988-03-11
JPH0610220B2 JPH0610220B2 (en) 1994-02-09

Family

ID=16400945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199030A Expired - Fee Related JPH0610220B2 (en) 1986-08-27 1986-08-27 Super absorbent resin manufacturing method

Country Status (1)

Country Link
JP (1) JPH0610220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017669A (en) * 1986-12-16 1991-05-21 Young Peter D Impregnant compositions for porous articles
CN112538141A (en) * 2020-11-24 2021-03-23 贵州省欣紫鸿药用辅料有限公司 Preparation method of hydrophobically modified polymer
CN116283027A (en) * 2023-02-03 2023-06-23 北京市政建设集团有限责任公司 Engineering soil water reducing agent with high water content, preparation method and application thereof
CN116283027B (en) * 2023-02-03 2024-05-10 北京市政建设集团有限责任公司 Engineering soil water reducing agent with high water content, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454186A (en) * 1977-10-07 1979-04-28 Nippon Kayaku Co Ltd Preparation of water-soluble polymer
JPS5794011A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Productin of high-molecular material having excellent water absorbability
JPS5798512A (en) * 1980-12-10 1982-06-18 Sumitomo Chem Co Ltd Production of hydrogel
JPS5798513A (en) * 1980-12-11 1982-06-18 Sumitomo Chem Co Ltd Production of hydrogel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454186A (en) * 1977-10-07 1979-04-28 Nippon Kayaku Co Ltd Preparation of water-soluble polymer
JPS5794011A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Productin of high-molecular material having excellent water absorbability
JPS5798512A (en) * 1980-12-10 1982-06-18 Sumitomo Chem Co Ltd Production of hydrogel
JPS5798513A (en) * 1980-12-11 1982-06-18 Sumitomo Chem Co Ltd Production of hydrogel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017669A (en) * 1986-12-16 1991-05-21 Young Peter D Impregnant compositions for porous articles
CN112538141A (en) * 2020-11-24 2021-03-23 贵州省欣紫鸿药用辅料有限公司 Preparation method of hydrophobically modified polymer
CN116283027A (en) * 2023-02-03 2023-06-23 北京市政建设集团有限责任公司 Engineering soil water reducing agent with high water content, preparation method and application thereof
CN116283027B (en) * 2023-02-03 2024-05-10 北京市政建设集团有限责任公司 Engineering soil water reducing agent with high water content, preparation method and application thereof

Also Published As

Publication number Publication date
JPH0610220B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP3119900B2 (en) Method for producing superabsorbent polymer
US4758617A (en) Process for preparing water-absorbing resin
US4524186A (en) Process for producing water-absorbing resins
JPH04501877A (en) Manufacturing method of super absorbent resin
CA1257742A (en) Absorbent compositions
JPS61271303A (en) Production of water-absorptive resin
JPH03195713A (en) Production of polymer having high water absorption
KR100492917B1 (en) Process for preparing Bead-typed hydrogel
JPS6336321B2 (en)
JPS6356512A (en) Production of resin having high water absorption property
JPH01213307A (en) Production of high swelling-type water-absorptive polymer
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JPH0523564B2 (en)
JPS63297408A (en) Production of improved highly water-absorbing polymer
JPS6028286B2 (en) Suspension polymerization method for vinyl compounds
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JP2967952B2 (en) Method for producing porous polymer
JPH0557226B2 (en)
JP2917418B2 (en) Method for producing superabsorbent polymer
JP2716485B2 (en) Method for producing superabsorbent polymer
JPH01156304A (en) Manufacture of water-absorptive fine particle
JPS6295308A (en) Production of highly water-absorbing polymer bead
JPS6336322B2 (en)
JPH09276383A (en) Oil absorptive resin and manufacturing process thereof, and aromatic composition
TWI303251B (en) Production of polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees