JPS6295308A - Production of highly water-absorbing polymer bead - Google Patents

Production of highly water-absorbing polymer bead

Info

Publication number
JPS6295308A
JPS6295308A JP23487885A JP23487885A JPS6295308A JP S6295308 A JPS6295308 A JP S6295308A JP 23487885 A JP23487885 A JP 23487885A JP 23487885 A JP23487885 A JP 23487885A JP S6295308 A JPS6295308 A JP S6295308A
Authority
JP
Japan
Prior art keywords
water
polymer
acrylic acid
polymerization
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23487885A
Other languages
Japanese (ja)
Other versions
JPH0629299B2 (en
Inventor
Kiichi Ito
喜一 伊藤
Takeshi Shibano
芝野 毅
Toshiko Nakamura
中村 俊子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP60234878A priority Critical patent/JPH0629299B2/en
Publication of JPS6295308A publication Critical patent/JPS6295308A/en
Publication of JPH0629299B2 publication Critical patent/JPH0629299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an easily crushable polymer having large particle diameter keeping the water absorption and gel strength in water-absorbed state, by polymerizing an acrylic acid monomer containing a small amount of crosslinking agent in the presence of hydroxyethyl cellulose using a specific crosslinking agent. CONSTITUTION:(Meth)acrylic acid containing a small amount (preferably 0.01-2wt%) of a crosslinking agent (e.g. N,N'-methylenebisacrylamide) and an alkali metal salt or ammonium salt of (meth)acrylic acid are polymerized by W/O-type reverse-phase suspension polymerization in the presence of a water- soluble radical polymerization initiator (e.g. hydrogen peroxide, ammonium persulfate, etc.), a dispersion medium (e.g. cyclohexane), a surfactant and water. The surfactant is preferably a copolymer of 16-60C alpha-olefin and an alpha,beta-unsaturated polybasic carboxylic acid anhydride (e.g. maleic anhydride) or its derivative. The polymerization is carried out in the presence of hydroxyethyl cellulose.

Description

【発明の詳細な説明】 本発明は吸水性に優れ、且つ、吸水rル強度が大きく、
重合体の粒子が大きな容易に粉砕できる高吸水性ポリマ
ーを安全に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent water absorbency and high water absorption resistance.
The present invention relates to a method for safely producing a superabsorbent polymer having large particles that can be easily crushed.

〔産業上の利用分野〕[Industrial application field]

本発明の製造法によって得られるポリマーは吸水性に優
れており多量の水を吸水して膨潤するが、水に不溶性で
あり、且つ吸水グル強度が大きく、重合体の粒径が大き
くポリマー自体か容易に粉砕できるものであるから、各
種の吸収材料又は吸水して膨潤した状態で使用する各種
の材料の製造に有利に使用することができる。
The polymer obtained by the production method of the present invention has excellent water absorbency and swells when it absorbs a large amount of water, but it is insoluble in water, has a high water absorbing strength, and has a large particle size, making it difficult for the polymer itself to absorb water. Since it can be easily pulverized, it can be advantageously used in the production of various absorbent materials or materials that are used in a swollen state after absorbing water.

〔従来技術〕[Prior art]

従来、紙、パルプ、不織布、スポンジ状りレタン樹脂等
は保水剤として、生理用ナプキン、紙オシメ、各種の衛
生材料及び各種の農業用材料等に使用されてきた。しか
し、これらの材料は、その吸水量が自重の10〜50倍
程度にすぎないので、多量の水を吸収又は保持せしめる
ためには、多量の材料が必要であり、著しく嵩高になる
ばかりでなく、吸水した材料を加圧すると簡単に水分を
分離する等の欠点があった。
Conventionally, paper, pulp, nonwoven fabric, sponge-like rethane resin, etc. have been used as water-retaining agents in sanitary napkins, paper diapers, various sanitary materials, and various agricultural materials. However, these materials absorb only 10 to 50 times their own weight, so in order to absorb or retain a large amount of water, a large amount of material is required, which not only makes them extremely bulky, but also makes them extremely bulky. However, there were drawbacks such as the fact that when pressurizing a material that has absorbed water, the water easily separates.

この種の吸水材料の上記欠点を改良するものとして、近
年、高吸水性の種々の高分子材料が提案されている。た
とえば、澱粉グラフト重合体(%公昭53−46199
号公報等)、セルロース変性材(特開昭50−8037
6号公報等)、水溶性高分子の架橋物(特公昭43−2
3462号公報等)、自己架橋型アクリル酸アクリル金
属塩ポリマー(特公昭54−30710号公報等)、等
が提案された。
In order to improve the above-mentioned drawbacks of this type of water-absorbing material, various highly water-absorbing polymeric materials have been proposed in recent years. For example, starch graft polymer (%Koshō 53-46199
Publications, etc.), cellulose modified materials (JP-A-50-8037)
6, etc.), crosslinked products of water-soluble polymers (Japanese Patent Publication No. 43-2)
3462, etc.), self-crosslinking type acrylic acid acrylic metal salt polymer (Japanese Patent Publication No. 30710/1983, etc.), and the like have been proposed.

しかしながら、これらの高吸水性高分子材料も吸水量に
おいて未だ不充分であり、吸水時のグル強度も小さく、
また上記公報のあるものは乾燥により得られたポリマー
が極めて堅く、容易に粉砕することが困難で大きな機械
的粉砕力を必要とする等、実用上または工業的規模での
製造上多くの問題点を有している。
However, these superabsorbent polymer materials are still insufficient in terms of water absorption, and have low glue strength when water is absorbed.
In addition, the above-mentioned publication has many problems in production on a practical or industrial scale, such as the polymer obtained by drying is extremely hard, making it difficult to crush easily and requiring a large mechanical crushing force. have.

本発明者らは、既に従来の吸水性材料の上記欠点を改良
した吸水材料の製造方法を提案した(特願昭59−27
5308号公報。特願昭60−202907゜以下公報
と称す。) 然るに上記公報に開示された方法で製造された吸水材料
も種々の欠点を有している。即ち、特願昭59−275
308号公報では油中水滴型逆相懸濁重合方法における
界面活性剤としてHLBが3〜6の非イオン系界面活性
剤を用いる為に重合反応は櫃めて安定であるが得られた
ポリマーの粒径が100μm以下と極めて微粉床なもの
となってしまう。この為に粉末を取り扱う場合、粉塵対
策が必要である。又吸水時のグル強度も未だ不充分であ
り、より優れた形態保持性を有するポリマーの出現が望
まれてきた。
The present inventors have already proposed a method for producing a water-absorbing material that improves the above-mentioned drawbacks of conventional water-absorbing materials (Japanese Patent Application No. 59-27
Publication No. 5308. Patent Application No. 60-202907゜hereinafter referred to as Publication. ) However, the water-absorbing material produced by the method disclosed in the above-mentioned publication also has various drawbacks. That is, the patent application No. 59-275
In Publication No. 308, a nonionic surfactant with an HLB of 3 to 6 is used as a surfactant in the water-in-oil type reversed-phase suspension polymerization method, so the polymerization reaction is stable when it is mixed, but the resulting polymer is The particle size is 100 μm or less, resulting in an extremely fine powder bed. For this reason, when handling powder, dust countermeasures are necessary. Furthermore, the glue strength upon water absorption is still insufficient, and there has been a desire for a polymer with better shape retention.

インとα、β−不飽和多価カルデン酸無水物との共重合
体又はその誘導体を用い、少量の架橋剤存在下で重合さ
せることにより、極めて吸水能の大きい、且つグル強度
が大きく、重合体の粒径が大きい、容易に粉砕できるビ
ーズ状高吸水性ポリマーの製造法を示した。
By polymerizing a copolymer of yne and an We have demonstrated a method for producing bead-shaped superabsorbent polymers that have a large aggregate particle size and can be easily crushed.

しかしながら、上記方法では、種々詳細検討の結果、重
合反応時、懸濁粒子同士が付着し易く、その結果塊状状
態となりて異常重合を引き起す為に、運転上極めて危険
であるばかりか、目的とするビーズ状の吸水性ポリマー
が得られにくいことが判明した。また、上記方法で得ら
れるポリマーは、100μm以上でかつその分布がせま
いことが特徴的であるが、ポリマー粒径としても最大5
00μm程度であり、500μm以上の巨大粒子を得る
ことは不可能である。
However, as a result of various detailed studies, it was found that in the above method, suspended particles tend to adhere to each other during the polymerization reaction, resulting in a lumpy state and causing abnormal polymerization. It was found that it was difficult to obtain bead-like water-absorbing polymers. In addition, the polymer obtained by the above method is characterized by having a particle size of 100 μm or more and a narrow distribution, but the polymer particle size is also at most 5 μm.
00 μm, and it is impossible to obtain giant particles of 500 μm or more.

〔発明が解決せんとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記の欠点を改良して、吸水性、吸水時のグ
ル強度を保持しつつ、重合体の粒径がさらに著しく大き
く、容易に粉砕できる高吸水性ポリマーを、安全性良く
製造する方法を提供せんとするものである。
The present invention improves the above-mentioned drawbacks and safely produces a superabsorbent polymer that maintains water absorbency and glue strength during water absorption, has a significantly larger polymer particle size, and can be easily crushed. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記の問題点を解決するため植種研究を重
ねた結果、前記特願昭60−202907号公報におけ
る重合反応系での水相中にヒドロキシエチルセルロース
を添加溶解せしめ、重合せしめることにより、自重の5
00倍以上の吸水性を有し、且つグル強度が大きく、重
合体粒子径が最大約3000μm程度の著しく大きな扁
吸水ポリマーを、安全に製造することを見い出し、本発
明を完成するに至ったのである。
As a result of repeated seeding research in order to solve the above-mentioned problems, the inventor of the present invention has discovered the method of adding and dissolving hydroxyethyl cellulose into the aqueous phase of the polymerization reaction system described in the above-mentioned Japanese Patent Application No. 60-202907 and polymerizing it. Due to the dead weight of 5
We have discovered that it is possible to safely produce an extremely large flat water-absorbing polymer that has a water absorption capacity of 00 times or more, has a high glue strength, and has a maximum polymer particle size of about 3000 μm, and has completed the present invention. be.

即ち、本発明は、少量の架橋剤を含むアクリル酸とアク
リル酸アルカリ金属塩若しくはアンモニウム塩又はメタ
クリル酸とメタクリル酸のアルカリ金属塩若しくはアン
モニウム塩を水、水溶性ラジカル重合開始剤、分散媒、
及び界面活性剤存在下で油中水滴型の逆相懸濁重合法に
よって重合させる方法において、 (、)  界面活性剤としてα−オレフィンとα、β−
不飽和多価カルゲン酸無水物との共重合体又はその誘導
体を用い、 (b)  水相中にヒドロキシエチルセルロースを存在
せしめ、 重合させることを特徴とするビーズ状高吸水性本発明の
油中水滴型の逆相懸濁重合法において、界面活性剤とし
て使用されるα−オレフィンとα、β−不飽和多価カル
ゴン酸無水物との共重合体又はその誘導体は、先に%開
1@57−743Q9号公報に、ビーズ状水溶性テリマ
ーの製造法として開示されているが、本発明者等は前記
したように既に%顧昭60−202907号公報に本技
術を応用した新規なビーズ状高吸水性ポリマーの製造法
を提案した。
That is, the present invention combines acrylic acid and an alkali metal salt or ammonium salt of acrylic acid, or methacrylic acid and an alkali metal salt or ammonium salt of methacrylic acid, containing a small amount of a crosslinking agent, with water, a water-soluble radical polymerization initiator, a dispersion medium,
and a method of polymerizing by a water-in-oil reverse phase suspension polymerization method in the presence of a surfactant, (,) an α-olefin and α,β- as a surfactant.
The bead-shaped super absorbent water-in-oil droplet of the present invention is characterized by using a copolymer with an unsaturated polycargenic acid anhydride or a derivative thereof, and (b) having hydroxyethyl cellulose present in the aqueous phase and polymerizing it. In this type of reverse phase suspension polymerization method, a copolymer of α-olefin and α,β-unsaturated polycargonic acid anhydride or a derivative thereof, which is used as a surfactant, is first prepared at a concentration of 1@57%. -743Q9 discloses a method for producing bead-like water-soluble Telimer, but as mentioned above, the present inventors have already developed a novel bead-like high We proposed a method for producing water-absorbing polymers.

しかしながら、該方法では、前記のように、重合反応時
、懸濁重合粒子同士が付着し易く、その結果塊状状態と
なって異常重合を生起せしめ、運転上極めて危険である
ばかりか、目的とするビーズ状の吸水性ポリマーが得ら
れ難いことが判明した。
However, in this method, as mentioned above, during the polymerization reaction, the suspended polymer particles tend to adhere to each other, resulting in a lumpy state and abnormal polymerization, which is not only extremely dangerous for operation, but also It was found that it was difficult to obtain bead-shaped water-absorbing polymers.

本発明者等は、上記製造法における異常重合を防止する
方法について鋭意検討を行った結果、水相中に更にヒド
ロキシエチルセルロースt−m加溶解せしめ、重合する
ことにより、吸水性能、吸水グル強度を保持しつつ完全
に防止しうろことを見い出した。また、添加するヒドロ
キシエチルセルロースの量、種類によって得られたポリ
マーの粒子径が任意にコントロールすることができ、粒
子径として約3000μmもの巨大ビーズ状ポリマーが
得られることが判明した〇一般的には吸水量と吸水ダル
強度とは相反する傾向を示す。即ち、吸水量を多くしよ
うとする為には、ポリマーの不溶化の為の架橋割合を出
来る限り少なくする必要があるが、一方吸水グル強度は
これとは逆に小さくなる。従って、吸水グル強度を上げ
る為には、架橋割合を増加させる必要があるが、十分満
足な吸水グル強度を得るには、通常吸水量は実用に供し
難い程度に、即ち、自重の300倍以工程工程ものとな
ってしまうのが現実である。即ち、本発明方法以外の方
法にて、例えば2官能性のジビニル化合物やカルゲキシ
ル基と反応しうる2官能性化金物存在下水溶液重合や溶
液重合を行って得られたポリマーは、これら架橋剤の量
を極力少なくしても吸水量は高々自重の1000倍程度
であり、このもの自身は吸水ダル強度は極めて小さく、
ペースト状のものとなり、十分満足な吸水グル強度を得
るべく架橋剤量を増加せしめた場合、吸水量は自重の3
00倍以下となってしまう。
As a result of intensive studies on methods for preventing abnormal polymerization in the above production method, the present inventors have found that by further dissolving hydroxyethyl cellulose t-m in the aqueous phase and polymerizing it, the water absorption performance and water absorption glue strength can be improved. We have found a solution that completely prevents scales while retaining them. In addition, it was found that the particle size of the resulting polymer could be controlled arbitrarily by changing the amount and type of hydroxyethyl cellulose added, and that a giant bead-like polymer with a particle size of about 3000 μm could be obtained. The amount and the water absorption strength show contradictory tendencies. That is, in order to increase the amount of water absorbed, it is necessary to reduce the crosslinking ratio for insolubilization of the polymer as much as possible, but on the other hand, the strength of the water absorption glue decreases. Therefore, in order to increase the water absorption glue strength, it is necessary to increase the crosslinking ratio, but in order to obtain a sufficiently satisfactory water absorption glue strength, the amount of water absorption is usually at a level that is difficult to put into practical use, that is, 300 times its own weight or more. The reality is that it becomes a process. That is, polymers obtained by a method other than the method of the present invention, such as aqueous solution polymerization or solution polymerization in the presence of a bifunctional metal compound capable of reacting with a difunctional divinyl compound or cargexyl group, do not contain these crosslinking agents. Even if the amount is reduced as much as possible, the amount of water absorbed is at most 1000 times its own weight, and the water absorption strength of this product itself is extremely small.
It becomes a paste-like product, and when the amount of crosslinking agent is increased to obtain a sufficiently satisfactory water absorption glue strength, the amount of water absorbed is 3 of its own weight.
00 times or less.

本発明により製造されるポリマーは粒子径が著しく大き
く、具体的には100μm以上から最大約3000μm
であり、高吸水性で、具体的には自重の500倍以上を
有し、且っダル強度が大きいという特性を具備している
ものである。
The polymer produced by the present invention has a significantly large particle size, specifically from 100 μm or more to a maximum of about 3000 μm.
It has the characteristics of having high water absorption, specifically, 500 times or more of its own weight, and high dull strength.

この様な特性をもつ高吸水性ポリマーは、前述の如く逆
相懸濁重合において、架橋反応を生起せしめる条件を採
用すると共に、界面活性剤としてα−オレフィンとα、
β−不飽和多価カルボン酸無水物との共重合体又はその
誘導体を使用し且つ水相中にヒドロキシエチルセルロー
スを添加溶解せしめることによって初めて製造が可能と
なるのである。
Super absorbent polymers with such characteristics are produced by using conditions that cause a crosslinking reaction in reverse phase suspension polymerization as described above, and by using α-olefin and α-olefin as surfactants.
Production becomes possible only by using a copolymer with a β-unsaturated polycarboxylic acid anhydride or a derivative thereof and adding and dissolving hydroxyethyl cellulose in the aqueous phase.

まり、水相中にヒドロキシエチルセルロースを含有せし
め、架橋剤を用いずアクリル酸アルカリ金属塩モノマー
を油中水滴型逆相懸濁重合法により重合せしめ、高吸水
性ポリマーを得る方法が特開昭5f’1−76419号
公報に示されている。該方法で得られるポリマーの吸水
量は自重の500〜700倍と比較的高い値を示すが、
界面活性剤としてHl、B 3〜6のンルピタン脂肪酸
エステルを使用する為に、吸水グル強度が極めて弱く、
耐久性に乏しい。また、該方法で得られたポリマーは、
粒子径が数百μmのかなり大きなものが得られるが、均
一性良く得られることは困難であり、通常10 Am程
度の小さいものから500μm程度のかなり大きなもの
まで含まれ、幅広い分布を示す。
JP-A No. 5F discloses a method for obtaining a super absorbent polymer by containing hydroxyethylcellulose in the aqueous phase and polymerizing an alkali metal acrylic acid monomer by a water-in-oil reverse phase suspension polymerization method without using a crosslinking agent. It is shown in '1-76419 publication. The water absorption amount of the polymer obtained by this method is 500 to 700 times its own weight, which is a relatively high value.
Since Nlupitan fatty acid ester of Hl and B 3 to 6 is used as a surfactant, the water absorption strength is extremely weak.
Poor durability. In addition, the polymer obtained by this method is
Although quite large particles with a particle size of several hundred μm can be obtained, it is difficult to obtain them with good uniformity, and they usually show a wide distribution, ranging from small particles of about 10 Am to fairly large particles of about 500 μm.

更に、該方法で重合した場合、重合後の水含有重合物は
、やや粘着性を有している為、攪拌機や反応器壁に粘着
しゃすく、重合に続く脱水工程等後処理の間に一部重合
物粒子が相互に付着し、極端な場合には、塊状状態とな
りプロセス操作上極めて問題となる。
Furthermore, when polymerized by this method, the water-containing polymer after polymerization is somewhat sticky, so it tends to stick to the stirrer and reactor walls, and it is difficult to remove water during post-treatments such as the dehydration step following polymerization. Part polymer particles adhere to each other, and in extreme cases, they become lumpy, which poses a serious problem in process operation.

また、塊状状態となりたポリマーは乾燥すると非常にか
たくなり、容易に粉砕することが出来ない。
Furthermore, when the polymer is dried, it becomes extremely hard and cannot be easily crushed.

本発明は上記の様な問題点を解決した吸水グル強度の大
きな、しかも吸水量を低下せしめることなく、具体的に
は自重の500倍以上の吸水能を有し、その平均粒子径
が100μm以上と大きく、且つその分布が狭い高吸水
性ポリマーを安全にかつ容易に製造する方法を提供する
ものであり、ここに本発明の最大の特徴を有するもので
ある。
The present invention solves the above-mentioned problems and has a high water absorption glue strength without reducing the amount of water absorption. Specifically, it has a water absorption capacity of 500 times or more than its own weight, and its average particle diameter is 100 μm or more. The present invention provides a method for safely and easily producing a superabsorbent polymer having a large size and a narrow distribution, and this is the most distinctive feature of the present invention.

(1)  モノマ一 本発明の重合反応に用いるモノマーは、アクリル酸又は
メタクリル酸であってその全カル?キシル基の50モル
チ以上、好ましくは65モルチ以上がアルカリ金属塩又
はアンそニウム塩に中和されてなるアクリル酸系モノマ
ーである。
(1) Monomer The monomer used in the polymerization reaction of the present invention is acrylic acid or methacrylic acid, and its total cal? It is an acrylic acid monomer in which at least 50 moles of xyl groups, preferably at least 65 moles, are neutralized with an alkali metal salt or anthonium salt.

小さいものとなる。It becomes small.

アルカリ金属塩への酸モノマーの中和には、アルカリ金
属の水酸化物や重炭酸塩等が使用可能であるが、好まし
くはアルカリ金属水酸化物であシ、その具体的例として
は水酸化ナトリウム、水酸化カリウム及び水酸化リチウ
ムが挙げられる。工業的入手の容易さ、価格、及び安全
性の点から水酸化ナトリウムが最も好ましい。
For neutralization of acid monomers to alkali metal salts, alkali metal hydroxides, bicarbonates, etc. can be used, but alkali metal hydroxides are preferable, and specific examples include hydroxides. Mention may be made of sodium, potassium hydroxide and lithium hydroxide. Sodium hydroxide is most preferred in terms of industrial availability, price, and safety.

本発明で用いられる上記アクリル酸系モノマーの量は、
多ければ多い程良い。具体的には水に対する中和後の七
ツマー濃度として20重量−以上、好ましくは30重J
lチ以上である。そツマ−濃度が多ければ多い程、単位
パッチ当シの収量で有利になるばかりか、重合後の脱水
操作が容易であシ経済的にも有利である。
The amount of the acrylic acid monomer used in the present invention is:
The more the better. Specifically, the concentration of 7mer after neutralization in water is 20% by weight or more, preferably 30% by weight.
It is more than 1. The higher the concentration of the polymer, the better the yield per unit patch, and the easier the dehydration operation after polymerization, which is also economically advantageous.

(2)  架橋剤 本発明の製造方法で用いられる架橋剤は、分子内に二重
結合を2個以上有し、ある程度の水溶性を示し、かつ前
記アクリル酸系モノマーと共重合性が良く、効率良く架
橋構造をとシ、均一な架橋分布を与えるものでなければ
ならない。
(2) Crosslinking agent The crosslinking agent used in the production method of the present invention has two or more double bonds in the molecule, exhibits a certain degree of water solubility, and has good copolymerizability with the acrylic acid monomer, It must be able to efficiently form a crosslinked structure and give a uniform crosslinking distribution.

このような架橋剤としてはエチレングリコールジ(メタ
)アクリレート、ジエチレングリコールジ(メタ)アク
リレート、ポリエチレングリコールジ(メタ)アクリレ
ート、プロピレングリコールジ(メタ)アクリレート、
ポリプロピレングリコールジ(メタ)アクリレート、グ
リセリントリ(メタ)アクリレート、N、N’−メチレ
ンビス(メタ)アクリルアミド、ジアリルマレート、ジ
アリルマレート、ジアリルテレフタレート、トリアリル
シアヌレート、トリアリルイソシアヌレート、トリアリ
ルホスフェート等が挙げられるが、この中でも特にポリ
エチレングリコールジ(メタ)アクリレート、N、N’
−メチレンビスアクリルアミドが好ましい。
Such crosslinking agents include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate,
Polypropylene glycol di(meth)acrylate, glycerin tri(meth)acrylate, N,N'-methylenebis(meth)acrylamide, diallyl maleate, diallyl maleate, diallyl terephthalate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate Among these, polyethylene glycol di(meth)acrylate, N, N'
- Methylenebisacrylamide is preferred.

これら架橋剤の使用量はアクリル酸系モノマーに対して
0.001〜10重量%、好ましくは0.01〜2重量
%である。0.001重量%以下では吸水能は極めて大
きくなるものの吸水時の高吸水性ポリマーのrル強度が
極めて弱いものとなシ、また10重量%以上では吸水グ
ル強度は特段に向上されるが、吸水能がかなり小さいも
のとなってしまい、実用上問題となる。
The amount of these crosslinking agents used is 0.001 to 10% by weight, preferably 0.01 to 2% by weight, based on the acrylic acid monomer. If it is less than 0.001% by weight, the water absorption capacity will be extremely high, but the ripple strength of the superabsorbent polymer during water absorption will be extremely weak, and if it is more than 10% by weight, the water absorption strength will be significantly improved, but The water absorption capacity becomes considerably small, which poses a practical problem.

(3)水溶性ラジカル重合開始剤 本発明の製造方法において用いられる重合開始剤は過酸
化水素、過硫酸アンモニウムや過硫酸カリウム等の過硫
酸塩、t−プチルハイドロノJ?−オキシドやクメンハ
イドロパーオキシド等のハイドロパーオキシド類、アゾ
イソブチロニトリル、2,2′−アゾビス(2−アミジ
ノプロパン)二塩酸塩等のアゾ系開始剤が用いられる。
(3) Water-soluble radical polymerization initiator The polymerization initiators used in the production method of the present invention include hydrogen peroxide, persulfates such as ammonium persulfate and potassium persulfate, and t-butylhydrono-J? Hydroperoxides such as -oxide and cumene hydroperoxide, azo initiators such as azoisobutyronitrile and 2,2'-azobis(2-amidinopropane) dihydrochloride are used.

これらの水溶性ラジカル重合開始剤はまた例えば亜硫酸
水素ナトリウムの様な還元性物質や、アミン類等を組合
わせてレドックス型の開始剤にして使用してもよい。
These water-soluble radical polymerization initiators may also be used in combination with a reducing substance such as sodium hydrogen sulfite, amines, etc. to form a redox type initiator.

これら水溶性ラジカル重合開始剤の使用量は、アクリル
酸系モノマーに対して0.01〜10重量%、好ましく
は0.1〜2重量%である。
The amount of these water-soluble radical polymerization initiators used is 0.01 to 10% by weight, preferably 0.1 to 2% by weight, based on the acrylic acid monomer.

(4ン 界面活性剤 本発明の製造方法において用いられる界面活性剤はα−
オレフィンとα、β−不飽和多価カルデン酸無水物との
共重合体又はその誘導体である。α−オレフィンとして
は炭素数10〜100、好ましくは炭素数16〜60で
ある。又、α、β−不飽和多価カルポン酸無水物として
は、無水マレイン酸、無水シトラコン酸、無水イタコン
酸等が例示されるがこの中でも無水マレイン酸が好まし
い。これら共重合体の誘導体としては、共重合体の部分
エステル化物又は部分アミド化物である。部分エステル
化物としては共重合体のモノメチルエステル、モノエチ
ルエステル、モツプチルエステル等を挙げることができ
る。
(4) Surfactant The surfactant used in the production method of the present invention is α-
It is a copolymer of an olefin and an α,β-unsaturated polyhydric caldic acid anhydride or a derivative thereof. The α-olefin has 10 to 100 carbon atoms, preferably 16 to 60 carbon atoms. Further, examples of the α,β-unsaturated polycarboxylic acid anhydride include maleic anhydride, citraconic anhydride, itaconic anhydride, etc. Among these, maleic anhydride is preferred. Derivatives of these copolymers include partially esterified or partially amidated copolymers. Examples of the partially esterified product include copolymer monomethyl ester, monoethyl ester, moptyl ester, and the like.

また、共重合体の部分アミド化物としては、共重合体の
モノエチルアミド、モツプチルアミド、モツプチルアミ
ド等を挙げることができる。
Further, examples of partially amidated copolymers include copolymers of monoethylamide, moptilamide, moptilamide, and the like.

上記共重合体又はその誘導体の分子量は2000〜10
0000、好ましくは、10000〜50000である
The molecular weight of the above copolymer or its derivative is 2000 to 10
0,000, preferably 10,000 to 50,000.

更に本発明ではα−オレフィン/α、β−不不飽和多価
カルボン酸無水物共重合体使用の際に酸無水物の状態で
あっても或いは一部又は全部開環した状態であってもよ
い。
Furthermore, in the present invention, when the α-olefin/α,β-unsaturated polycarboxylic acid anhydride copolymer is used, it may be in the acid anhydride state or in the partially or completely ring-opened state. good.

これら界面活性剤の使用量は、分散媒に対して、0.0
1〜10重量%、好ましくは0405〜5重量%である
The amount of these surfactants used is 0.0
1 to 10% by weight, preferably 0.405 to 5% by weight.

(5)  分散媒 本発明に用いられる分散媒は、原則として重合に関与せ
ず且つ水と混合しない限シすべての液体が使用可能であ
る。例えば、ベンゼン、エチルベンゼン、トルエン、キ
シレン等の芳香族炭化水素、シクロヘキサン、メチルシ
クロヘキサン、シクロオクタン、デカリン等の脂環族炭
化水素、ヘキサン、ペンタン、ペプタン、オクタン等の
脂肪族炭化水素、クロルベンゼン、ブロムベンゼン、ジ
クロルベンゼン等のハロゲン化炭化水素が挙げられる。
(5) Dispersion medium As the dispersion medium used in the present invention, in principle, any liquid can be used as long as it does not participate in polymerization and does not mix with water. For example, aromatic hydrocarbons such as benzene, ethylbenzene, toluene, and xylene, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane, and decalin, aliphatic hydrocarbons such as hexane, pentane, peptane, and octane, chlorobenzene, Examples include halogenated hydrocarbons such as bromobenzene and dichlorobenzene.

これらの中でも特にシクロヘキサン、メチルシクロヘキ
サン等の脂環族炭化水素、ヘキサン、ヘプタン等の脂肪
族炭化水素が好ましい具体例として挙げられる。
Among these, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and aliphatic hydrocarbons such as hexane and heptane are particularly preferred.

また、これらの分散媒は1種或いは2種以上を適宜に併
用することも可能である。
Further, these dispersion media can be used alone or in combination of two or more.

これら分散媒の使用量は、重合反応系を油中水滴型にす
るため、及び重合反応熱の除去の点からして、モノマー
水溶液量に対して容量で0.5〜10倍量、好ましくは
1〜5倍量忙するのが望ましい。
The amount of these dispersion media to be used is preferably 0.5 to 10 times the amount of the monomer aqueous solution in terms of volume, in order to make the polymerization reaction system water-in-oil type, and from the standpoint of removing the heat of polymerization reaction. It is desirable to use 1 to 5 times the amount.

(6)  ヒドロキシエチルセルロース本発明で使用さ
れるヒドロキシエチルセルロースは、アクリル酸系そツ
マ−水溶液中で溶解しうるも2つであれば倒れのもので
もよい。具体例としは、エーテル化度(セルロースを構
成スるグルコース単位中の3個のOH基の中殻つがエー
テル化されているかを示す値)0.4〜2、エチレンオ
キシド付加モル数(グル・−+単位1個当シに付加した
エチレンオキシドのモル数)1〜5のものが好ましい。
(6) Hydroxyethylcellulose The hydroxyethylcellulose used in the present invention may be any type of hydroxyethylcellulose that can be dissolved in an aqueous acrylic acid solution. Specific examples include the degree of etherification (a value indicating whether the core of the three OH groups in the glucose unit constituting cellulose is etherified), 0.4 to 2, the number of moles of ethylene oxide added (glue-- The number of moles of ethylene oxide added per unit is preferably 1 to 5.

エーテル化度、付加モル数が上記の値よシ小さくなると
、ヒドロキシエチルセルロースハ、アクリル酸系モノマ
ー水溶液に溶解しなくなるために本発明には使用できな
くなる。
When the degree of etherification and the number of moles added are smaller than the above values, hydroxyethylcellulose becomes insoluble in the aqueous acrylic acid monomer solution and cannot be used in the present invention.

ヒドロキシエチルセルロースの添加量ハ、アクリル酸系
モノマーに対して0.1〜20重量%、好ましくは0.
5〜10重量%である。
The amount of hydroxyethyl cellulose added is 0.1 to 20% by weight, preferably 0.1 to 20% by weight, based on the acrylic acid monomer.
It is 5 to 10% by weight.

(7)重合条件 本発明の重合反応の代表的な実施態様は次の通シである
。即ち、予め中和されたアクリル酸溶解し、窒素等不活
性ガスを導入し脱気を行う。
(7) Polymerization conditions Typical embodiments of the polymerization reaction of the present invention are as follows. That is, acrylic acid that has been neutralized in advance is dissolved, and an inert gas such as nitrogen is introduced for deaeration.

一方、界面活性剤を分散媒に入れ、必要ならば若干加温
し、溶解せしめ、窒素等不活性がスを導入し、脱気を行
う。この中に上記モノマー水溶液を注入し、所定温度に
加熱する。この間に反応系の水溶液部分は微少な液滴と
なって分散媒中に分散、懸濁する。重合開始後、発熱の
状態によっては適宜冷却もしくは加熱を行なう。
On the other hand, a surfactant is placed in a dispersion medium, heated slightly if necessary to dissolve it, and degassed by introducing an inert gas such as nitrogen. The above monomer aqueous solution is poured into this and heated to a predetermined temperature. During this time, the aqueous solution portion of the reaction system becomes minute droplets and is dispersed and suspended in the dispersion medium. After initiation of polymerization, cooling or heating is performed as appropriate depending on the state of heat generation.

本発明の重合反応温度は、60〜100℃、好ましくは
60〜80℃である。反応温度が低くすぎると生成ポリ
マーの可溶部が多くなシ、吸水性能が低下するし、高す
ぎると吸水性能のバラツキが大きく々シ、均質なポリマ
ーにはなシ難い。
The polymerization reaction temperature of the present invention is 60 to 100°C, preferably 60 to 80°C. If the reaction temperature is too low, the resulting polymer will have a large soluble portion and its water absorption performance will be reduced; if it is too high, the water absorption performance will vary greatly and it will be difficult to produce a homogeneous polymer.

本発明の重合反応は、油中水滴型の懸濁重合系において
行なわせるが、そのためには前記したようにα−オレフ
ィンとα、β−不飽和多価カルデン酸無水物と共重合体
又はその誘導体を使用シ、且つ水相中にヒドロキシエチ
ルセルロースを添加溶解せしめ、分散媒と水の割合を適
宜に調整し、更に適当な攪拌を行わせる等の手段を組み
合わせることによシその目的を達成できる。
The polymerization reaction of the present invention is carried out in a water-in-oil type suspension polymerization system, and for this purpose, as described above, an α-olefin, an α,β-unsaturated polyhydric caldic acid anhydride, and a copolymer or copolymer thereof are required. The purpose can be achieved by combining the use of derivatives, adding and dissolving hydroxyethyl cellulose in the aqueous phase, adjusting the ratio of dispersion medium and water as appropriate, and further stirring appropriately. .

また、本発明における重合反応系の攪拌は、重合反応系
を所望の安定な油中水滴型の懸濁系を保持せしめる上で
重要であるばかシでなく、生成ポリマーの性状を良好に
せしめるうえでも重要である。
In addition, the stirring of the polymerization reaction system in the present invention is not only important for maintaining the desired stable water-in-oil type suspension system in the polymerization reaction system, but also for improving the properties of the produced polymer. But it's important.

即ちその攪拌が余夛強すぎると、生成ポリマーの微細な
ヒドロダルの一次粒子が凝集して塊状化したり、或いは
架橋構造が壊れて一部水溶性のポリマーを生成するなど
のために、ポリマー性能のバラツキが大きくなる。また
、攪拌か弱すぎると、安定な分散系にならないために異
常重合を起し、ビーズ状とはならず、又、得られたポリ
マーの吸水性能も著しく低下してしまう。従って、適当
な攪拌を行う必要があるが、この糧の懸濁重合を行わせ
る通常の攪拌機付の重合反応装置を用いる場合について
言えば、100〜600 rpm、好ましくは200〜
400rpmの攪拌によって、吸水性、吸水デル強度、
にすぐれ且つ粉砕し易いビーズ状ポリマーが再現性良く
得られる。
In other words, if the stirring is too strong, the fine primary hydrodal particles of the produced polymer will aggregate and form a lump, or the crosslinked structure will be broken and a partially water-soluble polymer will be produced, resulting in variations in polymer performance. growing. On the other hand, if the stirring is too weak, a stable dispersion system will not be obtained and abnormal polymerization will occur, resulting in failure to form beads, and the water absorption performance of the obtained polymer will also be significantly reduced. Therefore, it is necessary to carry out appropriate stirring, but when using a polymerization reactor equipped with a normal stirrer for carrying out suspension polymerization of this food, the stirring speed is 100 to 600 rpm, preferably 200 to 600 rpm.
By stirring at 400 rpm, water absorption, water absorption strength,
Bead-shaped polymers with excellent properties and easy to crush can be obtained with good reproducibility.

(8)  ポリマーの分離 本発明の製造法によって得られるポリマーは、湿潤した
、ビーズ状の粒子からなりていて、デカンテーシヨン又
は蒸発操作等によって分散媒と容易に分離することが出
来る。そして、その分離した湿潤ポリマーを、例えば1
20℃以下・つ温度で乾燥すれば、粉末状のポリマー、
又は容易に粉砕できる塊を含む粉末状のポリマーが得ら
れる。かくして得られたポリマーは通常その直径が10
0μm以上でその分布も狭く、表面が界面活性剤で覆わ
れた真球状の一次粒子又はそれらが一部二次凝集した二
次粒子を僅かに含む゛粒体である。この二次粒子も僅か
な機械力によって容易に微粉砕することができる。これ
はポリマーの製造面及び使用面において大きな利点があ
る。
(8) Separation of polymer The polymer obtained by the production method of the present invention consists of wet, bead-like particles and can be easily separated from the dispersion medium by decantation or evaporation. Then, the separated wet polymer is, for example, 1
If dried at a temperature below 20°C, powdered polymer,
Alternatively, a powdered polymer containing easily pulverizable lumps is obtained. The polymer thus obtained usually has a diameter of 10
They are granules that have a diameter of 0 μm or more and have a narrow distribution, and that contain a small amount of true spherical primary particles whose surfaces are covered with a surfactant or secondary particles that are partially agglomerated. These secondary particles can also be easily pulverized by a small amount of mechanical force. This has great advantages in terms of polymer production and use.

〔発明の効果等〕 本発明の製造法によって得られるポリマーは、既述のよ
うに吸水性能が自重の500倍以上と高く、かつ吸水ダ
ル強度が大きく、ポリマー自体が最初から粉末であるか
、または極めて簡単な粉砕操作で容易に粉末状にできる
ものである。
[Effects of the invention, etc.] As mentioned above, the polymer obtained by the production method of the present invention has a high water absorption performance of 500 times or more of its own weight, a high water absorption dull strength, and whether the polymer itself is a powder from the beginning or not. Alternatively, it can be easily made into powder by an extremely simple crushing operation.

従りて、本発明の製法で得られるポリマーは、その優れ
た吸水性能を利用して生理用ナプキン、紙オシメ等、及
びその他衛生材料の製造に有利に使用できる。
Therefore, the polymer obtained by the production method of the present invention can be advantageously used in the production of sanitary napkins, paper diapers, etc., and other sanitary materials by utilizing its excellent water absorption performance.

また、その優れた吸水性能、デル強度を利用して、最近
注目されるようになってきた土壌改良剤、保水剤等をは
じめとする園芸用又は農業用の各種の材料の製造にも使
用することができる。
In addition, by taking advantage of its excellent water absorption performance and strength, it is also used in the production of various materials for horticultural and agricultural purposes, including soil conditioners and water retention agents, which have recently been attracting attention. be able to.

以下、実施例及び比較例を挙げて本発明をさらに詳述す
る。
Hereinafter, the present invention will be further explained in detail by giving Examples and Comparative Examples.

なお、これらの例に記載の純水吸水能、吸水ダル強度は
、下記の試験方法によって測定したー結果を示す。
Note that the pure water absorption capacity and water absorption dull strength described in these examples were measured by the following test method and the results are shown.

A、純水吸水能 11のビーカーにポリマー約0.5F及び純水約11を
それぞれ秤量して入れて混合してから、約2時間放置し
て水でポリマーを十分に膨潤させた。
A. Pure Water Absorption Capacity: About 0.5F polymer and about 11% pure water were weighed and mixed into a beaker with a water absorption capacity of 11. After mixing, the polymer was left to stand for about 2 hours to sufficiently swell the polymer with water.

次いで100メツシユフルイで水切シをしたのち、その
p過液量を秤量し、下記式に従って、純水吸水能を算出
する。
After draining with a 100-mesh sieve, the amount of permeate was weighed, and the pure water absorption capacity was calculated according to the following formula.

B、吸水グル強度 ポリマーに自重の200倍量の純水を加えて吸水せしめ
、得られた吸水グルの弾力性を指で押えることによって
吸水グルの強度を調べて、下記の基準に従って評価した
B. Water-absorbing glue strength 200 times its own weight of pure water was added to the polymer to absorb water, and the strength of the resulting water-absorbing glue was examined by pressing the elasticity of the obtained water-absorbing glue with a finger, and evaluated according to the following criteria.

×:弱い   Δ:やや弱い ○:晋通備準)■:やや
強い 02強い 実施例1 攪拌機、還流冷却器、温度計、窒素ガス導入管を付設し
た容量500−の四つ日丸底フラスコに、シクロヘキサ
ン185y入れ、これにα−オレフィンと無水マレイン
酸共重合体(三菱化成@)裂開品名「ダイヤカルナ30
」、分子量約10,000 ) 1.8 Nを添加溶解
せしめ、窒素ガス雰囲気下内温を65℃とした。
×: Weak Δ: Slightly weak ○: Jintong preparation) ■: Slightly strong 02 Strong Example 1 A 500-capacity four-day round bottom flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen gas inlet tube. , cyclohexane 185y was added, and α-olefin and maleic anhydride copolymer (Mitsubishi Kasei@) cleaved product name “Diakarna 30” was added to this.
1.8 N (molecular weight: about 10,000) was added and dissolved, and the internal temperature was set to 65° C. under a nitrogen gas atmosphere.

別に容量200mのコニカルフラスコに、アクリル酸3
0Fを外部より冷却しながらこれに水63.11iを溶
解した12.9.Fの苛性ンーダを加えて、カル?キシ
ル基の77.4%を中和した。
Separately, in a conical flask with a capacity of 200 m, add acrylic acid 3
12.9. Water 63.11i was dissolved in 0F while cooling it from the outside. Add F's caustic powder, Cal? 77.4% of the xyl groups were neutralized.

この場合の水に対するモノマー濃度は、中和後のモノマ
ー濃度として35重量%に相当する。
The monomer concentration relative to water in this case corresponds to 35% by weight as the monomer concentration after neutralization.

次いでこれにN、N’−メチレンビスアクリルアミ)’
t−0,015,SJ、ヒドロキシエチルセルロース(
エーテル化度=1、EO付加モル数=2)0.9I、及
び過硫酸カリウム0.IIを加えて溶解した。
This is then added with N,N'-methylenebisacrylamide)'
t-0,015, SJ, hydroxyethyl cellulose (
Degree of etherification = 1, number of moles of EO added = 2) 0.9I, and potassium persulfate 0. II was added and dissolved.

前記の四つ日丸底フラスコの内容物に、この200m1
のフラスコの内容物を添加し、攪拌下65〜70℃にて
約1時間重合を行った。なお、攪拌は40 Orpmで
行った。
Add this 200ml to the contents of the four-day round bottom flask.
The contents of the flask were added, and polymerization was carried out at 65 to 70° C. for about 1 hour while stirring. Note that stirring was performed at 40 Orpm.

1時間反応後に攪拌を停止すると、湿潤ポリマー粒子が
フラスコの底に沈降し、デカンテーションでシクロヘキ
サン相と容易に分離することができた。分離した湿潤ポ
リマーを減圧乾燥器に移し、80〜90℃下加熱して付
着したシクロヘキサン及び水を除去した。
When stirring was stopped after 1 hour of reaction, the wet polymer particles settled to the bottom of the flask and could be easily separated from the cyclohexane phase by decantation. The separated wet polymer was transferred to a vacuum dryer and heated at 80 to 90°C to remove attached cyclohexane and water.

得られた乾燥ポリマーは、さらさらとした容易に粉砕で
きる塊を含む粉末であった。
The resulting dry polymer was a powder containing free-flowing, easily grindable clumps.

実施例2 実施例1で使用したダイヤカルナ30を大過剰のメタノ
ールで還流下、約8時間処理せしめ、過剰メタノールを
減圧下除去したものを界面活性剤として使用した以外は
実施例1と同処方にて重合及び後処理した。
Example 2 The same recipe as in Example 1 except that the Diacarna 30 used in Example 1 was treated with a large excess of methanol under reflux for about 8 hours, the excess methanol was removed under reduced pressure, and the product was used as a surfactant. Polymerization and post-treatment were carried out at.

得られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末でおった。
The resulting polymer was a powder containing free-flowing, easily grindable lumps.

実施例3 実施例1で使用したダイヤカルナ30を大過剰のブチル
アミンで還流下、70℃にて約8時間処理せしめ、過剰
のブチルアミンを減圧下除去したものを界面活性剤とし
て使用した以外は実施例1と同処方にて重合及び後処理
をした。
Example 3 The same procedure was carried out except that the Diacarna 30 used in Example 1 was treated with a large excess of butylamine under reflux at 70°C for about 8 hours, and the excess butylamine was removed under reduced pressure and the product was used as a surfactant. Polymerization and post-treatment were carried out using the same recipe as in Example 1.

得られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末であった。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

実施例4 実施例1におけるアクリル酸の代シに、メタクリル酸3
011を使用し、その他は実施例1と同様に反応させ、
後処理した。
Example 4 In place of acrylic acid in Example 1, methacrylic acid 3
011, and otherwise reacted in the same manner as in Example 1,
Post-processed.

得られたポリマーはさらさらとした容易に粉砕できる塊
を含む粉末であった。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

実施例5 実施例1におけるヒドロキシエチルセルロースの量を1
.8I!に変更し、その他は実施例1と同様にして重合
反応を行わせ、同様の後処理をした。
Example 5 The amount of hydroxyethyl cellulose in Example 1 was reduced to 1
.. 8I! The polymerization reaction was carried out in the same manner as in Example 1, and the same post-treatment was carried out.

得られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末であった。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

比較例1 特開昭56−76419号公報実施例1と同処方、同操
作にて重合を行ない、乾燥ポリマーを得た。
Comparative Example 1 Polymerization was carried out using the same recipe and procedure as in Example 1 of JP-A-56-76419 to obtain a dry polymer.

即ち攪拌機、還流冷却器、滴下F斗、窒素ガス導入管を
付した500cc4つロフラスコにヘキサン230m、
ソルビタンモノステアレート1.8Iを取り窒素ガスを
吹き込んで溶存酸素を追い出した後、60〜65℃に加
温した。別にビーカー中でアクリル酸3011を外部よ
り氷冷しつつ水49.9に溶解した13.4Jの98%
苛性ソーダでカルブキシル基の78チを中和した。
That is, 230 m of hexane was placed in a 500 cc four-loaf flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas inlet tube.
After taking 1.8 I of sorbitan monostearate and blowing nitrogen gas to drive out dissolved oxygen, it was heated to 60 to 65°C. Separately, 98% of 13.4J of acrylic acid 3011 dissolved in water 49.9% while cooling with ice from the outside in a beaker.
78 carboxylic groups were neutralized with caustic soda.

水相中のモノマー濃度は40重量%となった。The monomer concentration in the aqueous phase was 40% by weight.

次いでヒドロキシエチルセルロース(エーテル化度0.
8、付加モル数1.9)1.8.9を加えて溶解したの
ち、窒素ガスを吹き込んで溶存酸素を除去した。ビーカ
ー内の内容物を上記4つロフラスコに加えて分散させ内
温を60〜65℃に保持し、3時間攪拌を続けた。ヘキ
サンを減圧下に留去したが、膨潤−リマーの一部はフラ
スコ壁及び攪拌機に粘着しており、残った膨潤d?リマ
一部分を約80℃で減圧下乾燥し、粉末状のポリマーを
得た。
Next, hydroxyethyl cellulose (degree of etherification 0.
8. Number of moles added: 1.9) After adding and dissolving 1.8.9, nitrogen gas was blown in to remove dissolved oxygen. The contents in the beakers were added to the four flasks and dispersed, the internal temperature was maintained at 60 to 65° C., and stirring was continued for 3 hours. Although the hexane was distilled off under reduced pressure, some of the swollen remer stuck to the flask wall and the stirrer, and the remaining swollen d? A portion of Lima was dried at about 80° C. under reduced pressure to obtain a powdery polymer.

上記実施例1〜5及び比較例1によって得られた乾燥ポ
リマーの純水吸水能、吸水ダル強度及び粒子径を測定し
た結果を第1表に示す。
Table 1 shows the results of measuring the pure water absorption capacity, water absorption dull strength, and particle size of the dry polymers obtained in Examples 1 to 5 and Comparative Example 1.

本結果から明らかな様に、本発明方法で得られたポリマ
ーは、吸水能が大きく、且つ吸水rル強度が大きく、粒
子径の大きなしかも粒度分布の比較的狭いことがわかる
As is clear from the results, the polymer obtained by the method of the present invention has a large water absorption capacity, a large water absorption strength, a large particle size, and a relatively narrow particle size distribution.

又重合後の膨潤ポリマーの反応器、攪拌機等への粘着が
全くなく、回収率及びプロセス操作性等本性は極めて優
れている。
Furthermore, the swollen polymer after polymerization does not stick to the reactor, stirrer, etc., and the recovery rate and process operability are extremely excellent.

Claims (1)

【特許請求の範囲】 1)少量の架橋剤を含むアクリル酸とアクリル酸のアル
カリ金属塩若しくはアンモニウム塩又はメタクリル酸と
メタクリル酸のアルカリ金属塩若しくはアンモニウム塩
(以下、アクリル酸系モノマーという)を、水溶性ラジ
カル重合開始剤、分散媒、界面活性剤、及び水の存在下
で油中水滴型の逆相懸濁重合法によって重合するに際し
、界面活性剤としてα−オレフィンとα,β−不飽和多
価カルボン酸無水物との共重合体又はその誘導体を用い
、ヒドロキシエチルセルロースの存在下に重合させるこ
とを特徴とするビーズ状高吸水性ポリマーの製造方法。 2)アクリル酸系モノマーが、その全カルボキシル基の
50%以上がアルカリ金属塩又はアンモニウム塩に中和
されていることを特徴とする特許請求の範囲第1項記載
の製造方法。
[Scope of Claims] 1) Acrylic acid and an alkali metal salt or ammonium salt of acrylic acid, or methacrylic acid and an alkali metal salt or ammonium salt of methacrylic acid (hereinafter referred to as an acrylic acid monomer) containing a small amount of a crosslinking agent, When polymerizing by a water-in-oil reverse phase suspension polymerization method in the presence of a water-soluble radical polymerization initiator, a dispersion medium, a surfactant, and water, α-olefin and α,β-unsaturated 1. A method for producing a bead-like superabsorbent polymer, which comprises polymerizing a copolymer with a polyhydric carboxylic acid anhydride or a derivative thereof in the presence of hydroxyethyl cellulose. 2) The manufacturing method according to claim 1, wherein 50% or more of the total carboxyl groups of the acrylic acid monomer are neutralized with an alkali metal salt or an ammonium salt.
JP60234878A 1985-10-21 1985-10-21 Method for producing beaded super absorbent polymer Expired - Lifetime JPH0629299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234878A JPH0629299B2 (en) 1985-10-21 1985-10-21 Method for producing beaded super absorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234878A JPH0629299B2 (en) 1985-10-21 1985-10-21 Method for producing beaded super absorbent polymer

Publications (2)

Publication Number Publication Date
JPS6295308A true JPS6295308A (en) 1987-05-01
JPH0629299B2 JPH0629299B2 (en) 1994-04-20

Family

ID=16977737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234878A Expired - Lifetime JPH0629299B2 (en) 1985-10-21 1985-10-21 Method for producing beaded super absorbent polymer

Country Status (1)

Country Link
JP (1) JPH0629299B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560923B1 (en) * 1998-07-23 2003-05-13 Kao Corporation Aqueous artificial media
US7345126B2 (en) 2005-03-14 2008-03-18 Fuji Xerox Co., Ltd. Production method of hydroxyl-containing polymer
US20110155744A1 (en) * 2009-12-27 2011-06-30 Yen Pin Su Structure of crystal-bead-contained glass
CN109575186A (en) * 2018-12-20 2019-04-05 安徽三星树脂科技有限公司 A kind of macroporous weakly basic anion exchange resin and preparation method thereof
CN114057940A (en) * 2021-12-02 2022-02-18 中山大学 Biodegradable carbomer polymer microsphere with core-shell structure as well as preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676419A (en) * 1979-11-29 1981-06-24 Kao Corp Production of water-swellable polymer
JPS5794011A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Productin of high-molecular material having excellent water absorbability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676419A (en) * 1979-11-29 1981-06-24 Kao Corp Production of water-swellable polymer
JPS5794011A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Productin of high-molecular material having excellent water absorbability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560923B1 (en) * 1998-07-23 2003-05-13 Kao Corporation Aqueous artificial media
US7345126B2 (en) 2005-03-14 2008-03-18 Fuji Xerox Co., Ltd. Production method of hydroxyl-containing polymer
US20110155744A1 (en) * 2009-12-27 2011-06-30 Yen Pin Su Structure of crystal-bead-contained glass
CN109575186A (en) * 2018-12-20 2019-04-05 安徽三星树脂科技有限公司 A kind of macroporous weakly basic anion exchange resin and preparation method thereof
CN114057940A (en) * 2021-12-02 2022-02-18 中山大学 Biodegradable carbomer polymer microsphere with core-shell structure as well as preparation method and application thereof
CN114057940B (en) * 2021-12-02 2023-11-03 中山大学 Biodegradable carbomer core-shell structure polymer microsphere and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0629299B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0312952B1 (en) Process for preparing absorbent polymers
CA1304533C (en) Method for production of water absorbent resin
JP3119900B2 (en) Method for producing superabsorbent polymer
US4647617A (en) Water absorbent crosslinked polymer and a method of producing the same containing cellulosis fibers
JPS648006B2 (en)
JPH0117482B2 (en)
US5994419A (en) Preparation of rapidly dissolving/absorbing powders of hydrophilic/super absorbent (CO)polymers
JPS6018690B2 (en) Method for improving water absorbency of water absorbent resin
JP3363000B2 (en) Method for producing water absorbent resin
JPH04501877A (en) Manufacturing method of super absorbent resin
CA1268572A (en) Imidazoquinoxa-line compounds
JPH0310642B2 (en)
KR100492917B1 (en) Process for preparing Bead-typed hydrogel
JPH03195713A (en) Production of polymer having high water absorption
JPH01318021A (en) Preparation of molded item of water-absorbing resin
JPH0114242B2 (en)
JP2555159B2 (en) Method for producing water absorbent resin
JPH0848721A (en) Preparation of water-absorptive resin
JPS6295308A (en) Production of highly water-absorbing polymer bead
JPH03195709A (en) Production of polymer having high water absorption
JPS61157513A (en) Production of polymer having high water absorption property
JPS6352662B2 (en)
JPS6295307A (en) Production of self-crosslinking water-absorbing polymer bead
JPS598711A (en) Preparation of hydrogel
JPH04227710A (en) Manufacture of finely divided, water-swelling polysaccharide graft polymer