JPS6356501A - Cellulose gel having biochemical affinity and production thereof - Google Patents

Cellulose gel having biochemical affinity and production thereof

Info

Publication number
JPS6356501A
JPS6356501A JP61199569A JP19956986A JPS6356501A JP S6356501 A JPS6356501 A JP S6356501A JP 61199569 A JP61199569 A JP 61199569A JP 19956986 A JP19956986 A JP 19956986A JP S6356501 A JPS6356501 A JP S6356501A
Authority
JP
Japan
Prior art keywords
polylysine
gel
epsilon
cellulose particles
spherical cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61199569A
Other languages
Japanese (ja)
Other versions
JPH0427504B2 (en
Inventor
Hiroaki Ishibashi
石橋 博明
Shinichi Takasaki
真一 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP61199569A priority Critical patent/JPS6356501A/en
Publication of JPS6356501A publication Critical patent/JPS6356501A/en
Publication of JPH0427504B2 publication Critical patent/JPH0427504B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled gel having epsilon-polylysine bonded through a functional group to a spherical cellulose particle, by reacting the spherical cellulose particle containing an introduced functional group to be reacted with epsilon-polylysine with the epsilon-polylysine. CONSTITUTION:A spherial cellulose particles to which a functional group (e.g. formly group, epoxy group, carboxyl group, etc.) to be reacted with epsilon-polylysine is reacted with the epsilon-polylysine and optionally subjected to aftertreatment to give the aimed gel. An epsilon-polylysine having 20-30 polymerization degree obtained by cultivating obtained by cultivating Streptomyces Albulus in a culture containing glycerol, ammonium sulfate, yeast essence, etc., followed by separation and purification is preferable as the epsilon-polylysine. Hard gel having high mechanical strength, useful for affinity chromatography showing high speed of flow and good purification efficiency free from release of ligand is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 らに詳しくは球状セルロースゲルに8−ポリリジンを結
合させた不溶性担体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] More specifically, the present invention relates to an insoluble carrier in which 8-polylysine is bonded to a spherical cellulose gel.

〔従来の技術〕[Conventional technology]

近年、バイオテクノロジーの進歩に伴って細胞培養、遺
伝子操作などによって生産される微量の生理活性物質の
分離、精製技術の重要性が増してきている。分離、精製
方法として、ゲル濾過、イオン交換、遠心分離などの組
合せが利用されてきた。これらの操作は長時間を要した
シ、目的物質のロスなどが生じて問題点があった。これ
に対して最近、生物学的親和性を利用して分離するアフ
イニテイクロマトが盛んに利用されるようになった。
In recent years, with the progress of biotechnology, the importance of separation and purification techniques for minute amounts of physiologically active substances produced by cell culture, genetic manipulation, etc. has increased. Combinations of gel filtration, ion exchange, centrifugation, etc. have been used as separation and purification methods. These operations were problematic in that they took a long time and resulted in loss of the target substance. In contrast, affinity chromatography, which separates substances using biological affinity, has recently become widely used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のアフイニテイクロマト剤はほとんどが多糖類のア
ガロースをペースとして、ブロムシアンで活性化後リガ
ンドを結合させる方法で製造されていた。リガンドとし
ては抗体、抗原、酵素、アミノ酸、ペプチド、ホルモン
、核酸などが使用されている。しかしアガロースをベー
スとしているために、従来のアフイニテイゲルは軟く、
機械的強度が弱くカラムに充填してクロマトを実施する
場合に流速がでなく、工業的利用に難点があった。他方
リガンドの中で近年、プラスミノーゲンの精製などに使
用される塩基性アミノ酸であるリジンあるいはポリリジ
ンが注目され、これらをアガロースに結合させたアフイ
ニテイゲルが開発されている。しかし、これらのゲルは
ブロムシアン法で結合されているので、リガンドの脱離
があったり、流速がでない、精製効率が悪い等の欠点が
あった。
Most conventional Affinitei chromatography agents have been manufactured using the polysaccharide agarose as a base and binding the ligand after activation with brom cyanide. Antibodies, antigens, enzymes, amino acids, peptides, hormones, nucleic acids, etc. are used as ligands. However, because it is based on agarose, conventional Affinity gel is soft.
Due to its weak mechanical strength, it was difficult to achieve a high flow rate when packed in a column for chromatography, making it difficult to use industrially. On the other hand, among ligands, lysine or polylysine, which is a basic amino acid used for purification of plasminogen, has recently attracted attention, and an affinity gel in which these are bound to agarose has been developed. However, since these gels are bonded using the bromcyan method, they have drawbacks such as detachment of the ligand, low flow rate, and poor purification efficiency.

本発明の目的は硬くて機械的強度が強く、クロマトを実
施する場合には流速が大きく、リガ〔問題点を解決する
ための手段〕 本発明Ide−ポリリジンをリガンドとして、球状セル
ロースゲルに官能基を介して結合させた新しいゲルに関
するものである。
The object of the present invention is to have hardness, strong mechanical strength, high flow rate when performing chromatography, and to provide functional groups to spherical cellulose gel by using the Ide-polylysine of the present invention as a ligand. It concerns a new gel that is bonded via .

アミノ酸であるリジンが重合したポリリジンは従来はリ
ジンのα−位のアミノ基がカルボキシル基と縮合したα
−ポリリジンで合成品であったが、本発明に使用するボ
IJ I7ジンとしては微生物のストレプトマイセスア
ルブラス(5trepto −myces albul
us )が産生ずるe−アミノ基が縮合しているe−ポ
リリジンを使用することができる。その構造式を次に示
す。
Polylysine, which is made by polymerizing the amino acid lysine, has conventionally been made from α-lysine, in which the amino group at the α-position of lysine is condensed with a carboxyl group.
-Polylysine was a synthetic product, but the BoIJ I7 gin used in the present invention is a microorganism Streptomyces albulus (5trepto-myces albulus).
It is possible to use e-polylysine in which the e-amino group produced by US) is condensed. Its structural formula is shown below.

その製造法は特公昭59−20359号に記述されてい
る。即ち、ストレプトマイセスアルブラスをグリセロー
ル、硫酸アンモニウム、酵母エキス等を含む培養液で培
養後、分離精製してポリリジンが得られる。このポリリ
ジンの重合度は20〜30である。又、同じ発明者らの
別の文献によると(醗酵と工業43巻902頁、Agr
Its manufacturing method is described in Japanese Patent Publication No. 59-20359. That is, after culturing Streptomyces albulus in a culture solution containing glycerol, ammonium sulfate, yeast extract, etc., polylysine is obtained by separating and purifying the culture. The degree of polymerization of this polylysine is 20-30. Also, according to another document by the same inventors (Fermentation and Kogyo Vol. 43, p. 902, Agr.
.

Biol、Chem、 45巻2503頁)このポリリ
ジンは一従来のものと異なってリジンのe−位のアミノ
基がα位のカルボキシル基と縮合しているいわゆるe−
ポリリジンであることも明らかにされている。
(Biol, Chem, Vol. 45, p. 2503) This polylysine differs from conventional polylysine in that the amino group at the e-position of lysine is condensed with the carboxyl group at the α-position, so-called e-lysine.
It has also been revealed that it is polylysine.

e−ボIJ IJジンを結合させるセルロースは真球状
の球状粒子であυ、その製造方法としては次の様な例が
ある。
The cellulose to which e-Bo IJ IJ-Jin is bound is a true spherical particle, and the following examples are examples of its production method.

(1)  特開昭53−86749号に記載の方法で、
セルロース酢酸エステルを有機溶媒中に溶解し、この溶
液を水性媒体中にけんだくさせて、球状化し、有機溶媒
を蒸発させてセルロースエステル粒子を得、これをケン
化後セルロース粒子とする方法。
(1) By the method described in JP-A No. 53-86749,
A method of dissolving cellulose acetate in an organic solvent, suspending this solution in an aqueous medium, spheroidizing it, evaporating the organic solvent to obtain cellulose ester particles, and saponifying the particles to obtain cellulose particles.

(21(11の方法の応用でセルロース酢酸エステルの
溶液に脂肪族高級アルコール等を加えて、多孔性を調節
する特開昭56−24429号の方法。
(21 (The method of JP-A-56-24429, in which the porosity is adjusted by adding an aliphatic higher alcohol etc. to a solution of cellulose acetate as an application of method 11).

(3)  セルロースをパラホルムアルデヒドとジメチ
ルスルホキシドの混合溶媒にとかして造粒する特開昭5
7−159801号、特公昭57−159802号の方
法。
(3) Unexamined Japanese Patent Publication No. 5, 1987, in which cellulose is dissolved in a mixed solvent of paraformaldehyde and dimethyl sulfoxide and granulated.
7-159801, the method of Japanese Patent Publication No. 57-159802.

(4)セルロースを水酸化第2銅、塩化第1銅の濃アン
モニア水に溶解して造粒する特開昭52−11237号
の方法。
(4) The method of JP-A-52-11237, in which cellulose is dissolved in concentrated ammonia water containing cupric hydroxide and cuprous chloride and granulated.

(5)  ビスコースを変圧器油中に分散させて造粒す
る特開昭51−5361号の方法。
(5) The method disclosed in JP-A-51-5361, in which viscose is dispersed in transformer oil and granulated.

(6)  セルロースをチオシアン酸カルシウム塩溶液
に溶解させて造粒する特開昭55−44312号の方法
(6) The method disclosed in JP-A-55-44312, in which cellulose is dissolved in a calcium thiocyanate salt solution and granulated.

(7)精製リンターを銅アンモニア溶液に溶解させて造
粒する特開昭48−60754号の方法。
(7) A method disclosed in JP-A-48-60754, in which purified linter is dissolved in a copper ammonia solution and granulated.

次にこれら球状セルロース粒子とe−ポリリジンを結合
させるにはセルロースに反応性のある官能基を導入し、
その後e−ポリリジンと反応させる。その方法について
は次のような方法がある。
Next, in order to bond these spherical cellulose particles with e-polylysine, a reactive functional group is introduced into the cellulose.
Thereafter, it is reacted with e-polylysine. The following methods are available for this purpose.

(1)  セルロースにホルミル基を導入し、次いでこ
れと8−ポリリジンと反応させてシック塩基を形成させ
、還元する方法。この場合セルロースにホルミル基を導
入するKは例えば次のような方法がある。
(1) A method in which a formyl group is introduced into cellulose, and then this is reacted with 8-polylysine to form a thick base and reduced. In this case, K may be used to introduce formyl groups into cellulose, for example, by the following method.

■  セルロース+(JCH,CH−CH,→ゝ。′ (セルロース)−0−CH,−CH−CH,−NH。■ Cellulose + (JCH, CH-CH, →ゝ.' (Cellulose) -0-CH, -CH-CH, -NH.

H (→ツレロース)−0−CH,−CH−CH,−NH−
CH,−(C)I、)、−CH0H H (2)セルロースをビスオキシランと反応させてエポキ
シ基を導入し、このエポキシ基とε−ポリリジンを反応
させる方法。
H (→Tulerose)-0-CH, -CH-CH, -NH-
CH, -(C)I, ), -CH0H H (2) A method in which cellulose is reacted with bisoxirane to introduce an epoxy group, and this epoxy group is reacted with ε-polylysine.

(3)  セルロースをω−アミノアルキルアミンと反
応させてアミノ基を導入し、この末端アミノ基とe−ポ
リリジンのカルボキシル基と縮合させる方法。
(3) A method in which cellulose is reacted with ω-aminoalkylamine to introduce an amino group, and this terminal amino group is condensed with the carboxyl group of e-polylysine.

(4)  セルロースをエピクロルヒドリンでエポキシ
化後、アミン化して無水コハク酸と反応させてカルボキ
シル基を導入し、この末端カルボキシル基とe−ポリリ
ジンのアミノ基を縮合させる方法。
(4) A method in which cellulose is epoxidized with epichlorohydrin, then aminated and reacted with succinic anhydride to introduce a carboxyl group, and this terminal carboxyl group is condensed with the amino group of e-polylysine.

(5)’  (4)の方法で得られたカルボキシル基と
N−ヒドロキシスクシンイミドと反応させて活性りその
他(6)ジアゾニウム誘導体による結合方法、(7)ヒ
ドラジド誘導体による結合方法などがある。
(5)' The carboxyl group obtained by the method (4) is activated by reacting with N-hydroxysuccinimide, (6) a bonding method using a diazonium derivative, and (7) a bonding method using a hydrazide derivative.

最近、セルロースの球状粒子でアフイニテイ用ゲルでア
ミン化−七ルロファイン(セルロファインは商標である
。以下同じ。)、ホルミルーセルロファインがあシ、こ
れらを使用すると便利である。
Recently, spherical particles of cellulose such as aminated-7rulofine (Cellulofine is a trademark. The same applies hereinafter) and formyl-cellulofine have been used as affinity gels, and it is convenient to use these.

これらの結合方法を反応式に表わすと例えば次の様にな
る。
For example, these bonding methods can be expressed as a reaction formula as follows.

(l)(セルロース)−CHO+NH2−(ポリリジン
)−(セルロース)−CN=N−(ポリリジン)11東
軌(セルロース)  CHt  NH(ポリリジン)(
2)(セルロース)−0−CH,−CH−CH,−0−
(CH,)4−0−CH,−普 CH −CH−CHz +  NHt−(ポリリジン)→ (
→ツレロース)−0−CHt−CH−CHt−0−(C
)It)4−0−CHt−暑 −CH−CH,−NH−(ポリリジン)CH (3)(→ツレロース’)−NH−(CH,)−NH,
+  HOOC−(ポリリジン)→ (→ツレロース)
−き■(−(CH,)−NHCO−(ポリリジン)(4
)(七vト嘱) −〇 −CH,−CH−CH,−NH
−CO−CH,−CH,−CH −COOH+  NH2−(ポリリジン)→(七rw−
x)−0−CH,−CH−CH,−NH−Co−CH,
−CH,−寥 CH −CONH−(ポリリジン) CH (セルロース)−0−CI(、−CH−CH,−NH−
CO−CH,−CH,−CH −co−NH−(ポリリジン) 〔発明の効果〕 この様な本発明のe−ポリリジンが結合したセルロース
は今までにない特異的な分離精製剤として利用できる。
(l) (Cellulose) -CHO+NH2- (Polylysine) -(Cellulose) -CN=N- (Polylysine) 11 Toki (Cellulose) CHt NH (Polylysine) (
2) (cellulose) -0-CH, -CH-CH, -0-
(CH,)4-0-CH, -PCH -CH-CHz + NHt- (polylysine) → (
→Tulerose)-0-CHt-CH-CHt-0-(C
) It) 4-0-CHt-Hatsu-CH-CH, -NH-(polylysine)CH (3) (→Turellose')-NH-(CH,)-NH,
+ HOOC- (polylysine) → (→turerose)
-ki■(-(CH,)-NHCO-(polylysine) (4
) (7vt嘱) -〇 -CH, -CH-CH, -NH
-CO-CH, -CH, -CH -COOH+ NH2- (polylysine) → (7rw-
x) -0-CH, -CH-CH, -NH-Co-CH,
-CH, -CH -CONH- (polylysine) CH (cellulose) -0-CI(, -CH-CH, -NH-
CO-CH, -CH, -CH -co-NH- (Polylysine) [Effects of the Invention] The e-polylysine-bonded cellulose of the present invention can be used as an unprecedented specific separation and purification agent.

類似の素材としてα−ポリリジンが結合したアガロース
ゲル(シグマ製)があるが、ポリリジンがα−ポリリジ
ンであシ、α位−アミノ基が縮合しているのでフリーの
アミノ基はe−位である。e−ポリリジンはε−位のア
ミノ基が縮合しているので、α−位のアミノ基がフリー
であり、e−ポリリジン−セルロースでもフリーのアミ
ノ基が多くあり、α−ボリリジンーアガロースとは異な
った特異な性質を有し新しい分離精製剤として非常に有
用である。ポリリジンが従来のα−ポリリジンと異なる
ばかりでなく、担体ゲルがセルロースであることも大き
な特徴である。アガロースは多糖類であるが、その構造
のため軟く、機械的強度が弱いという欠点がある。この
ためこの様なゲルをクロマト剤としてスケールアップし
て工業的スケールで使用する場合、高流速がとれない等
の欠点がある。本発明のε−ポリリジン−セルロースは
機械的強度がち)、高流速が得られ、工業的スケールで
の使用もでき、新しい分離システムとしての用途が期待
できる。
A similar material is agarose gel (manufactured by Sigma) that has α-polylysine bound to it, but the polylysine is α-polylysine and the amino group at the α-position is condensed, so the free amino group is at the e-position. . Since the amino group at the ε-position of e-polylysine is condensed, the amino group at the α-position is free, and there are many free amino groups in e-polylysine-cellulose. It has different and unique properties and is very useful as a new separation and purification agent. Not only is polylysine different from conventional α-polylysine, but a major feature is that the carrier gel is cellulose. Agarose is a polysaccharide, but its structure has the disadvantage of being soft and having low mechanical strength. Therefore, when such a gel is scaled up and used as a chromatographic agent on an industrial scale, there are drawbacks such as the inability to maintain a high flow rate. The ε-polylysine-cellulose of the present invention has high mechanical strength), can obtain high flow rates, can be used on an industrial scale, and can be expected to be used as a new separation system.

本発明のε−ポリリジン−セルロースではフリーのα−
位のアミノ基が多く存在するのでアフイニテイクロマト
剤として用いたとき酵素のffg、プラスミノーゲンの
単離、7アージの分離、精製、核酸の分離、多糖類の分
離などが今までの分離材と異なって効率良く、しかも−
度に多量に可能である。
In the ε-polylysine-cellulose of the present invention, free α-
Since there are many amino groups in the positions, when used as an affinity chromatography agent, it is possible to isolate ffg of enzymes, plasminogen, separation and purification of enzymes, separation of nucleic acids, separation of polysaccharides, etc. Unlike wood, it is efficient and -
Possible in large quantities at one time.

〔実施例〕〔Example〕

以下に実施例としてe−ポリリジンのセルロース球状粒
子への結合方法と得られた担体の使用例を示すが本発明
はかかる実施例のみに限定されるものではない。
As an example, a method for binding e-polylysine to cellulose spherical particles and an example of the use of the obtained carrier will be shown below, but the present invention is not limited to such examples.

実施例1 アフイニテイ用担体として市販されているセルロースを
ホルミル化したホルミルーセルロファイン(チッソ■製
)サクンヨラドライ品(プフナーロート上で吸引濾過し
たもの) 50F (約7011Lt)と0.59のe
−ポリリジンを含む0.2M Nat HP Oa −
Na OHバッファー(1)Hll、0)100ゴを加
え30℃、1時間撹拌した。この後水素化シアノホウ素
ナトリウム(5CBH)400■を加え、−晩撹拌した
。さらにL−リジン14,6N1SCBH4001n9
を加え、2時間撹拌した。
Example 1 Formyl-cellulofine (manufactured by Chisso ■), a formylated cellulose commercially available as an affinity carrier, Sakun Yola dry product (suction filtration on a Puchner funnel) 50F (approximately 7011 Lt) and 0.59 e
-0.2M Nat HP Oa containing polylysine-
100 g of NaOH buffer (1) Hll, 0) was added and stirred at 30°C for 1 hour. Thereafter, 400 μ of sodium cyanoborohydride (5CBH) was added and stirred overnight. Furthermore, L-lysine 14,6N1SCBH4001n9
was added and stirred for 2 hours.

濾過後蒸留水洗浄をくり返し、e−ポリリジン−セルロ
ースゲルを得た。固定化されたe−ポリリジンはメチル
オレンジによる結合方法を利用する比色法(J、 Po
lym、 Sci、 Polym、 Chem、 Ed
、 22巻、1281ページ、1984年参照)で定量
されゲル1ゴ当95■であった。
After filtration, washing with distilled water was repeated to obtain e-polylysine-cellulose gel. The immobilized e-polylysine was analyzed using a colorimetric method (J, Po
lym, Sci, Polym, Chem, Ed
, vol. 22, p. 1281, 1984) and was quantified at 95 cm per gel.

実施例2 特開昭55−44312号の実施例1の方法で造粒した
セルロースゲルのサクションドライ品100IをlN−
NaOH溶液80ゴにけんだくさせさらにNa B H
45JFと12Wllの1,4−ビス−(2,3−エポ
キシビロキシ)−ブタンを加え、25℃で5時間反応さ
せた。反応終了後、濾過して水でよく洗滌した。この様
にして得られたエポキシ活性化−セルロースゲルのサク
ションドライ品100.Fを0.2 M Na、 CO
3溶液130dにけんだくさせε−ポリリジン1.2y
を加え、4℃で15時間反応させた。反応終了後1.0
 MNa C1で洗滌した。過剰のエポキシ基を除くた
めに中性条件で5M−塩酸ヒドロキシアミンを100d
加えて撹拌後濾過した。固定化されたB−ポリリジンは
ゲ/l/ 1 xrl当シ4■であった。
Example 2 Suction-dried cellulose gel 100I granulated by the method of Example 1 of JP-A No. 55-44312 was heated to lN-
Dissolve in NaOH solution for 80 minutes and then add Na B H
45JF and 12Wll of 1,4-bis-(2,3-epoxybiloxy)-butane were added and reacted at 25°C for 5 hours. After the reaction was completed, it was filtered and thoroughly washed with water. Suction-dried epoxy-activated cellulose gel thus obtained 100. F to 0.2 M Na, CO
1.2 y of ε-polylysine suspended in 130 d of 3 solution
was added and reacted at 4°C for 15 hours. 1.0 after completion of reaction
Washed with MNa Cl. Add 100 d of 5M hydroxyamine hydrochloride under neutral conditions to remove excess epoxy groups.
The mixture was added, stirred, and then filtered. The immobilized B-polylysine had a ratio of 1 xrl to 4.

実施例3 特開昭56−24429号の実施例1の方法で造粒した
セルロースゲルのサクションドライ品1ootIを0,
4MのK I O4溶液130r!Ltを加え1時間室
温で撹拌した。水でよく洗滌後、1.0Mのへキサメチ
レンシアミン150ゴを加え6時間撹拌した。反応終了
後水洗した。このようにして得られたアミン化−セルロ
ースゲル100Iにe−ボリリジ73.0.9”i含む
0.1 M炭酸ナトリウム150肩!と1−エチル−3
−(3−ジメチルアミノプロピル)カルボジイミド1.
09を加え室温で3時間撹拌した。反応終了後濾過し、
水洗後、0.1M炭酸ナトリウム150m/とL−リジ
ン2.0.9を加え、1時間反応後水洗した。固定化さ
れたe−ポリリジンはゲル11R1当910■であった
Example 3 Suction-dried cellulose gel granulated by the method of Example 1 of JP-A No. 56-24429.
130r of 4M KIO4 solution! Lt was added and stirred at room temperature for 1 hour. After thoroughly washing with water, 150 g of 1.0M hexamethylenecyamine was added and stirred for 6 hours. After the reaction was completed, it was washed with water. The thus obtained aminated cellulose gel 100I contained 73.0.9"i of e-borylide, 150 ml of 0.1 M sodium carbonate, and 1-ethyl-3.
-(3-dimethylaminopropyl)carbodiimide 1.
09 was added and stirred at room temperature for 3 hours. After the reaction is completed, filter
After washing with water, 150ml of 0.1M sodium carbonate and 2.0.9ml of L-lysine were added, and after reacting for 1 hour, it was washed with water. The amount of immobilized e-polylysine was 910 μl per gel 11R.

実施例4 アフイニテイ用担体として市販されているセルロースを
アミン化したアミン化−七ルロファイン(チッソ■製)
のサクションドライ品100Iを0.1 M NaC1
で洗滌後、150dの0.1 M Naclにけんだく
させた。これに12Nの無水コハク酸を少量づつ加えた
。その間20%NaOHを加えpHを6.0に保ちなが
ら30℃で6時間撹拌した。濾過してゲルを0.1 M
 −NaOH中にけんだくさせ室温で30分間撹拌した
。その後このゲルを水洗してスクシニルアミノセルロー
スゲルを得た。このゲル1001に1.51のε−ポリ
リジンを含む0.2 M Na2HP04−NaOHバ
フ7アー(pH11,0) 200ゴと1−エチル−3
−(3−ジメチルアミノプロピル)カルボジイミド塩酸
塩1.51を加え、室温で8時間撹拌した。
Example 4 Aminated cellulose commercially available as an affinity carrier - Aminated Seven Rulofine (manufactured by Chisso ■)
Suction dry product 100I of 0.1 M NaC1
After washing with water, it was suspended in 0.1 M NaCl for 150 d. To this was added 12N succinic anhydride little by little. Meanwhile, 20% NaOH was added and the mixture was stirred at 30° C. for 6 hours while keeping the pH at 6.0. Filter the gel to 0.1 M
-Suspended in NaOH and stirred at room temperature for 30 minutes. Thereafter, this gel was washed with water to obtain a succinylaminocellulose gel. This gel 1001 contains 0.2 M Na2HP04-NaOH buff 7a (pH 11,0) containing 1.51 ε-polylysine and 1-ethyl-3.
-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.51 g) was added, and the mixture was stirred at room temperature for 8 hours.

さらにL−リジン5.0gを加え、2時間撹拌した。反
応終了後は水洗を十分おこなった。固定化されたε−ポ
リリジンはゲル1−当り4.01n9であった。
Furthermore, 5.0 g of L-lysine was added and stirred for 2 hours. After the reaction was completed, it was thoroughly washed with water. The immobilized ε-polylysine was 4.01 n9/gel.

実施例5 実施例4で得たスクシニルアミノセルロースゲルをジオ
キサン中で充分に洗滌して脱水後、300 ytlのジ
オキサンにけんだくさせた。最終濃度が各々0.1Mに
なる様にN−ヒドロキシスクシンイミドとジシクロへキ
シルカルボジイミドを加えた。60分間撹拌した。70
0 mlのジオキサン、500mのメタノール、400
rttlのジオキサンで洗滌した。この様にしてN−ヒ
ドロキシスキシンイミドエステル化セルロースゲルを得
た。このゲル10.9(サクションドライ品)に1%N
aC1を含む0.01 M NaHCOs (pH7,
5)を5Qm加えけんだくさせε−ポリリジンo、sy
を加え室温で20時間撹拌した。残存活性基をブロック
するためK O,I M −)リス塩酸(pH9,0)
で室温で1時間撹拌した。次いで0、5 M −NaC
1含有の0.05 Mホウ酸緩衝液(pH4,0)にて
洗滌した。このようにしてε−ポリリジンを官能基を介
して結合したセルロースゲルが得られた。e−ボIJ 
IJレジン結合量はゲル1ゴ当シロrn9であった。
Example 5 The succinylaminocellulose gel obtained in Example 4 was thoroughly washed in dioxane, dehydrated, and then suspended in 300 ytl of dioxane. N-hydroxysuccinimide and dicyclohexylcarbodiimide were added to a final concentration of 0.1M each. Stir for 60 minutes. 70
0 ml dioxane, 500 m methanol, 400 m
Washed with rttl dioxane. In this way, an N-hydroxysuccinimide esterified cellulose gel was obtained. 1% N in this gel 10.9 (suction dry product)
0.01 M NaHCOs (pH 7,
5) was added with 5Qm and ε-polylysine o, sy
was added and stirred at room temperature for 20 hours. KO, IM −) lithium hydrochloric acid (pH 9,0) to block remaining active groups.
The mixture was stirred at room temperature for 1 hour. Then 0,5 M-NaC
It was washed with 0.05 M borate buffer (pH 4,0) containing 1. In this way, a cellulose gel in which ε-polylysine was bonded via a functional group was obtained. e-bo IJ
The amount of IJ resin bound was 1 gel per rn9.

実施例6 (プラスミノーゲンの精製)実施例1で調整
したε−ポリリジンーセルロ始バッファー」という。)
で平衡化した。このカラムに人血清200dを流速22
 ml/brで添加し、溶出液の吸光度(2801m)
が0,05以下になるまで開始バッファーで洗滌した。
Example 6 (Purification of Plasminogen) ε-Polylysine-cellulose starting buffer prepared in Example 1. )
Equilibrated with. 200 d of human serum was applied to this column at a flow rate of 22
Add at ml/br, absorbance of eluate (2801m)
The cells were washed with starting buffer until the value was 0.05 or less.

弱い非特異的吸着物質を除くために更に0.5Mの食塩
を含む開始バッファー59mでカラムを洗滌した。
The column was further washed with 59 ml of starting buffer containing 0.5 M NaCl to remove weak non-specifically adsorbed substances.

ついで0.2 Mの8−アミノカブ四ン酸溶液70dを
流しプラスミノーゲンを溶出した。以上の操作で121
n9のプラスミノーゲンが回収された。
Then, 70 d of 0.2 M 8-aminocarbtetrahydric acid solution was poured to elute the plasminogen. 121 with the above operations
n9 plasminogen was recovered.

これはSDSポリアクリルアミドグラジエンド電気泳動
で純品と確認された。ゲルの単位容量当りの回収率は1
.21R9/mであった。
This was confirmed to be a pure product by SDS polyacrylamide gradient electrophoresis. The recovery rate per unit volume of gel is 1
.. It was 21R9/m.

比較例1 実施例6においてe−ポリリジン−セルロースゲルに代
えてα−ポリリジン−アガロースを使用し、他を全く同
様な条件でおこない6R9のプラスミノーゲンが回収さ
れた。ゲルの単位溶積当シの回収率は0.6In9/ゴ
であった。
Comparative Example 1 The same procedure as in Example 6 was carried out except that α-polylysine-agarose was used in place of the e-polylysine-cellulose gel, and 6R9 plasminogen was recovered. The recovery rate per unit volume of gel was 0.6 In9/G.

実施例6と比較例1の比較から本発明のゲルの精製効率
は従来のものよりもはるかくすぐれていることが明らか
である。
From a comparison of Example 6 and Comparative Example 1, it is clear that the purification efficiency of the gel of the present invention is much better than that of the conventional gel.

実施例7 (T4ファージの分離、精製)実施例2で調
整したe−ポIJ IJレジンセルロースゲル1 ml
をガラス製カラム(径0.8 an X 2cIL)に
充填し、0.15 M NaC1を含む0.02Mリン
酸バッファー(pH7,4)(以下「開始バッファー」
という。)10mlで平衡化した。これにT4ファージ
1.5X10”個/1tlを含む開始バッファー1dを
添加し、2rul/hrの流速で流した。さらに開始バ
ッファーIQ+a/で洗滌した。
Example 7 (Separation and purification of T4 phage) 1 ml of e-po IJ IJ resin cellulose gel prepared in Example 2
was packed into a glass column (diameter 0.8 an
That's what it means. ) and equilibrated with 10 ml. Initiation buffer 1d containing 1.5 x 10'' T4 phage/1 tl was added to this, and the mixture was run at a flow rate of 2 rul/hr. It was further washed with initiation buffer IQ+a/.

この時カラムより溶出して来た液を集め全体を12−と
した。これを素通り液とした。次KO,5M −NaC
1を含む0.05M−グリシン塩酸バフ7アー(pH3
,0)5m/で流速4d/hrで溶出した。これを溶出
液とした。対照としてe−ボIJ 17ジンが結合して
いない特開昭55−44312号の実施例1の方法で造
粒したセルロースゲルを用いて同じ実験を行ない、各々
素通シ液、溶出液を回収した。以上のサンプル中のファ
ージ数を大腸菌(Escherichia Co11 
)を用いた寒天二重層で検定した。結果は次の第1表の
とおシであシ、e−ポリリジン−セルロースゲルはT4
ファージを吸着するととが明らかとなシ、ファージの分
離、精製に有用である。
At this time, the liquid eluted from the column was collected and the whole was designated as 12-. This was used as a flow-through liquid. Next KO, 5M -NaC
1 containing 0.05M glycine hydrochloride buff 7a (pH 3
, 0) 5 m/ at a flow rate of 4 d/hr. This was used as the eluate. As a control, the same experiment was carried out using cellulose gel granulated by the method of Example 1 of JP-A No. 55-44312 to which e-vo IJ 17 Gin was not bound, and the permeate solution and eluate were collected respectively. did. The number of phages in the above samples was calculated using Escherichia Co11.
) was assayed using an agar double layer. The results are shown in Table 1 below, and the e-polylysine-cellulose gel was T4
It has been shown that it adsorbs phages, and is useful for phage separation and purification.

第1表 実施例8 (ヒアルロン酸の精製) ス)L/7’)コツカスズーエビテミヵス(Strep
to−coccus Zooepidemicus )
 F ERM BP −878菌をペプトン1.5%、
酵母エキス0.5%、牛血溝0.5係、リン酸1カリウ
ム0.3%、リン酸2カリウム0.2%、ブドウ糖2%
、チオ硫酸ナトリウム0.01%、亜硫酸す) IJウ
ム0.002%及び硫酸マグネシウム0.01%を含む
水溶液(pH7,0)で培養した。(醗酵方法について
は61年度農芸化学会講演要旨集P、 510参照。)
培養液は11で32℃で30時間、醗酵をおこなった。
Table 1 Example 8 (Purification of hyaluronic acid) L/7') Strep
to-coccus Zooepidemicus)
FERM BP-878 bacteria with peptone 1.5%,
Yeast extract 0.5%, bovine blood groove 0.5, monopotassium phosphate 0.3%, dipotassium phosphate 0.2%, glucose 2%
The cells were cultured in an aqueous solution (pH 7.0) containing 0.002% sodium thiosulfate, 0.01% sodium thiosulfate, 0.002% magnesium sulfate, and 0.01% magnesium sulfate. (For fermentation methods, see 1961 Society of Agricultural Chemistry Abstracts, page 510.)
The culture solution was fermented at 32° C. for 30 hours.

終了後加熱処理して菌体を分離した。戸液にエタノール
約509mA!を加え、結晶を析出させた。
After completion of the heat treatment, the bacterial cells were isolated. Approximately 509 mA of ethanol in the liquid! was added to precipitate crystals.

析出した結晶を戸数し500mの0.05 M ) リ
スバッファー(pH7,5)に溶解させて、実施例3で
製造したe−ポリリジン−セルロースゲ2し21(径8
cIrL×40c!IL)を詰めたカラムに加え2、0
 M NaC1を加えるグラジェント法で溶出させた。
The precipitated crystals were dissolved in 0.05 M) lithium buffer (pH 7.5), and the e-polylysine-cellulose gel 2 and 21 (diameter 8
cIrL×40c! IL) in addition to the column packed with 2,0
Elution was performed using a gradient method in which M NaCl was added.

流量(600ml/hr )溶出液を25m1ずつ分取
し、ヒアルロン酸の定量はBitter (Anal。
Flow rate (600 ml/hr) The eluate was collected in 25 ml portions, and hyaluronic acid was quantified using Bitter (Anal).

Biochem 4330 (1962))のウロン酸
を測定する方法でおこなった。その結果を第1図に示す
The method for measuring uronic acid described in Biochem 4330 (1962) was used. The results are shown in FIG.

ウロン酸の分析値が高いフラクション/1620〜/f
640までを集めて透析で脱塩後、濃縮、凍結乾燥して
ヒアルロン酸の製品3.Olを得た。ここに得られたヒ
アルロン酸は次の様な性質を有し、高品質であった。
Fraction with high analysis value of uronic acid /1620~/f
Collect up to 640 ml of hyaluronic acid, desalt it by dialysis, concentrate and freeze-dry it to make a hyaluronic acid product. I got Ol. The hyaluronic acid obtained here had the following properties and was of high quality.

分子量:96万(粘度法) ヒアルロン酸二89% 水     分 : 10係 蛋  白  質 :  (0,1係 核     酸 :(0,5% ゲルコサミノグルカン硫酸塩 :(0,01%実施例9
 (ゲルの流速の測定) 次の様な条件で実施例4で製造した本発明のゲルと市販
のα−ポリリジン−アガロース(シグマ製)の流速を測
定した。
Molecular weight: 960,000 (viscosity method) Hyaluronic acid 289% Water: 10-factor Protein: (0,1-factor Nucleic acid: (0,5%) Gelcosaminoglucan sulfate: (0,01%) Example 9
(Measurement of flow rate of gel) The flow rate of the gel of the present invention produced in Example 4 and commercially available α-polylysine-agarose (manufactured by Sigma) was measured under the following conditions.

カ   ラ   ム :1.6X20cm溶  出  
液: 55−リン酸バッファー(pH7,0)この結果
を第2図に示す。この図より本発明のゲルは従来品のア
ガロース系ゲルと比較して問題なく流速が大であること
が明らかであり、工業的に大量に使用する場合に非常に
有利である。
Column: 1.6x20cm elution
Solution: 55-phosphate buffer (pH 7.0) The results are shown in FIG. From this figure, it is clear that the gel of the present invention has a higher flow rate than conventional agarose-based gels without any problems, and is very advantageous when used industrially in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例8で行なったヒアルロン酸のアフイニテ
イクロマトグラフイーによる溶出曲線を示す図、第2図
はカラムのみ囚、本発明グルを詰めだカラム(B)及び
市販のα−ボIJ IJリジンアガロースを詰め九カラ
ム(C)K 50mM リン酸バッファー(pH7,0
)を流したときの流速を示す図である。 以上
Figure 1 is a diagram showing the elution curve of hyaluronic acid obtained by affinity chromatography performed in Example 8, and Figure 2 is a diagram showing the elution curve of hyaluronic acid obtained by affinity chromatography. Nine columns packed with IJ lysine agarose (C) K 50mM phosphate buffer (pH 7,0
) is a diagram showing the flow velocity when flowing. that's all

Claims (9)

【特許請求の範囲】[Claims] (1)球状セルロース粒子に官能基を介してε−ポリリ
ジンが結合した生物化学的親和性を有するゲル。
(1) A gel with biochemical affinity in which ε-polylysine is bound to spherical cellulose particles via a functional group.
(2)前記ε−ポリリジンがストレプトマイセスアルブ
ラス(Streptomyces albulus)の
醗酵より得られる重合度20〜30のものであることを
特徴とする第(1)項記載のゲル。
(2) The gel according to item (1), wherein the ε-polylysine is obtained from fermentation of Streptomyces albulus and has a degree of polymerization of 20 to 30.
(3)ε−ポリリジンと反応する官能基を導入した球状
セルロース粒子とε−ポリリジンとを反応させ必要に応
じて後処理することを特徴とする球状セルロース粒子に
官能基を介してε−ポリリジンが結合した生物化学的親
和性を有するゲルの製造方法。
(3) Spherical cellulose particles into which a functional group that reacts with ε-polylysine has been introduced are reacted with ε-polylysine, and post-treatment is performed as necessary. Method for producing gels with bound biochemical affinities.
(4)前記ε−ポリリジンと反応する官能基を導入した
球状セルロース粒子が、球状セルロース粒子にホルミル
基を導入したものであり、前記後処理が還元であること
を特徴とする第(3)記載のゲルの製造方法。
(4) Item (3), wherein the spherical cellulose particles into which a functional group that reacts with ε-polylysine is introduced are spherical cellulose particles into which a formyl group is introduced, and the post-treatment is reduction. Method for producing gel.
(5)前記ε−ポリリジンと反応する官能基を導入した
球状セルロース粒子が、球状セルロース粒子にエポキシ
基を導入したものであることを特徴とする第(3)項記
載のゲルの製造方法。
(5) The method for producing a gel according to item (3), wherein the spherical cellulose particles into which a functional group that reacts with ε-polylysine is introduced are spherical cellulose particles into which an epoxy group is introduced.
(6)前記ε−ポリリジンと反応する官能基を導入した
球状セルロース粒子が、球状セルロース粒子とω−アル
キルアミンの末端アミンとの反応生成物であることを特
徴とする第(3)項記載のゲルの製造方法。
(6) The spherical cellulose particles introduced with a functional group that reacts with ε-polylysine are a reaction product of spherical cellulose particles and a terminal amine of ω-alkylamine. Method of manufacturing gel.
(7)前記ε−ポリリジンと反応する官能基を導入した
球状セルロース粒子が、球状セルロース粒子にカルボキ
シル基を導入したものであることを特徴とする第(3)
項記載のゲルの製造方法。
(7) Item (3) characterized in that the spherical cellulose particles into which a functional group that reacts with ε-polylysine is introduced are spherical cellulose particles into which a carboxyl group is introduced.
Method for producing the gel described in Section 1.
(8)前記ε−ポリリジンと反応する官能基を導入した
球状セルロール粒子が、球状セルロース粒子にカルボキ
シル基を導入し、このカルボキシル基をN−ヒドロキシ
スクシンイミドでエステル化したものであることを特徴
とする第(3)項記載のゲルの製造方法。
(8) The spherical cellulose particles into which a functional group that reacts with ε-polylysine is introduced are obtained by introducing carboxyl groups into spherical cellulose particles and esterifying the carboxyl groups with N-hydroxysuccinimide. A method for producing a gel according to item (3).
(9)前記ε−ポリリジンがストレプトマイセスアルブ
ラス(Streptomyces Albulus)の
醗酵より得られる重合度20〜30のものであることを
特徴とする第(3)項ないし第(8)項のいずれかに記
載のゲルの製造方法。
(9) Any one of items (3) to (8), wherein the ε-polylysine is obtained from fermentation of Streptomyces Albulus and has a degree of polymerization of 20 to 30. The method for producing the gel described in .
JP61199569A 1986-08-26 1986-08-26 Cellulose gel having biochemical affinity and production thereof Granted JPS6356501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199569A JPS6356501A (en) 1986-08-26 1986-08-26 Cellulose gel having biochemical affinity and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199569A JPS6356501A (en) 1986-08-26 1986-08-26 Cellulose gel having biochemical affinity and production thereof

Publications (2)

Publication Number Publication Date
JPS6356501A true JPS6356501A (en) 1988-03-11
JPH0427504B2 JPH0427504B2 (en) 1992-05-12

Family

ID=16410010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199569A Granted JPS6356501A (en) 1986-08-26 1986-08-26 Cellulose gel having biochemical affinity and production thereof

Country Status (1)

Country Link
JP (1) JPS6356501A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328603A (en) * 1990-03-20 1994-07-12 The Center For Innovative Technology Lignocellulosic and cellulosic beads for use in affinity and immunoaffinity chromatography of high molecular weight proteins
EP1120428A2 (en) * 2000-01-24 2001-08-01 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
JP2002263486A (en) * 2001-03-14 2002-09-17 Chisso Corp Endotoxin adsorbent and method of removing endotoxin by using the same
JP2003503363A (en) * 1999-06-29 2003-01-28 セゴェー,ペーテル Method for selecting a polycation-based bioconjugate suitable for transporting various active substances into the body
US7888412B2 (en) 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
JP2011099029A (en) * 2009-11-05 2011-05-19 Teijin Ltd Polysaccharide derivative
US8232265B2 (en) 2005-10-07 2012-07-31 Board Of Trustees Of The University Of Alabama Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
US8668807B2 (en) 2008-02-19 2014-03-11 Board Of Trustees Of The University Of Alabama Ionic liquid systems for the processing of biomass, their components and/or derivatives, and mixtures thereof
US8784691B2 (en) 2009-07-24 2014-07-22 Board Of Trustees Of The University Of Alabama Conductive composites prepared using ionic liquids
US8883193B2 (en) 2005-06-29 2014-11-11 The University Of Alabama Cellulosic biocomposites as molecular scaffolds for nano-architectures
US9096743B2 (en) 2009-06-01 2015-08-04 The Board Of Trustees Of The University Of Alabama Process for forming films, fibers, and beads from chitinous biomass
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
US9394375B2 (en) 2011-03-25 2016-07-19 Board Of Trustees Of The University Of Alabama Compositions containing recyclable ionic liquids for use in biomass processing
US10100131B2 (en) 2014-08-27 2018-10-16 The Board Of Trustees Of The University Of Alabama Chemical pulping of chitinous biomass for chitin
CN109206538A (en) * 2018-08-29 2019-01-15 武汉汇研生物科技股份有限公司 A kind of epoxy amino chromatography media and preparation method thereof
US10927191B2 (en) 2017-01-06 2021-02-23 The Board Of Trustees Of The University Of Alabama Coagulation of chitin from ionic liquid solutions using kosmotropic salts
US10941258B2 (en) 2017-03-24 2021-03-09 The Board Of Trustees Of The University Of Alabama Metal particle-chitin composite materials and methods of making thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920359A (en) * 1982-07-26 1984-02-02 Mitsubishi Chem Ind Ltd Water-base coating composition
JPS6115900A (en) * 1984-06-30 1986-01-23 Agency Of Ind Science & Technol Porous membrane of modified cellulose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920359A (en) * 1982-07-26 1984-02-02 Mitsubishi Chem Ind Ltd Water-base coating composition
JPS6115900A (en) * 1984-06-30 1986-01-23 Agency Of Ind Science & Technol Porous membrane of modified cellulose

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328603A (en) * 1990-03-20 1994-07-12 The Center For Innovative Technology Lignocellulosic and cellulosic beads for use in affinity and immunoaffinity chromatography of high molecular weight proteins
JP2003503363A (en) * 1999-06-29 2003-01-28 セゴェー,ペーテル Method for selecting a polycation-based bioconjugate suitable for transporting various active substances into the body
EP1120428A2 (en) * 2000-01-24 2001-08-01 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
EP1120428A3 (en) * 2000-01-24 2001-08-22 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
US6486285B2 (en) 2000-01-24 2002-11-26 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
JP2002263486A (en) * 2001-03-14 2002-09-17 Chisso Corp Endotoxin adsorbent and method of removing endotoxin by using the same
US7888412B2 (en) 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
US8883193B2 (en) 2005-06-29 2014-11-11 The University Of Alabama Cellulosic biocomposites as molecular scaffolds for nano-architectures
US8232265B2 (en) 2005-10-07 2012-07-31 Board Of Trustees Of The University Of Alabama Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
US8802596B2 (en) 2005-10-07 2014-08-12 Board Of Trustees Of The University Of Alabama Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
US8668807B2 (en) 2008-02-19 2014-03-11 Board Of Trustees Of The University Of Alabama Ionic liquid systems for the processing of biomass, their components and/or derivatives, and mixtures thereof
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
US9096743B2 (en) 2009-06-01 2015-08-04 The Board Of Trustees Of The University Of Alabama Process for forming films, fibers, and beads from chitinous biomass
US8784691B2 (en) 2009-07-24 2014-07-22 Board Of Trustees Of The University Of Alabama Conductive composites prepared using ionic liquids
JP2011099029A (en) * 2009-11-05 2011-05-19 Teijin Ltd Polysaccharide derivative
US9394375B2 (en) 2011-03-25 2016-07-19 Board Of Trustees Of The University Of Alabama Compositions containing recyclable ionic liquids for use in biomass processing
US10100131B2 (en) 2014-08-27 2018-10-16 The Board Of Trustees Of The University Of Alabama Chemical pulping of chitinous biomass for chitin
US10927191B2 (en) 2017-01-06 2021-02-23 The Board Of Trustees Of The University Of Alabama Coagulation of chitin from ionic liquid solutions using kosmotropic salts
US10941258B2 (en) 2017-03-24 2021-03-09 The Board Of Trustees Of The University Of Alabama Metal particle-chitin composite materials and methods of making thereof
CN109206538A (en) * 2018-08-29 2019-01-15 武汉汇研生物科技股份有限公司 A kind of epoxy amino chromatography media and preparation method thereof

Also Published As

Publication number Publication date
JPH0427504B2 (en) 1992-05-12

Similar Documents

Publication Publication Date Title
JPS6356501A (en) Cellulose gel having biochemical affinity and production thereof
US4264738A (en) Process for purification of proteolytic enzymes
US5092992A (en) Polyethyleneimine matrixes for affinity chromatography
JPH07501937A (en) Purified chitin deacetylase
US5085779A (en) Polyethyleneimine matrixes for affinity chromatography
JPS6048524B2 (en) Biologically active substance reagent and its manufacturing method
EP0423938B1 (en) Ligand-containing medium for chromatographic separation, process for preparing the medium, and use of the medium for isolating synthetic or natural molecules from a fluid mixture
CN110090635B (en) GSH affinity chromatography medium for purifying GST-tag fusion protein, and preparation method and application thereof
SE406913B (en) PROCEDURE FOR PURIFICATION OR PREPARATION OF AN ENZYME BY CONTACT WITH AFFINITRATOR MATERIALS
EP0446582B1 (en) Method for producing of recombinant human cysteineless gamma-interferon free of methionine at n-terminal
Jirku et al. [30] Cell immobilization by covalent linkage
US5395856A (en) HPLC avidin monomer affinity resin
JPS6154450A (en) Gel for affinity chromatography having group specificity and its production
JPS6154451A (en) Gel for affinity chromatography having group specificity and its production
EP0186347B1 (en) Method for producing high-active biologically efficient compounds immobilized on a carrier
JP2739232B2 (en) Method of using cellulose gel having biological affinity
US3926730A (en) Separation and purification of alpha-amylase
US3033758A (en) Preparation of levans
JPS5929200B2 (en) Manufacturing method for water-insoluble tannin preparations
RU2736149C1 (en) Method n1 for preparing a sorbent based on covalent immobilized and chemically modified lysozyme for sorption of bacterial endotoxins and the sorbent itself
SU1479511A1 (en) Method of producing affinic sorbent
JPS6193127A (en) Method of separating peptide hormone
SU942427A1 (en) Method for purifying proteolytic enzymes
RU1777951C (en) Method for producing sorbent for separation of fibrous nectine
JPS62267292A (en) Production of moranoline derivative

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term